
Domain-Independent
Multi-threaded Software Model Checking

Dirk Beyer
LMU Munich
Germany

Karlheinz Friedberger
LMU Munich
Germany

ABSTRACT

Recent development of software aims at massively parallel execu-

tion, because of the trend to increase the number of processing

units per CPU socket. But many approaches for program analy-

sis are not designed to benefit from a multi-threaded execution

and lack support to utilize multi-core computers. Rewriting exist-

ing algorithms is difficult and error-prone, and the design of new

parallel algorithms also has limitations. An orthogonal problem is

the granularity: computing each successor state in parallel seems

too fine-grained, so the open question is to find the right struc-

tural level for parallel execution. We propose an elegant solution to

these problems: Block summaries should be computed in parallel.

Many successful approaches to software verification are based on

summaries of control-flow blocks, large blocks, or function bodies.

Block-abstraction memoization is a successful domain-independent

approach for summary-based program analysis. We redesigned the

verification approach of block-abstraction memoization starting

from its original recursive definition, such that it can run in a paral-

lel manner for utilizing the available computation resources without

losing its advantages of being independent from a certain abstract

domain. We present an implementation of our new approach for

multi-core shared-memory machines. The experimental evaluation

shows that our summary-based approach has no significant over-

head compared to the existing sequential approach and that it has

a significant speedup when using multi-threading.

CCS CONCEPTS

· Software and its engineering → Formal software verifica-

tion; · Theory of computation → Parallel algorithms;

KEYWORDS

Program Analysis, Software Verification, Parallel Algorithm, Multi-

threading, Block-Abstraction Memoization

ACM Reference Format:

Dirk Beyer and Karlheinz Friedberger. 2018. Domain-Independent Multi-

threaded SoftwareModel Checking. In Proceedings of the 2018 33rd ACM/IEEE

International Conference on Automated Software Engineering (ASE ’18), Sep-

tember 3ś7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3238147.3238195

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’18, September 3ś7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238195

1 INTRODUCTION

Program verification has been applied successfully to find errors

in applications or to prove their correctness. Recent hardware de-

velopment aims towards parallel execution of programs either on

multi-core machines or shared across several machines in a com-

puting cluster. For large-scale program verification, we do not only

need efficient algorithms, but also make use of available hardware

resources up to their limits. There are some approaches to leverage

such systems, but most recent algorithms for program verification

and model checking are not designed to work in parallel man-

ner and utilize only a small part of available resources. There are

several reasons for this: Either the verification algorithms have

dependencies between intermediate results, such that only a se-

quential execution is useful, or the amount of parallelism is bound

by a small number, e.g., only two analyses are executed in paral-

lel and communicate information, effectively using only a small

number of CPU cores. The main question is whether and how we

can (re-)design existing verification techniques such that they can

be executed on parallel computer architectures.

We contribute the idea to use summaries as the objects to com-

pute in parallel, instead of inventing new parallel state-space itera-

tion algorithms. Block-abstraction memoization (BAM) [31] is a par-

ticularly nice method to summarize blocks of program statements,

because it is independent from a particular analysis Ð it wraps

an existing analysis without much interference and stores block

summaries in a cache. We use this concept to develop a domain-

independent analysis that distributes a verification problem across

multiple processing units without changes to the analysis technique.

Our analysis is based on a standard state-space exploration using a

control-flow automaton that represents the program. The approach

is orthogonal to other data-flow-based analyses, and thus, it can be

combined with analyses based on different abstract domains like

BDDs, explicit values, intervals, or predicates.

The value of our approach is its level of separation of concerns: it

separates the concern of making an analysis multi-threaded from

the concern of designing and implementing an abstract domain

and its operators. We base our approach on BAM and use most of

its data structures, such that most parts of the (wrapped) analysis

(and its implementation) remain unchanged. We redesigned the

algorithm such that we can efficiently execute it across several

processing units. The parallelism of the analysis is only bound

by the structure of the program to be analyzed and the amount of

work found during the analysis. Our work includes a transformation

of the existing algorithm of BAM from a sequential, recursively

defined algorithm into a parallel approach. Additionally, we benefit

from the existing infrastructure of BAM, i.e., we also use a cache

for block abstractions and apply the operators reduce and expand

to increase the cache hit rate. The analysis is sound, implemented

634

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

in the open-source verification framework CPAchecker, and can be

combined with existing components of the framework, including

CEGAR [20] or witness export [5, 6].

Contributions. We make the following contributions:

• We introduce a new technique for parallelization of verifica-

tion algorithms that is independent from particular abstract

domains because it is based on a flexible and configurable block

summarization.

• We implemented the technique in the open-source verification

framework CPAchecker. Our implementation and all experimen-

tal data are available to other researchers and practitioners for

replication via our artifact [9] and supplementary website.1

• We evaluated our new technique on a large set of benchmarks

and show (1) that the parallel version of BAM (if using only one

CPU core) behaves similar to the sequential version (i.e., there

is no significant overhead for parallelization) and (2) that the

parallel version of BAM significantly improves the response

time of the verification process for programs that are large

enough to benefit from multi-threading.

Related Work. The idea to use parallel algorithms in software

verification is not new. There exist several approaches reaching

from plain parallel execution of different algorithms (until the first

analysis succeeds) via one-way communication between (some)

analyses (one analysis provides additional information for another

one) to fully parallel analyses (dividing the state space into par-

titions that are explored separately).

Portfolio Approaches. A simple, but effective approach is to run

a portfolio analysis [24], i.e., a fixed number of predefined anal-

yses in parallel to leverage the available CPU cores on a single

machine, such that the verifier terminates with the first succeeding

analysis (e.g. [22, 26]). This strategy is applied either to separately

explore the state space, e.g., with different domains, or in a way

that one analysis provides information for another one, for exam-

ple to enrich it with additional invariants [7]. Such approaches

for parallel software verification are not scalable due to its fixed

number of different analyses, and they suffer from the problem

that each single analysis only uses a small fraction of the available

resources. If all but one analysis fail to determine a verification

result (because of unsupported features in the task, or impreci-

sion of the analysis), the remaining work is sometimes limited to

a single analysis and thus a single core.

Multi-Threading Approaches. SPIN [23] and Divine [3, 29] are based

on pure explicit model checking and use a central hash table to

check for existing (already analyzed) states. LTSmin [18] either per-

forms explicit state-space search in a parallel manner or uses a

BDD-based approach using the BDD-library Sylvan [30] that inter-

nally parallelizes its operations. Other approaches divide a given

problem into smaller components that are verified separately, be-

fore joining the results to get a proof for a whole program [21, 25].

An example implementation for such a technique is the tool Soft-

Ver that uses BDDs and predicates.

Structurally-defined conditional analysis [28] is an approach that

splits a program according to conditions as in conditional model

checking [11], that is, given a program P and a condition ψ , two

1https://www.sosy-lab.org/research/bam-parallel/

analysis instances can be created, one conditional analysis of P

and ψ and one conditional analysis of P and ¬ψ . The two anal-

ysis instances are completely independent and can be executed

in parallel. The approach can scale up to an arbitrary number of

splits. The elegance of this approach is that it does not depend

on a specific implementation but can be built on top of existing,

off-the-shelf tool components.

Multi-Machine Approaches. State-space exploration can be dis-

tributed across several machines by partitioning the possible state-

space. Tools like SPIN [23], CSeq-Swarm [27], or the SPARK Analysis

Tools [19] divide the verification problem after a short pre-analysis

of the program, and split the potential state space and the verifi-

cation condition according to given time and memory limitations,

available processing units, or other criteria. This approach is po-

tentially problematic due to the unknown nature of the program

to be analyzed, e.g., it might not match the pre-defined schedul-

ing. For degenerated state spaces, the parallel analysis might be

imbalanced between different threads/processes. Other tools like

LTSmin [18] or Divine [3, 29] circumvent such imbalances by a dy-

namic scheduling approach. The approach of structurally-defined

conditional analysis [28] can also be extended to benefit from

multi-machine environments.

Our contribution is a more general parallel technique for pro-

gram analysis and can be applied to an arbitrary domain and even

combinations of several domains. Thus, explicit-value analysis,

BDD-based analysis, as well as predicate analysis can benefit from

our approach. The parallelism of the approach presented in this

paper is based on the internal structure of the program, i.e., an auto-

matic partitioning of the control flow, and tries to use all available

processing units, only depending on the dynamic behavior of the

program analysis, i.e., the unfolding of the abstract state space.

2 BACKGROUND

The following section provides an overview of basic concepts and

definitions that our approach is based on. We describe the pro-

gram representation, configurable program analysis, the details of

block-abstraction memoization, and how we advanced it towards

an efficient parallel algorithm for program analysis (for more de-

tail see the original articles [12, 31]).

2.1 Program Representation

We restrict the presentation to a simple imperative programming

language, where all operations are either assignment or assume

operations. A program is represented by a control-flow automaton

(CFA) A = (L, l0,G), which is a directed graph consisting of a set

L of program locations (modeling the program counter), a set G ⊆

L ×Ops × L of control-flow edges (modeling the computation steps

from one location to the next: assignment or assume operations),

and an initial program location l0 (entry point of the program).

2.2 CPA and CPA Algorithm

A configurable program analysis (CPA) [12] is specified by an ab-

stract domain for a program analysis and operators to model the

behavior of the program analysis: A CPA D = (D,{,merge, stop)

consists of

635

https://www.sosy-lab.org/research/bam-parallel/

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

(1) an abstract domain D = (C, E, [[·]]) that consists of a set C of

concrete states, a lattice E = (E,⊑) over a set E of abstract-

domain elements (i.e., abstract states) and a partial order ⊑, and

a concretization function [[·]] that maps each abstract-domain

element to the represented set of concrete states.

(2) a transfer relation{⊆ E×E that yields successors of an abstract

state.

(3) a merge operator merge ⊆ E × E → E that determines how to

merge two abstract states when control flow meets).

(4) a termination check stop ⊆ E × 2E → B that specifies whether

an abstract state is covered by a set of abstract states.

Algorithm 1 CPAalg performs a state-space exploration. It com-

putes an overapproximation of the reachable states by constructing

abstract states for the program based on a given CPA and an initial

abstract state. The algorithm is a fixed-point iteration andmaintains

a set waitlist of abstract states that still have to be explored, and

a set reached of already explored abstract states. In each iteration,

the algorithm takes an abstract state from waitlist (line 2) and com-

putes its successors (line 3). The algorithm checks whether a new

state can be merged with an existing state, and updates the work

sets accordingly (lines 5ś8). The operator stop ensures that the new

abstract state is only added to the work sets if the abstract state is

not already covered by any of the existing states in reached (lines 9ś

11). The algorithm terminates if either the set waitlist is empty or

there is another reason to abort early, e. g., a property violation.

We use a simplified version of algorithm CPAalg [8] in order

to shorten the presentation. The precision and precision adjust-

ment, which determine the granularity of the analysis within a

CEGAR loop, are neglected in this description, but fully available

and supported in our implementation.

Different aspects of a program are analyzed by different CPAs,

and compositions of CPAs allow more advanced analyses. CPAs

Algorithm 1 CPAalg(D, reached, waitlist), taken from [8]

Input: a CPA D = (D,{,merge, stop),

where E denotes the set of elements of the lattice of D,

a set reached ⊆ E of abstract states,

a set waitlist ⊆ reached of frontier abstract states,

a function abort : E → B that defines whether the algorithm

should abort early

Output: the updated sets reached and waitlist

1: while waitlist , ∅ do

2: pop(e) from waitlist

3: for each e ′ with e { e ′ do

4: for all e ′′ ∈ reached do

5: enew := merge(e ′, e ′′)

6: if enew , e
′′ then

7: reached := reached ∪ {enew } \ {e
′′}

8: waitlist := waitlist ∪ {enew } \ {e
′′}

9: if ¬stop(e ′, reached) then

10: reached := reached ∪ {e ′}

11: waitlist := waitlist ∪ {e ′}

12: if abort(e ′) then

13: return (reached, waitlist)

14: return (reached, waitlist)

have been defined for many abstract domains, such as BDD-based

analysis [17], (explicit or symbolic) value analysis [14, 15], predicate

analysis [8, 10, 13], or combination thereof [2]. Also the tracking

of the program counter and of the call stack for procedures are

defined as CPAs. We will not go into detail for all their definitions

and descriptions here, because our approach works on an abstract

level and is independent from a specific domain. For our evalua-

tion later, we use a value analysis that tracks variables and their

values explicitly, e.g., an abstract state is a (partial) function that

maps program variables to values.

2.3 BAM

Block-abstraction memoization (BAM) [31] is a modular approach

for reachability analysis of abstract state graphs (such as abstract

models of programs). Therefore, it treats a large program as a set

of blocks, and analyzes the blocks separately. The result of a block

analysis (the block abstraction) of a nested block is embedded in

the surrounding block’s analysis. Block abstractions are also stored

in a cache for later reuse in order to avoid repeated computation

of the same block abstraction, to speed up the analysis. BAM de-

fines the two operators reduce and expand that aim at a higher

cache hit rate. For simplicity we will neglect both operators in

the further description. They are orthogonal to the approach of

parallel analysis that we present here.

The components of BAM are defined in detail in the following:

2.3.1 Blocks. The basic components of BAM are blocks, which

are formally defined as parts of a program: A block B = (L′,G ′)

of a CFA A = (L, l0,G) consists of a set L′ ⊆ L of connected

program locations and a set G ′ = {(l1,op, l2) ∈ G | l1, l2 ∈ L′}

of control-flow edges. Two different blocks B1 = (L′1,G
′
1) and

B2 = (L′2,G
′
2) are either disjoint (L′1 ∩ L′2 = ∅) or one block

is completely nested in the other block (L′1 ⊂ L′2). Each block

B = (L′,G ′) has entry and exit locations, which are defined as

In(B) =
{

l ∈ L′ | (∃(l ′,op, l) ∈ G ∧ l ′ < L′) ∨ ∄(l ′,op, l) ∈ G
}

and

Out (B) =
{

l ∈ L′ | (∃(l ,op, l ′) ∈ G ∧ l ′ < L′) ∨ ∄(l ,op, l ′) ∈ G
}

, re-

spectively. In general, the block size can be freely chosen in BAM.

In most cases, functions and loops are used as block size, because

they represent the logical structure of a program and lead to nat-

ural block abstractions.

Figure 1 shows a schematic example of a CFA and how it could be

divided into blocks. It does not show any operations; we omit details

for ease of presentation. The largest block (denoted as BA) consists

of all locations and represents the whole CFA of the program. The

other blocks (denoted as BB to BF) are smaller and consists of

fewer locations. Block BF is nested in block BE , which in turn is

nested in block BA. Location 3 is the entry location of block BB , i.e.,

In(BB) = {3}, and location 4 is its exit location, i.e., Out (BB) = {4}.

2.3.2 BAM-CPA. The basis of CPAchecker is the idea of config-

urable program analysis. Thus, BAM is formalized as a CPABAM =

(DBAM,{BAM,mergeBAM, stopBAM). BAM works on an abstract,

domain-independent level and uses an abstract-domain-dependent

wrapped analysis (like the BDD-based, explicit value, interval, or

predicate analysis) to track variables and values. This wrapped anal-

ysis is also given as CPAW = (DW,{W,mergeW, stopW), based

on which we now formalize BAM:

636

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

BA

BB

BC

BD

BE

BF

Figure 1: Schematic control-flow automaton with blocks

(1) The domain DBAM wraps the domain DW.

(2) The transfer relation {BAM for a block B has a transfer

s {BAM s ′ for two abstract states s and s ′ if

s ′ ∈



{s ′′ | s
Bsub
{BAM s ′′} if l ∈ In(Bsub) // apply BAM to Bsub

{s ′′ | s {W s ′′} if l < Out (B) // delegate toW

where l is the program location of s .

Depending on the currently analyzed program location l , the

transfer relation chooses between two possible steps: For an

entry location of a block Bsub , the operation
Bsub
{BAM represents

the block abstraction for the block Bsub and the block-entry

abstract state s . The block abstraction is computed by a call

CPAalg(DBAM, {s}, {s}). For exit locations of blocks, there is no

succeeding abstract state (in the analysis of the current block

B). For other program locations, the wrapped transfer relation

{W is applied.

(3) The merge operatormergeBAM = mergeW and the termination

check stopBAM = stopW correspond to the wrapped analysis.

The performance of BAM can easily be increased by a cache

cache ⊆ (Blocks×E) → (2E×2E), which maps a block and an entry

abstract state of the block to the set of reached abstract states and

the set of frontier states. The cache is optional for the application

of BAM, but the memoization of block abstractions improves the

performance. Additionally, the operators reduce and expand can be

applied for a higher cache hit rate. We ignore them for simplicity.

2.4 Towards Parallel BAM

A simple state-space exploration that enumerates all reach-

able abstract states and only checks whether they were al-

ready part of the set reached can be done with the operators

mergesep and stopsep (defined as mergesep (e, e
′) := e and

stopsep (e,R) := ∃e
′ ∈ R : e ⊑ e ′, or even with a simpler form

stopsep (e,R) := ∃e ′ ∈ R : e = e ′). Well-known techniques for

explicit-state model checking [3, 23] use such an approach to an-

alyze the state space. This approach can be parallelized easily by

synchronizing the access to the existing abstract states in the sets

reached and waitlist and applying the operators{,mergesep , and

stopsep concurrently. With lock-free implementations of the set

data structures for reached and waitlist there is only minimal syn-

chronization necessary for an efficient analysis. However, when

using more general (and possibly more expensive) operator in-

stances, the complete sets reached and waitlist (and also larger

parts of the CPA algorithm) would need to be locked to ensure

single-thread access, which prevents an efficient parallel appli-

cation of the algorithm.

To circumvent this problem, our new approach does not intro-

duce parallelism within the CPAalg algorithm, but applies several

independent CPAalg instances in parallel. Each CPAalg invoca-

tion is executed in a separate thread on its own part of the state

space, i.e., with its own sets reached and waitlist of abstract states,

such that there is only minimal communication between the algo-

rithm instances. The necessary infrastructure for such an approach

is based on BAM. The previously given basic definition of BAM

leaves room for several implementation details, such that both (the

sequential and the parallel) implementation match the given spec-

ification. The computation and application of block abstractions

can be done in sequential or parallel manner.

3 PARALLEL BAM

Our contribution is a scalable parallelization of the sequential algo-

rithm of BAM. Block abstractions are independent from each other

and also from the surrounding context. Thus, they can be computed

in parallel, as soon as the initial abstract state of a block abstraction

is known. The sequential version of BAM, which was defined by

Wonisch and Wehrheim [31], recursively calls another CPA algo-

rithm for each newly entered block, waits for its termination and

directly uses the result as a block abstraction of the entered block.

In contrast to that, our parallel version schedules the computation

of a nested block abstraction in another thread and continues with

the analysis of further abstract states from the set waitlist.

Each block abstraction is computed by a separate instance of

the CPAalg algorithm (in own thread), with own instances of the

sets reached and waitlist, and a thread-safe instance of the transfer

relation{ and the operators merge and stop. The operators are

stateless, and thus can be used in parallel from several threads.

There is no need to lock the data structures of a CPAalg instance.

In parallel algorithms, a critical point is the number of synchro-

nizations. Block abstractions are large enough to avoid expensive

synchronization for single steps during the computation. Synchro-

nization is only needed when entering or leaving a block, i.e., when

starting or terminating a block’s analysis instance. Additionally, the

communication only happens between dependent block abstrac-

tions, such that no global locking is required in the algorithm.

3.1 Jobs as Components with Dependencies

Our technique is based on the parallel execution of components

named jobs. A job job = (D, reached,waitlist,B) consists of

637

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

• a CPA D = (D,{,merge, stop) that determines the analysis

(in our case we always set D = BAM),

• a set reached and a set waitlist of abstract states to be analyzed,

and

• a block B = (L′,G ′) representing the partition of the program’s

CFA to be analyzed.

A job is executed by applying Alg. 1 CPAalg with the given

CPA D on the sets reached and waitlist. Note that there can be

several jobs for the same block B, but each set reached and each set

waitlist are assigned to exactly one job. There are no shared data

based on abstract states for different jobs. This allows us to execute

jobs in parallel, because the job executions are independent from

each other. If a block has nested blocks, the corresponding block

abstraction depends on the block abstractions of those nested blocks.

In the sequential implementation of BAM, the dependencies of block

abstractions on nested-block abstractions are implicitly solved by

calling algorithm CPAalg recursively, i.e., the analysis of an outer

block waits until a nested block abstraction is computed completely,

and then continues. In the parallel approach we explicitly maintain

such dependencies between (analyses of) block abstractions. A

relation deps ∈ jobs ×E× jobs tracks at which abstract state a block

abstraction needs to be computed and applied. This relation needs to

be globally visible, shared across all threads, and modifications are

applied atomically. As dependencies are only modified when a job is

started or terminated, the overhead for synchronization is negligible.

Our implementation does currently not support recursive tasks and

thus there are no cyclic dependencies between block abstractions.

3.2 Scheduling and Job Execution

The parallel execution of analyses needs a scheduling algorithm

that distributes the parallel running analyses onto the available

processing units. In our case we chose a simple task queue from

the Java Concurrency API, where we insert our jobs, and let the

framework do the scheduling. We can set the number of running

threads to the available hardware by using the default Java thread

pool. For simplicity of Alg. 3, the actual scheduling is hidden in

the call schedule that (asynchronously) executes the given job with

the given data.2 This solution has only small overhead (for run

time and for developers) and is performant enough for the analysis,

even when applied to a larger scale of computing resources. We

have nearly linear speedup when using multiple cores (see Sect. 4),

thus we assume that the build-in scheduling is efficient enough

for our currently available hardware.

The basic idea of a parallel implementation is given in Algs. 2

and 3. The function abort of Alg. 1 CPAalg terminates the analysis

as soon as a nested block abstraction needs to be computed. In

this case, we determine the necessary data to compute the block

abstraction in our scheduling algorithm and schedule a new analy-

sis to compute the nested-block abstraction asynchronously. The

abstract state before entering the block is removed from the current

set waitlist and stored as a part of the dependency relation deps.

After the computation of the nested-block abstraction is finished,

the dependency is removed from deps and the state is re-added into

2The pseudo code omits some scheduling-related code, as this would be too much
detail for this description and can be looked up in our reference implementation.

Algorithm 2 ParallelBAM(D, reached, waitlist): Initial step for

parallel BAM

Input: a CPA D = (D,{,merge, stop),

where E denotes the set of elements of the lattice of D,

a set reached ⊆ E of abstract states,

a set waitlist ⊆ reached of frontier abstract states,

a global relation deps ⊆ jobs × E × jobs to track computations

of block abstractions

Output: a set of reachable abstract states,

a subset of frontier abstract states

1: deps := ∅

2: mainJob := (D, reached, waitlist, mainBlock)

3: JobExecutor(mainJob, deps, ∅)

4: return (mainJob.reached, mainJob.waitlist)

Algorithm 3 JobExecutor(job, deps, statesToAdd): Job execution

for parallel BAM

Input: a job = (D, reached,waitlist,B),

a global relation deps ⊆ jobs × E × jobs to track computations

of block abstractions,

a set statesToAdd ⊆ E of abstract states to be added before

starting the analysis

1: job.waitlist := job.waitlist ∪ statesToAdd

2: deps := deps \
{
(job, e, ·) ∈ deps | e ∈ statesToAdd

}

3: job.reached, job.waitlist :=

CPAalg(D, job.reached, job.waitlist)

4: missinдBAs := {e ∈ reached |hasMissinдBA(e)}

5: if missinдBAs , ∅ then // nested BA needed

6: for e ∈missinдBAs do

7: job.waitlist := job.waitlist \ {e}

8: childJob := (C, {e}, {e}, getBlock(e))

9: deps := deps ∪ {(job, e, childJob)}

10: schedule(childJob, deps, ∅)

11: schedule(job, deps, ∅)

12: else

13: f inished := job.waitlist = ∅ ∧ {(job, ·, ·) ∈ deps} = ∅

14: shouldAbort := ∃e ∈ job.reached : abort(e)

15: if f inished ∨ shouldAbort then

16: registerBA(job.reached, shouldAbort)

17: parents := {(·, ·, job) ∈ deps}

18: for (parentJob, updateState , ·) ∈ parents do

19: schedule(parentJob, deps, {updateState})

20: deps := deps \ parents

the set waitlist. The function schedule executes the given job asyn-

chronously with algorithm Alg. 3. The asynchronous execution of a

job can be delayed due to limited resources or because the same job

is scheduled twice, i.e., with different arguments. We use a thread

pool for scheduled jobs based on a job queue with a FIFO ordering

strategy. The function scheduleAndWait does the same, but awaits

the termination of the job. Themethod registerBA is executedwhen-

ever a block analysis terminates. It extracts the block abstraction

from the analyzed set reached and updates the cache of BAM.

638

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

time

block

BA

BB

BC

BD

BE

BF

A1 A2 A3 A4 A5 A6 A7 A8

B1

C1

D1

E1

F1

E2

Figure 2: Schematic time line of a possible execution of jobs

with parallel BAM for the example in Fig. 1

3.3 Example Application of Parallel BAM

The CFA in Fig. 1 consists of two characteristic parts: the upper

part has heavy branching and several control-flow paths, the part

below location 17 consists of a simple chain of locations. Parallel

BAM implicitly recognizes this structure and the scheduling will

apply a parallel analysis for the upper part. Figure 2 shows a possi-

ble time line for the execution of the new algorithm for the CFA

given in Fig. 1. The heavy branching part of the program results

in independent blocks BB , BC , and BD , which can be analyzed in

parallel. Each box in Fig. 2 represents a job, consisting of a CPA

W, a set reached, a set waitlist, and a block B ∈ {BA, ...,BF }. For

each block (more concretely: for each set reached), there can be

several jobs that are applied in sequential order.

For the example, let us assume a depth-first search as iteration

order and an expensive computation in the blocks BB , BC , and

BD . In general, the iteration order for the program analysis can

be configured by the user, and the effort to analyze blocks de-

pends of course on the given task.

Initially, Alg 2 creates job A1 (Alg. 2, line 2) for the analysis of

the block BA. Figure 2 shows the execution of job A1 with Alg. 3

as a box along the time axis. Internally, Alg. 1 CPAalg analyzes

the first abstract states of the given task (Alg. 3, line 3), until the

entry location of block BB is reached. Algorithm CPAalg terminates

for the job A1 and two further (independent) jobs A2 and B1 are

scheduled (Alg. 2, line 10 and 11) and executed in parallel. The

job B1 analyses the block BB and is not interrupted by another

block-entry location. The job A2 is scheduled because there is a

branching at location 2 in the CFA, such that the set waitlist of

the terminated CPAalg in job A1 was not empty.

For the example, we assume that the job A7 analyzes the pro-

gram location with CFA location 17. For the part below location 17

however, inter-block dependencies prevent a parallel execution of

jobs and we need to explicitly wait for nested-block abstractions

to be computed. In Fig. 2 this is visible for jobs E1, F1, E2, and

A8, which do not have any parallel execution. Overall, our par-

allel version of BAM uses a dynamic scheduling, such that such

imbalances are prevented in most cases.

3.4 Soundness of the Parallel Approach

We take a short look at the soundness of the parallel algorithm

based on its sequential instance. The main difference between the

sequential and the parallel version of BAM is the computation order

of block abstractions. Instead of computing one block abstraction

after another, they are computed in parallel whenever possible. As

the computations of block abstractions themselves are independent

and do not share any relevant data, the theoretical basis for sound-

ness does not change. Thus, the parallel approach is as sound as the

sequential algorithm that was proven to be sound in [31], i.e., only

the iteration strategy for the state space differs and the soundness

relies on the underlying analysis W of BAM. In other words: If

there exists an abstract path in the analyzed source file that reaches

a property violation, then the same path is also explored by the

parallel algorithm, consisting of the same block abstractions and

abstract states as computed by a sequential analysis.

3.5 Requirements for Parallel Execution

Our parallel approach has some additional requirements on the

used components: Each used CPA has to allow multi-threaded ac-

cess to its main components, the operators must be thread-safe and

usable in parallel. This can either be implemented (a) by stateless

operators (which is the intended behavior of operators anyway)

or (b) by separate instances of the operators for each accessing

thread (including independent data structures). (a) An ideal frame-

work would only have stateless operators (just as their theoretically

defined mathematical pendant) and thus, they would easily be us-

able in multi-threaded context without locking or synchronization.

(b) While the operators are stateless in theory, a large software

system (such as the framework CPAchecker), where the developers

integrate several different theoretical approaches, requires an im-

plementation that partially deviates from the concept of stateless

operators. We noticed that the transfer relation { and also the

operators merge and stop for several CPAs were already designed

and implemented in a stateless manner, such that they can eas-

ily be used for our parallel BAM implementation. Depending on

the CPA, most of the code (and also most of the theoretical back-

ground) is placed in the transfer relation, and thus the conceptual

difficulty was to rewrite those parts that are critical and might

need to be synchronized. To avoid heavy synchronization, we have

converted some (non-critical) parts like statistics and time measure-

ment into a thread-safe implementation or provide independent

instances of operators for special cases.

We have not only added the new algorithms (Alg. 2 and 3) for

parallel BAM into the framework, but also modified some other

components such that they can be combined and used with the new

algorithm. The following list contains a few corner cases of CPAs

that were touched or are usable with our approach:

• LocationCPA: The program location for the current analysis is

tracked with the LocationCPA. As the program location of each

statement is constant after parsing the program andwritten into

the CFA location, the ’state’ of the operators is the (immutable)

CFA itself. Thus no changes had to be made.

• CallstackCPA: The call stack for the current analysis is deter-

mined by the CallstackCPA. As the corresponding operators

are stateless (i.e., only depending on the abstract call-stack state

given as parameter), no changes were required.

• ValueCPA: The ValueCPA performs an explicit-value analysis

and tracks numerical values for variables. The analysis itself

does not need to be changed for synchronization.

639

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

4 EVALUATION

This section compares our new parallel approach with the existing

sequential implementation and shows that the new approach can

reduce the response time considerably when executed on several

cores. First, we compare the old sequential implementation with the

new implementation (executed with only one thread), in order to

show that no regression appears and that both analyses behave as

similar as possible. Second, we explore the speedup of the analysis

depending on the number of threads (as far as our hardware allows).

4.1 Evaluation Goals

It is clear from theory that not all verification tasks will benefit from

our parallelized verification approach: (a) There are many programs

wheremost paths have sequential dependencies between blocks and

therefore, there is not much room for performance improvements

from parallelization, and (b) there are many small programs, for

which parallelization does not make a difference. We claim that our

approach is effective in both regards: it parallelizes and speeds up

verification process (response time) if the structure of the program

contains sufficient branching and the size of the program is large

enough and does not negatively influence the performance for those

verification tasks that are small or have sequential dependencies.

Claim 1. The BAM-based approach to parallelization does not

negatively impact the performance of verification tasks overall.

Evaluation Plan: We take a large benchmark set of verification

tasks and verify them with and without parallelization, restricted

to one processing unit. If the run time is not worse for the par-

allel version, then the claim is valid.

Claim 2. The BAM-based approach to parallelization reduces

the response time of verification tasks by leveraging several pro-

cessing units. Evaluation Plan: We take a large set of verification

tasks that can potentially benefit from parallelization and com-

pare the response time of the verification with different numbers

of processing units.

If this experiment is positive, the question raises where the ben-

efit comes from: Is it the BAM-based approach to parallelization, or

are there other technical components of the verifier that contribute

to the speed up? What are the configurable parts of the verifier

that can benefit from parallelization? Can they be controlled in an

experiment (switched on and off separately)?

Claim 3. The parallelization of the program analysis using BAM

contributes considerably to the speedup. Evaluation Plan: After

identifying variables to control, we run experiments to investigate

the influence of the identified components.

4.2 Benchmark Environment and Limitations

Benchmark Sets. For our evaluation we use a large subset of the

SV-Benchmarks repository [4] containing over 5 400 verification

tasks3, sorted into different categories according their specification,

internal structure, or behavior. For the comparison of the existing

sequential implementation with the new parallel approach (limited

to one CPU core), we use all verification tasks with a reachability

property, in order to evaluate on a diverse set that the approach

has no negative effect (Claim 1). To demonstrate the positive effect

of parallelization of the new approach, we chose those verification

3https://github.com/sosy-lab/sv-benchmarks

tasks from the category ReachSafety-ECA that consists of rather

large problems with a highly branching control flow (Claim 2).

Setup.We ran the experiments on a cluster of 168 identical ma-

chines with a hardware specification that roughly matches available

resources on machines of software developers. This way, replica-

tion of our experiments does not require specific hardware. For

each single verification run we limit the CPU time to 15min and

the memory to 15GB, and we use an Intel Xeon E3-1230 v5 CPU

with 3.40 GHz with 8 processing units (4 physical cores with hyper-

threading). The limit of CPU time enables us to even compare the

effectiveness of parallelization (response time vs. CPU time) for

those verification tasks for which the verifier runs into a timeout.

We evaluated our implementation in CPAchecker4, revision r28809,

from the official project repository5.

Because we use Intel processors with hyper-threading, where

two neighboring (virtual) processing units share some hardware

components and influence each other, we pair the (virtual) process-

ing units and use a step width of 2 for our experiments with varying

number of processing units, i.e., we use 2, 4, 6, 8 processing units

and omit the odd numbers of processing units. The benchmarking

framework BenchExec [16] takes care of correctly assigning the two

processing units of the same physical core together to the verifi-

cation processes. We report all times in seconds and use the term

CPU time for the accumulated usage of processing units of a CPU,

and the terms response time or wall time for the time that elapses

between the start and the termination of the verification run.

Analysis Configuration. We configure BAM to use function and

loop bodies as blocks. BAM can be combined with several analy-

ses; for our evaluation, we choose a combination where the per-

formance influence from additional components is small: BAM

with an explicit-value analysis (VA) without CEGAR. This way,

we configure a simple state-space exploration based on an ex-

plicit tracking of variables and their values. Both the sequential

and the parallel configurations apply a depth-first-search as ex-

ploration strategy, i.e., the set waitlist of the CPA algorithm is a

FIFO queue for each configuration.

Unfortunately, we can not compare to other multi-threading ver-

ifiers for reachability properties of sequential C programs, because

there exists no equivalent approach to the best of our knowledge

(cf. related work in the introduction; there are portfolio verifiers).

4.3 Claim I: Sequential vs. Parallel Algorithm

Configuration. In our first experiment we compare the existing

sequential algorithm with the new parallel algorithm. Therefore,

we run all experiments on only one processing unit. The FIFO or-

dering of the job queue (see Sect. 3.2) in the parallel algorithm

guarantees that block abstractions are computed in the same order

as their blocks are reached, i.e., it behaves as similar as possible

to the sequential algorithm.

Results. Figures 3a and 3b show the response time of the con-

figurations for the benchmark set containing all verification tasks

with a reachability property. A quantile plot contains graphs that

indicate the quantile of solved problem instances (x-axis) each

4https://cpachecker.sosy-lab.org
5https://gitlab.com/sosy-lab/software/cpachecker

640

https://github.com/sosy-lab/sv-benchmarks
https://cpachecker.sosy-lab.org
https://gitlab.com/sosy-lab/software/cpachecker

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

0 250 500 750 1 000 1 250 1 500 1 750
1

10

100

1 000

n-th fastest result

re
sp
o
n
se

ti
m
e
(s
)

VA-BAM

VA-parallelBAM (1 thread)

(a) Verification tasks with correctness proof

0 250 500 750 1 000 1 250
1

10

100

1 000

n-th fastest result

re
sp
o
n
se

ti
m
e
(s
)

VA-BAM

VA-parallelBAM (1 thread)

(b) Verification tasks with property violation

Figure 3: Quantile plots for results of BAMwith value analy-

sis, sequential compared to parallel version with one thread

within a certain response time (y-axis).6 It does not show a direct

comparison for individual verification tasks, but allows to com-

pare the overall behavior of an analysis configuration. We divided

the benchmarks into two groups: The plot in Fig. 3a contains re-

sults for all verification tasks for which a correctness proof was

computed; the plot in Fig. 3b contains results for all verification

tasks for which a property violation was found. The overall im-

pression is that the (single-threaded) parallel technique does not

have any noticeable overhead above the sequential approach, i.e.,

the scheduler and the job executor from Alg. 3 are efficient. The

new approach behaves almost identical when computing proofs,

and for finding property violations, it is even faster and can solve

more problems, which we discuss in the following.

Discussion. The difference in Fig. 3b between the verification

approaches results from the exploration order of the state space.

After a nested-block abstraction has been computed, there is a small

difference in the sorting of abstract states in the setswaitlist of both

approaches. The existing sequential analysis has (and keeps) the

abstract states in the set waitlist. The (single-threaded) parallel

approach removes abstract states when finding a missing block

abstraction (cf. Alg. 3, line 7) and re-adds those abstract states into

each set waitlist (cf. Alg. 3, line 1) after computing the necessary

block abstraction. There are small differences in the exploration

order and depending on the task’s structure, different pathsmight be

analyzed first. In those cases, the parallel approach does not apply

a pure depth-first exploration order, but partially prefers paths

6A detailed description of quantile plots can be found in the literature [16].

that do not traverse deeply nested blocks, which seems beneficial

when it comes to finding property violations. For this reasoning,

we conclude that for evaluating Claim II, it would not be valid to

consider the verification tasks with property violations, because

the variable łexploration orderž is not controlled.

We conclude that Claim 1 holds, because we did not observe

any negative impact of our new approach.

4.4 Claim II: Scalability of Parallel BAM

Configuration. We show the effectiveness of the parallelization

of our new approach by increasing the number of threads

(2, 4, 6, 8 threads) and observe the improvement of the response time.

The upper limit of the number of threads is determined by the hard-

ware that we use. We set the number of processing units assigned

to the verification process to be equal to the number of threads.

We chose a subset of 154 tasks from the category ReachSafety-ECA,

such that they need a reasonable amount of time (at least 3 s with

only one thread) and do not contain a property violation. With a too

small analysis time, the default overhead of the CPAchecker frame-

work itself (like JVM startup time or parsing time) hides the effect

of the parallel approach and blurs the picture. Additionally, finding

a path to a property violation with a parallel verification approach

easily leads to non-deterministic results if there are several property

violations in a verification task or a property can be reached via dif-

ferent program paths7. Thus, we select from the benchmark set only

those verification tasks without property violation, in order to make

sure to compare the response time that is necessary to analyze the

whole state space. The used benchmark set consists of three groups:

47 simple tasks, 36 medium tasks, and 71 difficult tasks. The diffi-

culty is roughly given by the size of the state space to be explored.

Results. Figure 4a shows the response time of the configurations

for the benchmark set. Each function graph in the quantile plot

refers to a different number of threads used in the analysis. A smaller

response time of the analysis corresponds to a smaller state space

and relates to a simpler task. The different groups of verification

tasks (simple, medium, and difficult) are clearly recognizable by the

level of response time, i.e., the plot contains larger steps. Overall,

additional threads improve the performance of the analysis.

Figure 4b shows the speedup of our parallel approach over the

single-threaded application in the evaluation using box plots. Each

entry in the plot shows the median as the horizontal line within the

box, together with its two surrounding quartiles between the upper

and lower line of the box, as well as the minimum and maximum

as whiskers. The speedup becomes larger the more threads we use.

The evaluation with 2 threads outperforms the single-threaded exe-

cution by about 20% (median). The parallel approach with 8 threads

is about three times as fast as with 2 threads.

Discussion. The results look impressive: Only by parallelizing

independent BAM explorations in a way that is not tailored in

any specific way towards the framework or to a particular abstract

domain, we observe a significant improvement of the response time.

Obviously, some parts of the verification process cannot be executed

in parallel. This denies a ‘perfect’ parallelization and is known as

Amdahl’s law [1]. The sequential parts include the startup process of

7The supplementary artifact [9] and website include additional data about the evalua-
tion of our approach on a benchmark set of tasks containing a property violation.

641

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

0 20 40 60 80 100 120 140

20

40

60

source file

re
sp
o
n
se

ti
m
e
(s
)

1 2 4 6 8 (#threads)

(a) Quantile plot for verification tasks without property violation

1 2 4 6 8

1

2

3

4

#threads

sp
ee
d
u
p

(b) Box plot comparing 1 thread to N threads; without property violation

Figure 4: Comparison of response time for different num-

bers of threads, based on restricted benchmark set

CPAchecker as well as the initial overhead of the analysis to compute

blocks for BAM and analyze parts of the most outer block until a

nested block is reached, which in turn can be analyzed in a parallel

manner. Some parts of the implementation cause an additional

synchronization overhead, like multi-threaded statistics for the

concurrent access to shared resources like the cache of BAM. The

rather modest improvement from 1 thread to 2 threads is most likely

due to hyperthreading of the processor, where the two processing

units of one physical core share important hardware resources.8

We conclude that Claim 2 holds, because the experiments show

that for those programs that have potential for speedup by paral-

lelization, we actually observe a significant speedup.

4.5 Claim III: Control Influencing Variables

The previous experiments show that several processing units are

effectively used by the verification tool, but it is unclear where the

benefit comes from. Therefore, we need to investigate which parts

of the verifier are parallelized and make sure that our new approach

contributed to the benefit. Since our implementation is based on

Java, we have also enabled the JVM to use multi-threaded garbage

collection (GC), because if we create abstract states in a parallel

manner, we should also deallocate them in parallel. The default

strategy for GC in OpenJDK 1.8.0 is a combination of PS MarkSweep

and PS Scavenge. The mark-sweep collector applies a full mark-

sweep garbage collection algorithm for old-generation objects. The

parallel scavenge collector cleans up young-generation objects.

8In our experiments we assigned successive processing units to the verification runs;
the experiment with 2 threads could be improved by using two processing units of
different physical cores.

1 2 4 6 8

1

1 2 4 6 8

2

1 2 4 6 8

4

1 2 4 6 8

6

1 2 4 6 8

8

1

2

3

4

#analysis threads (major) with #GC threads (minor)

sp
ee
d
u
p

(a) Box plot comparing the response time of 1 thread to 8 threads, evaluated
on as many processing units as #analysis threads

1 2 4 6 8

1

1 2 4 6 8

2

1 2 4 6 8

4

1 2 4 6 8

6

1 2 4 6 8

8

1

2

3

4

#analysis threads (major) with #GC threads (minor)

sp
ee
d
u
p

(b) Box plot comparing the response time of 1 thread to 8 threads, evalu-
ated on 8 processing units

Figure 5: Comparison of different numbers of analysis

threads and different numbers of GC threads

Configuration.Weuse the 154 tasks from the previous experiment

and re-evaluate them.We divide our evaluation into two cases: First,

the number of available processing units is equal to the number

of analysis threads. Second, the number of available processing

units is set to 8, which is the upper limit the available hardware.

For both cases, we evaluated all combinations of analysis threads

(using 1, 2, 4, 6, 8 threads; major, large numbers in figure) and GC

threads (using 1, 2, 4, 6, 8 threads; minor, small numbers in figure).

Results.We present the speedup statistics for comparing the re-

sponse time of a single-threaded analysis with a single-threaded

GC on a single processing unit to an execution with a given number

of analysis threads with a given number of threads for GC on a

given number of processing units. In Fig. 5a the number of avail-

able processing units is equal to the number of analysis threads.

In Fig. 5b all 8 processing units of the machine are available to

the verifier. In both figures we configure the number of analysis

threads and GC threads. In each plot, the horizontal axis contains

5 major groups (representing the number of analysis threads) of

each 5 minor entries (number of threads for GC). For example, the

five first (most left) entries in each figure show the speedup of the

approach if using one thread for the analysis and a varying number

of threads for GC. Unsurprisingly, the overall result is that using

multiple threads for both the analysis and additionally the GC is

beneficial. Nearly all tasks are solved faster if multiple processing

units are assigned to the verification process.

642

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

Discussion. In Fig. 5a, the first entry of each group shows the

speedup of the analysis when using only one thread for GC. This iso-

lates the the benefit of multi-threading caused by our new analysis

approach. Similarly, Fig. 5b shows (within each of the 5 groups) that

keeping the number of analysis threads constant and incrementing

the number of threads for GC also speeds up the verification pro-

cess. Therefore both, analysis and GC, benefit from multi-threading.

Figure 5b shows that if the analysis is bound to one thread, the

benefit from multi-threading is rather limited, while the speedup is

improved if we use more threads for the analysis. The most interest-

ing indicators are the median value (middle line inside the box) and

the minimal speedup values (lower whisker). The overall variance

for the response time and speedup is quite large if there are several

processing units available. This might indicate a non-deterministic

scheduling of workload across free resources, in contrast to the

narrow boxes in Fig. 5a in the left two groups (where the number

of processing units is bound to one and two, respectively).

We conclude that Claim 3 holds, because we were able to isolate

and control the only other cause for a significant speedup, and the

experiments confirmed that our new approach is reponsible for

the improved performance of the analysis, while the parallel GC

algorithms of the JVM take care of parallelized deallocation.

4.6 Threats to Validity

External Validity: Our benchmark suite consists of a large set of C

source files. We use the largest publicly available benchmark suite

in order to optimize the diversity in size and type of programs. This

is particularly important for evaluating Claim 1. For Claims 2 and 3,

we restricted the benchmark set to verification tasks that have po-

tential to benefit from parallelization. Our evaluation is restricted

to the language C, and while it seems clear that the concepts and

results can be transferred to other imperative languages, such a

claim is not backed up by our experiments. The chosen time limit

of 15min and memory limit of 15GB for verifying a given task is

inspired by the research community on software verification (cf.

one of the reports on the International Competition on Software

Verification [4]). Of course, the evaluation of our approach depends

on the tool in which it is implemented. There is currently no other

tool implementing the same approach, and a comparison with a

completely different approach for parallel analysis might be mis-

leading. 9 With the assumption that the default configuration is

optimized for most use cases, we did not change the configuration

of the JVM except the increment of maximal heap memory and the

adjustment of the garbage-collection strategy, such that the effect

of the number of threads can be measured. The available hardware

might also influence the results. For parallel execution, the internal

structure of the CPU is a critical element, i.e., low-level caching

and the hierarchy of processing units have a large effect on the

run time of tasks. We used a modern Intel Xeon E3-1230 v5 that

is available on the market for a reasonable price, in order to ob-

tain results that have a higher externally validity than experiments

on special high-performance clusters.

9The supplementary artifact [9] and website include an additional comparison with
some non-BAM analysis approaches, in order to show that using the BAM technology
does not negatively effect an analysis’ performance (known result [31]).

Internal Validity: Besides garbage collection of the JVM, there are

other factors that influence the speedup of the parallel approach.

Some components of CPAchecker, e.g., counters and measurements

for statistics, are not yet fully optimized for parallel execution. Ad-

ditionally, it depends on the task’s structure how many blocks can

be analyzed in parallel. Controlling this variable (number of paral-

lelization blocks) is not possible or very difficult, thus, we prefer to

increase the internal validity by the large number of experiments

on different tasks. Another control variable is the block size. Larger

blocks are beneficial for a concurrent analysis, due to the smaller

synchronization footprint. For Claims 2 and 3, the benchmark set

was already chosen such that it contains only programs where the

block size is very large. Thus, we did not further analyze differ-

ent block sizes. We also need to consider that the explicit-value

analysis computes a large number of abstract states, while other

abstract domains might lead to more compact representations of

the state space, and the fewer abstract states are explored the less

might be parallelized. Our time measurement includes the mem-

ory allocation for the JVM, parsing time, and internal statistics,

which adds processing workload that cannot be parallelized cur-

rently. We mitigate this effect by using only those verification tasks

that need more than 3 s when using one thread, i.e., we consider

verification tasks for which the analysis itself consumes a portion

of the run time that is not negligible.

5 CONCLUSION

We presented a new approach for multi-threaded software verifi-

cation that is based on program-block summaries. Our emphasis

is on providing a solution that follows the principle of separation

of concerns: the problem of making the analysis benefit from mul-

tiple processing units is treated completely orthogonal from the

problem of designing and implementing an abstract domain and

the operators for a program analysis. We formally define the new

algorithm in the framework, provide a working implementation,

and demonstrate its applicability on a large set of benchmarks. The

experiments show that our approach (a) does not add noticeable

overhead for verification tasks that do not benefit from paralleliza-

tion, (b) can considerably speed up the verification process in many

cases (given the verification task has a certain minimal size and

some independent branches to explore), and (c) contributes largely

to the performance improvements, i.e., the speedup is not only due

to multi-threading features that the JVM provides.

The presented algorithm is implemented as a shared-memory

approach, which allows efficient interaction of all components. As

the number of CPU cores per machine and also the amount of mem-

ory per host is limited, we plan to extend our algorithm to leverage

several processes that might be distributed over several machines in

a cluster. An additional benefit would be a simpler usage of abstract

domains that rely on libraries that are not thread-safe, because

there is no problem with interleaved usage of libraries in separate

processes. Additionally we plan to offload the cache of BAM to a

disk-based storage, in order to lower the memory usage for very

resource intensive tasks. The combination of both, a distributed,

multi-process verification algorithm and a disk-based cache, seems

to be very promising for the verification of very large programs.

643

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

REFERENCES
[1] G. M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In Proc. AFIPS. ACM, 483ś485. https://doi.
org/10.1145/1465482.1465560

[2] P. Andrianov, K. Friedberger, M. U. Mandrykin, V. S. Mutilin, and A. Volkov. 2017.
CPA-BAM-BnB: Block-Abstraction Memoization and Region-Based Memory
Models for Predicate Abstractions (Competition Contribution). In Proc. TACAS
(LNCS 10206). Springer, 355ś359. https://doi.org/10.1007/978-3-662-54580-5_22

[3] J. Barnat, J. Havlícek, and P. Rockai. 2013. Distributed LTL Model Checking with
Hash Compaction. ENTCS 296 (2013), 79ś93. https://doi.org/10.1016/j.entcs.2013.
07.006

[4] D. Beyer. 2017. Software Verification with Validation of Results (Report on SV-
COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331ś349. https://doi.org/
10.1007/978-3-662-54580-5_20

[5] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In Proc. FSE. ACM, 326ś337.
https://doi.org/10.1145/2950290.2950351

[6] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness
Validation and Stepwise Testification across Software Verifiers. In Proc. FSE. ACM,
721ś733. https://doi.org/10.1145/2786805.2786867

[7] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-Induction with
Continuously-Refined Invariants. In Proc. CAV (LNCS 9206). Springer, 622ś640.
https://doi.org/10.1007/978-3-319-21690-4_42

[8] D. Beyer, M. Dangl, and P. Wendler. 2018. A Unifying View on SMT-Based
Software Verification. J. Autom. Reasoning 60, 3 (2018), 299ś335. https://doi.org/
10.1007/s10817-017-9432-6

[9] D. Beyer and K. Friedberger. 2018. Replication Package for Article łDomain-
Independent Multi-threaded Software Model Checkingž in Proc. ASE’18. https:
//doi.org/10.5281/zenodo.1322090

[10] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The Software Model
Checker Blast. Int. J. Softw. Tools Technol. Transfer 9, 5-6 (2007), 505ś525.
https://doi.org/10.1007/s10009-007-0044-z

[11] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional
Model Checking: A Technique to Pass Information between Verifiers. In Proc.
FSE. ACM, Article 57, 11 pages. https://doi.org/10.1145/2393596.2393664

[12] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis. In Proc. CAV (LNCS 4590). Springer, 504ś518. https://doi.org/10.1007/
978-3-540-73368-3_51

[13] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Ab-
straction with Adjustable-Block Encoding. In Proc. FMCAD. FMCAD,
189ś197. https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_
Abstraction_with_Adjustable-Block_Encoding.pdf

[14] D. Beyer and T. Lemberger. 2016. Symbolic Execution with CEGAR. In Proc. ISoLA
(LNCS 9952). Springer, 195ś211. https://doi.org/10.1007/978-3-319-47166-2_14

[15] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking
Based on CEGAR and Interpolation. In Proc. FASE (LNCS 7793). Springer,

146ś162. https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_
Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf

[16] D. Beyer, S. Löwe, and P. Wendler. 2017. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer (2017). https://doi.org/10.
1007/s10009-017-0469-y

[17] D. Beyer and A. Stahlbauer. 2014. BDD-based software verification: Applications
to event-condition-action systems. STTT 16, 5 (2014), 507ś518. https://doi.org/
10.1007/s10009-014-0334-1

[18] S. Blom, J. van de Pol, and M. Weber. 2010. LTSmin: Distributed and Symbolic
Reachability. In Proc. CAV (LNCS 6174). Springer, 354ś359.

[19] M. Brain and F. Schanda. 2012. A Lightweight Technique for Distributed and
Incremental Program Verification. In Proc. VSTTE (LNCS 7152). Springer, 114ś129.
https://doi.org/10.1007/978-3-642-27705-4_10

[20] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752ś794. https://doi.org/10.1145/876638.876643

[21] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang. 2011. Practical software
model checking via dynamic interface reduction. In Proc. SOSP. ACM, 265ś278.
https://doi.org/10.1145/2043556.2043582

[22] A. Gurfinkel, A. Albarghouthi, S. Chaki, Y. Li, and M. Chechik. 2013. Ufo:
Verification with Interpolants and Abstract Interpretation (Competition Contri-
bution). In Proc. TACAS (LNCS 7795). Springer, 637ś640. https://doi.org/10.1007/
978-3-642-36742-7_52

[23] G. J. Holzmann. 2003. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley.

[24] B. A. Huberman, R. M. Lukose, and T. Hogg. 1997. An Economics Approach to
Hard Computational Problems. Science 275, 7 (1997), 51ś54. http://www.hpl.hp.
com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf

[25] K. Laster and O. Grumberg. 1998. Modular Model Checking of Software. In Proc.
TACAS (LNCS 1384). Springer, 20ś35. https://doi.org/10.1007/BFb0054162

[26] P. Müller, P. Peringer, and T. Vojnar. 2015. Predator Hunting Party (Competition
Contribution). In Proc. TACAS (LNCS 9035). Springer, 443ś446.

[27] T. L. Nguyen, P. Schrammel, B. Fischer, S. La Torre, and G. Parlato. 2017. Parallel
bug-finding in concurrent programs via reduced interleaving instances. In Proc.
ASE. IEEE Computer Society, 753ś764. https://doi.org/10.1109/ASE.2017.8115686

[28] E. Sherman and M. B. Dwyer. 2018. Structurally Defined Conditional Data-
Flow Static Analysis. In Proc. TACAS, Part II (LNCS 10806). Springer, 249ś265.
https://doi.org/10.1007/978-3-319-89963-3_15

[29] V. Still, P. Rockai, and J. Barnat. 2016. DIVINE: Explicit-State LTL Model Checker
(Competition Contribution). In Proc. TACAS (LNCS 9636). Springer, 920ś922.

[30] T. van Dijk. 2016. Sylvan: multi-core decision diagrams. Ph.D. Dissertation. Uni-
versity of Twente, Enschede, Netherlands. http://purl.utwente.nl/publications/
100676

[31] D. Wonisch and H. Wehrheim. 2012. Predicate Analysis with Block-Abstraction
Memoization. In Proc. ICFEM (LNCS 7635). Springer, 332ś347. https://doi.org/10.
1007/978-3-642-34281-3_24

644

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1016/j.entcs.2013.07.006
https://doi.org/10.1016/j.entcs.2013.07.006
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.5281/zenodo.1322090
https://doi.org/10.5281/zenodo.1322090
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1007/978-3-319-47166-2_14
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/978-3-642-27705-4_10
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1007/978-3-642-36742-7_52
https://doi.org/10.1007/978-3-642-36742-7_52
http://www.hpl.hp.com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf
http://www.hpl.hp.com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf
https://doi.org/10.1007/BFb0054162
https://doi.org/10.1109/ASE.2017.8115686
https://doi.org/10.1007/978-3-319-89963-3_15
http://purl.utwente.nl/publications/100676
http://purl.utwente.nl/publications/100676
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24

	Abstract
	1 Introduction
	2 Background
	2.1 Program Representation
	2.2 CPA and CPA Algorithm
	2.3 BAM
	2.4 Towards Parallel BAM
	3 Parallel BAM
	3.1 Jobs as Components with Dependencies
	3.2 Scheduling and Job Execution
	3.3 Example Application of Parallel BAM
	3.4 Soundness of the Parallel Approach
	3.5 Requirements for Parallel Execution
	4 Evaluation
	4.1 Evaluation Goals
	4.2 Benchmark Environment and Limitations
	4.3 Claim I: Sequential vs. Parallel Algorithm
	4.4 Claim II: Scalability of Parallel BAM
	4.5 Claim III: Control Influencing Variables
	4.6 Threats to Validity

	5 Conclusion
	References

