
Chapter 16
Combining Model Checking and Data-Flow
Analysis

Dirk Beyer, Sumit Gulwani, and David A. Schmidt

Abstract Until recently, model checking and data-flow analysis—two traditional
approaches to software verification—were used independently and in isolation for
solving similar problems. Theoretically, the two different approaches are equiva-
lent; they are two different ways to compute the same solution to a problem. In
recent years, new practical approaches have shown how to combine the approaches
and how to make them benefit from each other—model-checking techniques can
make data-flow analyses more precise, and data-flow-analysis techniques can make
model checking more efficient. This chapter starts by discussing the relationship
(differences and similarities) between type checking, data-flow analysis, and model
checking. Then we define algorithms for data-flow analysis and model checking in
the same formal setting, called configurable program analysis. This identifies key
differences that make us call an algorithm a “model-checking” algorithm or a “data-
flow-analysis” algorithm. We illustrate the effect of using different algorithms for
running certain classic example analyses and point out the reason for one algorithm
being “better” than the other. The chapter presents combined verification techniques
in the framework of configurable program analysis, in order to emphasize tech-
niques used in data-flow analysis and in model checking. Besides the iterative al-
gorithm that is used to illustrate the similarities and differences between data-flow
analysis and model checking, we discuss different algorithmic approaches for con-
structing program invariants. To show that the border between data-flow analysis
and model checking is blurring and disappearing, we also discuss directions in tool
implementations for combined verification approaches.

D. Beyer (B)
Ludwig-Maximilians-Universität München, Munich, Germany
e-mail: dirk.beyer@sosy-lab.org

S. Gulwani
Microsoft Research, Redmond, WA, USA

D.A. Schmidt
Kansas State University, Manhattan, KS, USA

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_16

493

mailto:dirk.beyer@sosy-lab.org
http://dx.doi.org/10.1007/978-3-319-10575-8_16

494 D. Beyer et al.

16.1 Introduction

In the context of software verification, model checking is considered a semi-
decidable, exhaustive, and precise analysis of an abstract model of a program,
whereas data-flow analysis is considered a terminating, imprecise abstract interpre-
tation of a concrete model of a program.

For example, to validate a safety property, abstraction-refinement-based model
checking creates an abstract model of the program and precisely analyzes every
reachable abstract state for the property, repeatedly refining and rechecking the
model until validation is achieved, whereas a classic data-flow analysis computes
abstract values of the states that arrive at the program locations of the concrete pro-
gram, repeatedly computing and combining the abstract values until convergence
at all program locations is achieved. Classic data-flow analyses are efficient (as re-
quired for compiler optimization) at the cost of precision. Model checkers aim at
being precise (as required for proof construction) at the cost of efficiency.

Precisely defining the difference between model checking and data-flow analysis
is not easy, and indeed the two approaches have been proven to be “the same” in
that each can be coded in the framework of the other. This chapter illustrates why
the two approaches are theoretically equivalent—they are two fashions of comput-
ing the same solution. In practice, the two approaches are extremes in a spectrum
of many possible algorithms, and the spectrum can be defined by a few parameters
that describe the different implementation techniques. As soon as we set the param-
eters differently from the extremes that define the two approaches, we see how new
combinations are possible. While in most of the chapter we assume that the popular,
iteration-based algorithm is used, we later also provide a comparative overview of
other algorithmic approaches for constructing program invariants.

In this chapter, we restrict ourselves to verifying safety properties of software.

16.2 General Considerations

For background, we compare and contrast three techniques that are widely used
for static (pre-execution) program validation: type checking, data-flow analysis, and
model checking. These techniques come with different representations of program,
property, and analysis algorithm. We describe here the commonly used versions, but
with small extensions it is possible for each technique to express the other two [108].

16.2.1 Type Checking

Type checking is an analysis of a program’s syntax tree that attaches properties
(“types”) to the phrases that are embedded in the tree. Types might be primitive (int,
f loat, string, void) or compound (int[], string×f loat, {"name" : string, "age" : int})

16 Combining Model Checking and Data-Flow Analysis 495

or phrase-type (command(int), declaration(ident, f loat)). For example, the C com-
mand float x= y+ 1.5 might be parsed and type checked like this:

(
float x = (

yint + 1.5f loat)f loat)declaration(x, f loat)

provided that y’s declaration was typed by declaration(y, int).
Type checking can validate safety properties (“a well-typed program cannot go

wrong at execution”) and can help a compiler generate target code.

Program Representation. A program’s syntax tree (parse tree) is used for type
checking. The tree is often accompanied by a symbol table that holds typings of
free (global) variables.

Property Representation. There is no firm designation as to what types are, but a
type should have semantic significance. Types are typically defined inductively. The
earlier example used types derived from this grammar:

p : PhraseType a : ExpressionType

p ::= command(a) | declaration(ident, a)

a ::= int | f loat | a[]
The type language resembles a propositional logic, where primitive types

(int, string) define the primitive propositions and compound types (command(a),
declaration(ident, a)) define the compound propositions. Data structures, such as
arrays, tuples, structs, and function closures, are annotated with compound types.

The “type logic” need not be a mere propositional logic. Languages that support
templates or parametric polymorphism, e.g., Standard ML [43], include Prolog-style
logical variables in the syntax of types; the logical variables are placeholders for
types that are inserted later, or they are understood as universally quantified vari-
ables. For example, α → (α × α) is a typing of this function definition:

define f(x) = makePair(x,x).

The occurrences of α are placeholders that can be filled later, e.g., as in f (1.5) (α is
replaced by f loat) or f ("hello") (α is replaced by string). Indeed, the type can
be read as the predicate-logic formula ∀α(α → (α ∧ α)) [93].

At the other extreme, the type language can be an ad hoc collection of labels,
provided there is some significance as to how the labels annotate the syntax tree.
An example is value numbering, where each expression node is annotated by the set
of expression nodes in the tree whose run-time values will equal the present node’s
[101].

Analysis Algorithm. A finite (usually, left-to-right, one- or two-pass) tree-traversal
algorithm attaches types to the nodes of the syntax tree. In the language of Knuthian
attribute grammars [82], properties that are inherited are carried from parent nodes
to child nodes for further computation, and properties that are synthesized are com-

496 D. Beyer et al.

municated from child nodes to parent nodes. In the first example in this section, vari-
able y’s type is inherited information that is passed to the phrase (y+ 1.5), which
synthesizes the type f loat. The algorithm for attaching properties can be written
with attribute-grammar equations [86] or inference rules [97].

The equations (or rules) are meant to be deterministic, but some program phrases
might be annotated with multiple acceptable choices (e.g., 2 : int and also 2 : f loat).
In this case, an ordering, ≤, as in int ≤ f loat, lets one deduce a most precise prop-
erty for a phrase. This concept, called subtyping [1], is central to type checking for
object-oriented languages. Using logical variables, ML’s Algorithm W [43] deduces
a most general typing for an ML program that can be correctly typed in multiple
ways.

Extensions. If the typing language is complex enough, it can express any or all
semantic properties of a program, e.g., a phrase’s “type” might be its compiled code
or it might be the input-output function that the phrase denotes! (The former is
called a syntax-directed translation [2] and the latter is the program’s denotational
semantics [106].)

When the typing language is a logic, a type checker reads a syntax tree as a
“proof” of a “proposition,” namely, the program’s type—the type checker does proof
checking [95].1

The algorithm that attaches properties to the program tree might repeatedly tra-
verse the tree and compute the types attached to the program locations until a con-
vergence is achieved. (The iteration is a least-fixed-point computation, requires that
the property language is partially ordered, and uses a join (union) operation to re-
fine types.) This algorithm leads to the next analysis form, because it is a structured
data-flow analysis [2].

Further, if the type language is a temporal logic, the iterative traversal computes
the temporal properties that are valid at each node of the tree—from here, it is a
small step to branching-time model checking on Kripke structures. Further examples
of fixed-point computation on parse trees are discussed in the literature [40].

16.2.2 Data-Flow Analysis

Data-flow analysis predicts the “flow” of information through the locations of a pro-
gram. The flow can be computed either forward or backward and is often set-like,
e.g., predicting the set of arithmetic expressions that have been previously evaluated
at a program location, or the set of variables that will be needed for future computa-
tion, or the set of variables that definitely have constant values, or the set of aliased
pointers. Because the analysis over-approximates a program’s possible execution
sequences, its results are imprecise.

The information gathered by a data-flow analysis can be used to validate safety
properties or to help a compiler generate efficient target code. For example, if a

1The connection between model checking and theorem proving is discussed in Chap. 20.

16 Combining Model Checking and Data-Flow Analysis 497

constant-propagation analysis calculates that a variable has a known constant value
at a program location, a constant-load instruction can replace the storage-lookup
instruction.

Program Representation. A program is portrayed as a directed graph, whose nodes
represent program locations. An edge connects two nodes if execution can transfer
control from one location to the next; the initial node represents the program en-
try; final nodes represent the program exits. The edges are labeled by the primitive
action (assignment, assume operation) that transfers control—the directed graph is
a control-flow automaton (CFA),2 which displays the program’s operations and its
semantics of control. Figure 1 shows an example C function (a) together with its
CFA (b). The CFA might be further condensed [9] or unrolled (“expanded”) [115]
so that more precise properties can be computed for its nodes.

Property Representation. Data-flow analysis annotates the CFA’s locations with
properties, which are usually sets that have semantic significance. A program loca-
tion’s property set might indicate the variables or expressions whose values were
transferred along a control path to the program location [78]. For example, an
available-expressions analysis predicts which arithmetic expressions (that appear
in the program’s text) will definitely be evaluated and be ready for use at subsequent
program locations. The property language for available-expressions analysis is the
collection of all subsets of expressions that appear in the program.

Another example is a constant-propagation analysis, which predicts which vari-
ables possess specific, constant values at the program locations. The property lan-
guage consists of sets of the form {(x0, c0), . . . , (xn, cn)}, where each xi is a vari-
able name in the program, all xi are unique, and ci is a fixed, constant value (e.g.,
1.5 or 2) or the “unspecific value” �, which indicates that xi is defined but cannot
be validated as having a constant value.

Analysis Algorithm. An iterative algorithm computes the properties that annotate the
program locations. Starting from an initial configuration, where some program loca-
tions are annotated with input information, the algorithm propagates the properties
along the CFA’s edges. Recall that each edge from program location l to program
location l′ is labeled by an action. The semantics of the action is defined by a trans-
fer function fl→l′ , which defines how properties are updated when they traverse the
edge [38]. There are two important versions of the analysis algorithm [2, 77, 78]:

1. Maximal Fixed Point (MFP): Properties for each program location are computed
directly on the CFA. The information computed for program location l′ is defined

2Although in principle equivalent to the classical control-flow graphs [2], assigning the program
operations to the edges is more compatible with the model-checking view (cf. the more detailed
discussion by Steffen [113, 114]). The notion of control-flow automata is meanwhile established as
a standard representation for programs (cf. the implementation in BLAST [13] and other verifiers).

498 D. Beyer et al.

by an equation of the following form [78]:

propertyAtNode
(
l′
) =

⋃

l∈pred(l′)
fl→l′

(
propertyAtNode(l)

)

where pred(l′) is the set of all predecessor locations for location l′ in the CFA,
and fl→l′ is the transfer function. The equations for the CFA’s program locations
are initialized to a minimal value, e.g., {}, and are iterated until they stabilize.
To ensure finite convergence, the property language can be made finite and par-
tially ordered (say, by subset, ⊆). More generally, the property language can be
a lattice of finite height [38].

2. Meet Over all Paths (MOP): The iterative analysis algorithm enumerates the
paths within the CFA. Properties are computed for all program locations on each
individual path, and the results of all the analyses on all paths are joined. Since a
program might have an infinite number of paths, path generation must be made
convergent, say by bounding the expansion of loops3 and procedure calls.

This example shows the distinction: For the program

where each program location li corresponds to the line i before the line is executed,
an MOP analysis enumerates this path set: {l1 l2 l3 l6 l7, l1 l4 l5 l6 l7}. If the properties
that are computed are the constant values (constant propagation), the MOP analysis
generates these properties for the first path:

L1a = {}
L2a = {}

L3a = {(x,2), (y,3)}
L6a = {(x,2), (y,3)}
L7a = {(x,2), (y,3), (z,5)}

and these for the second path:

L1b = {}
L4b = {}

L5b = {(x,3), (y,2)}
L6b = {(x,3), (y,2)}
L7b = {(x,3), (y,2), (z,5)}.

The sets are joined (Lk = Lka
Lkb), giving the following annotations for the labels:

L1 = {}
L2 = {}
L4 = {}

L3 = {(x,2), (y,3)}
L5 = {(x,3), (y,2)}
L6 = {(x,�), (y,�)}
L7 = {(x,�), (y,�), (z,5)}.

3More details on treating loops during the construction of program invariants are given in
Sect. 16.6.

16 Combining Model Checking and Data-Flow Analysis 499

The analysis determines that z is constant 5 at l7. In contrast, an MFP analysis
calculates the properties directly on the program locations, like this:

L1 = {}
L2 = {}
L4 = {}

L3 = {(x,2), (y,3)}
L5 = {(x,3), (y,2)}
L6 = L3
 L5 = {(x,�), (y,�)}
L7 = {(x,�), (y,�), (z,�)}.

In particular, the value of z at program location l7 is calculated from the set L6,
and the transfer function for z= x+ y computes �+�=�. The example shows
that an MOP analysis can be more precise than an MFP analysis, but the two results
coincide if the transfer functions distribute over
 [77]. In practice, a hybrid ap-
proach is often taken, where the MFP algorithm is augmented by a limited program
expansion and MOP computation, e.g., “property-oriented expansion” [22, 28, 115].

Extensions. The previous presentation used forward analysis, where input proper-
ties generate output properties, which are combined with union as the join opera-
tion. Iteration-until-convergence is a least-fixed-point calculation. It is possible to
compute properties in a backward analysis (e.g., definitely-live-variables analysis),
where intersection is the join operation; this is usually a greatest-fixed-point calcu-
lation (cf. Sect. 16.6.1).

Some analyses, e.g., partial redundancy elimination (PRE) [89] use both forward
and backward analysis. PRE can be simplified into a two-step fixed-point computa-
tion, where the results of a backward analysis are complemented and used as input
to a forward analysis [114]. This reformulation reveals several crucial insights:

1. A program’s control-flow automaton can be defined as a Kripke structure, and
expansion (unrolling) of the automaton is analogous to exploring the program’s
state space.

2. The value sets computed by a data-flow analysis can be represented as temporal-
logic formulas, where the meaning of a formula is a value set.

3. The MFP algorithm operates like the algorithm for branching-time model check-
ing, and the MOP algorithm operates like the algorithm for linear-time model
checking.

These insights were documented earlier [81, 114, 115], and form the foundation for
the remainder of this chapter.

16.2.3 Model Checking

Model checking enumerates the sequences of states that arise during a program’s ex-
ecution and decides whether the sequences of states satisfy a safety property. Other
chapters in this Handbook develop several variants of the notions program, prop-
erty, and algorithm for model checking, so here we merely compare and contrast
model checking to data-flow analysis.

500 D. Beyer et al.

Program Representation. Rather than a syntax tree or a control-flow automaton,
classic model checking operates on a directed graph whose nodes are the program’s
run-time states, connected by edges that define sequencing. The directed graph is
typically infinite and must be represented by a recursively enumerable set of transi-
tion rules. There are three variants of the transition rules:

1. A Kripke structure (S,R, I) consists of a set S of states, a transition relation R ⊆
S×S, and a map I : S → 2Φ that assigns to each state a subset of properties from
property set Φ that hold for the state.

2. A labeled transition system (S,Act,→) consists of a set S of states, a set Act of
actions (transfer functions), and a transition relation →⊆ S ×Act × S.

3. A Kripke transition system (S,Act,→, I) combines the components of the two
previous forms.

The details needed to represent even one state can be practically prohibitive,
therefore states are often abstracted by forgetting details of the state’s “content” or
even by replacing a state by a set of propositions that hold true for the state—this is
often done with the Kripke-structure representation.

At the other extreme, if the set S of states is defined as exactly the program
locations, then a control-flow automaton is readily expressed [114] and program
expansion is easily done [115]. The notion of abstract reachability graphs (ARGs)
is often used in the context of software verification (cf. BLAST [13]).

Property Representation. Model checking uses a temporal logic as its property
language—it is a logic because it includes conjunction, disjunction, and (usually)
negation; it is temporal because it uses operators that are interpreted on the se-
quences of nodes in a path or graph. The properties might be

1. path-based (linear time), e.g., Eφ might mean “there exists a state along a path
that validates proposition φ,” or

2. graph-based (branching time), e.g., EFψ might mean “there exists a path gen-
erated from the current state that includes a state that validates ψ .”

More details about temporal logics are provided in Chap. 2. The two variants re-
call the property languages used for MOP- and MFP-based data-flow analyses. The
connection stands out when one reconsiders classic definitions, like this one for
MFP-based live-variable calculation [78]:

LiveVarsAt(l) = UsedAt(l)∪
(

NotModifiedAt(l)∩
(⋃

l′∈succ(l)

LiveVarsAt
(
l′
)))

where l is a program location and succ(l) is the set of all successor locations for
location l in the control-flow automaton. The equation defines the set of possibly live
variables at a program location l. Compare the definition to the following, coded in
branching-time temporal logic, which holds for a program location when variable x
is possibly live at that program location [107, 113]:

isLiveVarx = isUsedx ∨ (¬isModifiedx ∧EF(isLiveVarx)
)
.

16 Combining Model Checking and Data-Flow Analysis 501

We have that x ∈ LiveVarsAt(l) iff l |= isLiveVarx for every program vari-
able x [113]—the temporal-logic formula defines the data-flow set.

Analysis Algorithm. A model-checking algorithm answers queries, posed in tempo-
ral logic, about a program representation. The algorithm generates a graph or path
set from the program representation (transition rules) and applies the interpretation
function to the nodes in the graph (respectively, paths) to answer the query. There
are numerous algorithms for performing this activity, but with the perspective pro-
vided in this chapter, we can say that a model-checking algorithm is an MFP (resp.,
MOP) calculation of the graph (resp., paths) generated from a program’s transition
rules for answering the branching-time (resp., linear-time) query.

The generated graph or paths might be infinite, thus answering queries is semi-
decidable. A bound can be placed on the number of iterations or graph size
(“bounded model checking”) or a join operation (“widening” [38]) might be used
to force the generated graph to be finite. (When the latter is used, the technique is
sometimes called “abstract model checking.”)

The remainder of this chapter develops several variations of property and algo-
rithm that are inspired by the deep correspondence between data-flow analysis and
model checking.

16.3 Unifying Formal Framework/Comparison of Algorithms

The previous section has outlined the differences, and similarities, between the three
static-analysis techniques type checking, data-flow analysis, and model checking.
The discussion was structured by the components of every static analysis: program
representation, property representation, and analysis algorithm. In the following,
we explain the unifying formal framework of configurable program analysis, which
has successful implementations in software-verification tools (CPACHECKER [21],
CPALIEN [91], CPATIGER [20], JAKSTAB [73]). The framework makes it possible to
formalize each of the three techniques in the same formal setting.4 In order to con-
cretely explain the differences, we model the algorithms that were traditionally used
for data-flow analysis and software model checking as instances of the framework.

16.3.1 Preliminaries

Control-Flow Automaton (CFA). A program is represented by a control-flow au-
tomaton. We restrict our formal presentation to simple imperative programming,
where all operations are either assignments or assume operations (conditional ex-

4Other approaches have been proposed that address similar goals, for example, the fixed-point
analysis machine [79, 80, 116].

502 D. Beyer et al.

Fig. 1 Example C function and corresponding CFA; the program locations in the CFA (b) corre-
spond to the line numbers in the program text (a) before the line of code is executed

ecutions), all variables range over integers, and no function calls occur,5 while we
use C syntax to denote example program code. A CFA (L, l0,G) consists of a set L
of program locations (models the program counter pc), an initial program loca-
tion l0 (models the program entry), and a set G ⊆ L × Ops × L of control-flow
edges (models program operations that are executed when control flows from one
program location to another). Program operations from Ops are either assignment
operations or assume operations. The set of program variables that occur in program
operations from Ops is denoted by X. A concrete state of a program is a variable
assignment c that assigns a value to each variable from X∪{pc}. The set of all con-
crete states of a program is denoted by C. A set r ⊆ C of concrete states is called a
region. Each edge g ∈ G defines a (labeled) transition relation

g→ ⊆ C × {g} × C,
which defines how concrete states of one program location (source) are transformed
into concrete states of another program location (target). The complete transition
relation → is the union over all control-flow edges: →= ⋃

g∈G

g→. We write c
g→c′

if (c, g, c′) ∈ →, and c→c′ if there exists a g with c
g→c′. A concrete state cn is

reachable from a region r , denoted by cn ∈ Reach(r), if there exists a sequence
of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all 1 ≤ i ≤ n, we have
ci−1→ci .

Example 1 Figure 1 shows an example program (a) and the corresponding CFA (b).
The CFA has seven program locations (L = {2,3,4,5,7,9,10}, l0 = 2) and three
program variables (X = {x,y,z}). The initial region r0 of this program is the set
{c ∈ C | c(pc) = 2}. The only concrete state at program location 5 (i.e., before line 5
is executed) that is reachable from the initial region is the following variable assign-
ment: c(pc) = 5, c(x) = 0, c(y) = 1, c(z) = 0. The set of concrete states at program

5Tool implementations usually support interprocedural analysis, either via function inlining, func-
tion summaries, or other techniques [100, 116]. More information on this topic is given in Chap. 17.

16 Combining Model Checking and Data-Flow Analysis 503

Fig. 2 Example lattice

location 9 that are reachable from the initial region can be represented by the predi-
cate pc = 9 ∧ ((x= 1 ∧ y= 1 ∧ z= 0) ∨ (x= 0 ∧ y �= 1 ∧ z= 1)).

Semi-lattices. A partial order � ⊆ E × E over a (possibly infinite) set E is a
binary relation that is reflexive (e � e for all e ∈ E), transitive (if e � e′ and e′ � e′′
then e � e′′), and antisymmetric (if e � e′ and e′ � e then e = e′). The least upper
bound for a subset M ⊆ E of elements is the smallest element e such that e′ � e for
all e′ ∈ M . The partial order � induces a semi-lattice6 (defines the structure of the
semi-lattice) if every subset M ⊆ E has a least upper bound e ∈ E (cf. [94] for more
details). We denote a semi-lattice that is induced by a set E and a partial order �
using the tuple (E,�,
,�), in order to assign symbols to special components: the
join operator
 : E ×E → E yields the least upper bound for two elements (we use
the set notation

⊔ {e1, e2, . . .} to denote e1
 e2
 . . .) and the top element � is the
least upper bound of the set E (�=
E).

Example 2 Let us consider the semi-lattice (V ,�,
,�) that can be used for
a constant-propagation analysis over two Boolean variables. The set V of lat-
tice elements consists of variable assignments: V = X →{⊥V ,0,1,�V }, X =
{x1, x2}. The partial order � is defined as v � v′ if ∀x ∈ X : v(x) = v′(x) or
v(x) =⊥V or v′(x) = �V . Figure 2 depicts this simple lattice as a graph. The
nodes represent lattice elements, where a pair (c1, c2) denotes the variable assign-
ment {x1 �→ c1, x2 �→ c2}. The edges represent the partial order (if read in the
upwards direction), where reflexive and transitive edges are omitted. The top ele-
ment � is the variable assignment with �(x) =�V for all x ∈ X.

6Sometimes, complete lattices are used in formalizations of data-flow analyses, but most practical
analyses require only one operator: either the least upper bound or the greatest lower bound.

504 D. Beyer et al.

Program Analysis. A program analysis for a CFA (L, l0,G) consists of an abstract
domain D and a transfer relation �. The abstract domain D = (C,E , [[·]]) is de-
fined by the set C of concrete states, a semi-lattice E = (E,�,
,�), and a con-
cretization function [[·]]. The lattice elements are used as (components of) abstract
states in the program analysis. Each abstract state represents a (possibly infinite)
set of concrete states. The concretization function [[·]] : E → 2C assigns to each ab-
stract state its meaning, i.e., the set of concrete states that it represents. The abstract
domain determines the objective of the analysis, i.e., the aspects of the program that
are analyzed. The transfer relation �⊆ E ×G×E assigns to each abstract state e

possible new abstract states e′ that are abstract successors of e, and each transfer is
labeled with a control-flow edge g. We write e

g�e′ if (e, g, e′) ∈ �, and e�e′ if
there exists a g with e

g�e′. A program analysis has to fulfill certain requirements
for soundness, i.e., to guarantee that no violations of the property are missed by the
analysis [17, 38, 94].

Example 3 Considering the example in Fig. 2 again, the concretization function [[·]]
relates the lattice elements to sets of variable assignments. For example, lattice el-
ement (1,0) maps the first variable to value 1 and the second variable to value 0.
The lattice element � represents all concrete states. Given a variable x, we use
the bottom element ⊥V to denote the variable assignment that assigns no value to
variable x (representing the empty set of concrete states). Note that in a program
analysis, there might be several (strictly speaking different) lattice elements that
represent the empty set of concrete states: every variable assignment that has (at
least) one variable assigned to ⊥V cannot represent any concrete state.7

16.3.2 Algorithm of Data-Flow Analysis

We now present an iteration algorithm for MFP data-flow analysis. According to
classic definitions of data-flow analysis [94], the algorithm computes, for a given
abstract domain, a function reached that assigns to each analyzed program location
an abstract data state (i.e., the abstract states consist of a program location and an
abstract data state, the latter represented by a lattice element).

Algorithm 1(a) operates on a partial function and a set: the function reached rep-
resents the result of the data-flow analysis, i.e., the mapping from program locations
to abstract data states; the set waitlist represents the program locations for which the
abstract data state was changed, i.e., the fixed point is not reached as long as waitlist
is not empty. Algorithm 1(a) is guaranteed to terminate if the semi-lattice has finite
height; the run time depends on the height of the semi-lattice and the number of
program locations. The algorithm starts by assigning the initial abstract data state

7This leads to the notion of “smashed bottom,” where all variable assignments with at least one
variable assigned to ⊥V are subsumed by one representative (⊥). We do not emphasize this notion
in our chapter.

16 Combining Model Checking and Data-Flow Analysis 505

Algorithm 1 Typical differences of data-flow analysis (Algorithm DFA) and soft-
ware model checking (Algorithm Reach)
Input: set L of locations, an abstract domain E, transfer relation �,

initial abstract state (l0, e0) with l0 ∈ L,e0 ∈ E

Output: set of reachable abstract states (pairs of location and abstract data state)

(a) Algorithm DFA(L,E,�, e0)

Variables: function reached : L ⇀ E,
set waitlist ⊆ L

1: waitlist := {l0}
2: reached(l0) := e0
3: while waitlist �= {} do
4: choose l from waitlist
5: waitlist := waitlist \ {l}
6: for each (l′, e′) with (l, e)�(l′, e′) do
7: // if not already covered
8: if e′ �� reached(l′) then
9: // join with existing abstract data state

10: reached(l′) := reached(l′)
 e′
11: waitlist := waitlist ∪ {l′}
12: return reached

(b) Algorithm Reach(L,E,�, e0)

Variables: set reached ⊆ L ×E,
set waitlist ⊆ L×E

1: waitlist := {(l0, e0)}
2: reached := {(l0, e0)}
3: while waitlist �= {} do
4: choose (l, e) from waitlist
5: waitlist := waitlist \ {(l, e)}
6: for each (l′, e′) with (l, e)�(l′, e′) do
7: // if not already covered
8: if �(l′, e′′) ∈ reached : e′ � e′′ then
9: // add as new abstract state

10: reached := reached ∪ {(l′, e′)}
11: waitlist := waitlist ∪ {(l′, e′)}
12: return reached

to the initial program location. Then it iterates through the while loop until the
set waitlist is empty. In every loop iteration, one program location is taken out of
the waitlist and abstract successors are computed for the corresponding successor
program locations. The abstract data element for the successor program location in
function reached is added for the program location, or the old abstract data state is
replaced by the join of the old and new abstract data states. Because we operate on
a partial function reached, we extend e′ �� reached(l′) to return false if reached(l′)
is undefined, and we extend reached(l′)
 e′ to

⊔
({e′′ | (l′, e′′) ∈ reached} ∪ e′).8

Example 4 Consider the example program from Fig. 1 and an abstract domain
for constant propagation; suppose the verification task is to ensure that no divi-
sion by zero occurs. The data-flow analysis computes a function reached with
the following entries: 2 �→ {x=�,y=�,z=�}, 3 �→ {x= 0,y=�,z=�},
and 4 �→ {x= 0,y=�,z= 0}. Following the then branch from program lo-
cation 4, the algorithm computes the entries 5 �→ {x = 0,y = 1,z = 0} and
9 �→ {x= 1,y= 1,z= 0}, and stores them in the function reached. For the
else branch, the algorithm computes the entries 7 �→ {x = 0,y = �,z = 0}
and 9 �→ {x= 0,y=�,z= 1}. Since reached already has an entry for program
location 9, the two abstract data states are joined, which results in the entry
9 �→ {x=�,y=�,z=�}. The correctness of the program (in terms of division
by zero) cannot be established.

8Alternative formalizations use total functions for reached and require some lower bound ⊥ to
exist in the (semi-) lattice, which is used as the initial abstract state to make reached total.

506 D. Beyer et al.

16.3.3 Algorithm of Model Checking

We now consider an iteration algorithm for software model checking. According to
the classic reachability algorithm, the algorithm computes the nodes of an abstract
reachability tree [13], which contains all reachable abstract states according to the
transfer relation. In difference to the data-flow analysis, the join operation is never
applied.

Algorithm 1(b) operates on two sets reached and waitlist, which are initialized
with a pair of the initial control-flow location and the initial abstract data state.
In every iteration of the while loop, the algorithm takes one abstract state from
the set waitlist and computes successors, as long as the fixed point is not reached.
Algorithm 1(b) is not guaranteed to terminate if the semi-lattice is infinite; software
model checking in general is a semi-decidable analysis. If there is no abstract state
in the set reached that entails the new abstract state, then the new abstract state is
added to the sets reached and waitlist. The join operation is never called, and thus,
the set of reached abstract states contains all nodes that an abstract reachability tree
(ART) [13] would contain (the edges of the actual tree are not necessarily stored;
but many model-checking algorithms do store an ART to support certain features,
such as error-path analysis [34]).

Example 5 We reconsider the example program from Fig. 1 and an abstract domain
for constant propagation. The model-checking algorithm computes a set reached
with the following entries: (2, {x=�,y=�,z=�}), (3, {x= 0,y=�,z=�}),
and (4, {x = 0,y = �,z = 0}). Following the then branch from program loca-
tion 4, the algorithm computes the entries (5, {x= 0,y= 1,z= 0}) and (9, {x= 1,

y = 1,z = 0}), and stores them in the set reached. For the else branch, the al-
gorithm computes the entries (7, {x= 0,y=�,z= 0}) and (9, {x = 0,y = �,

z= 1}). Although reached already has an entry for program location 9, this second
entry is stored in the set reached, and the correctness of the example program (in
terms of division by zero) is established: the value of variable x is always different
from the value of variable z.

16.3.4 Unified Algorithm Using Configurable Program Analysis

In theory, data-flow analysis and model checking have the same expressive
power [108]. In this section, we explain the unifying framework of configurable
program analysis [17, 18], a formalism and algorithm that makes it possible to
practically unify the approaches. Comparing the two Algorithms 1(a) and (b) again
reveals the similarity that motivates a unified algorithm, and also the differences that
motivate the configurable operators merge and stop, which we will define below as
part of the configurable program analysis and then use in the unified Algorithm 2.

16 Combining Model Checking and Data-Flow Analysis 507

Configurable Program Analysis (CPA). A configurable program analysis D =
(D,�,merge, stop) for a CFA (L, l0,G) consists of an abstract domain D, a trans-
fer relation �, a merge operator merge, and a termination check stop, which are
explained in the following. These four components configure our algorithm and in-
fluence the precision and cost of a program analysis.

1. The abstract domain D = (C,E , [[·]]) is defined by the set C of concrete states,
a semi-lattice E = (E,�,
,�), and a concretization function [[·]].

2. The transfer relation �⊆ E × G × E assigns to each abstract state e possible
new abstract states e′ that are abstract successors of e, and each transfer is labeled
with a control-flow edge g.

3. The merge operator merge : E × E → E combines the information of two ab-
stract states. The operator weakens the abstract state (also called widening) that
is given as second parameter depending on the first parameter (the result of
merge(e, e′) can be anything between e′ and �).

Note that the operator merge is not commutative, and is not necessarily
the same as the join operator
 of the lattice, but merge can be based on
.
Later we will use the following merge operators: mergesep(e, e′) = e′ and
mergejoin(e, e′) = e
 e′.

4. The termination check stop : E × 2E → B checks whether the abstract state e

that is given as first parameter is covered by the set R of abstract states given
as second parameter, i.e., every concrete state that e represents is represented by
some abstract state from R. The termination check can, for example, go through
the elements of the set R that is given as second parameter and search for a
single element that subsumes (�) the first parameter, or—if D is a power-set
domain9—can join the elements of R to check whether

⊔
R subsumes the first

parameter.
Note that the termination check stop is not the same as the partial order � of

the lattice, but stop can be based on �. Later we will use the following termina-
tion checks (the second requires a power-set domain): stopsep(e,R) = (∃e′ ∈ R :
e � e′) and stopjoin(e,R) = (e � ⊔

R).

The abstract domain on its own does not determine the precision of the analysis;
each of the four configurable components (abstract domain, transfer relation, merge
operator, and termination check) independently contribute to adjusting both preci-
sion and cost of the analysis.

Unified Algorithm. In order to experiment with both data-flow analysis and model
checking in one single algorithm, we unify the two algorithms using the operators
merge and stop of the configurable program analysis.

Algorithm 2 abstracts from program locations and operates on two sets of ab-
stract states (abstract-domain elements), i.e., the program location is represented in
the abstract domain and is not specially treated anymore (classic data-flow analyses

9A power-set domain is an abstract domain such that [[e1
 e2]] = [[e1]] ∪ [[e2]].

508 D. Beyer et al.

Algorithm 2 CPA(D, e0)

Input: a CPA D= (D,�,merge, stop),
an initial abstract state e0 ∈ E, where E denotes the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached ⊆ E, a set waitlist ⊆ E

1: waitlist := {e0}
2: reached := {e0}
3: while waitlist �= {} do
4: choose e from waitlist
5: waitlist := waitlist \ {e}
6: for each e′ with e�e′ do
7: for each e′′ ∈ reached do
8: // combine with existing abstract state
9: enew := merge(e′, e′′)

10: if enew �= e′′ then
11: waitlist := (waitlist ∪ {enew}) \ {e′′}
12: reached := (reached ∪ {enew}) \ {e′′}
13: if ¬ stop(e′, reached) then
14: waitlist := waitlist ∪ {e′}
15: reached := reached ∪ {e′}
16: return reached

rely on an explicit representation of the program location). The sets reached and
waitlist are initialized with the initial abstract state for the given configurable pro-
gram analysis. As in the previous algorithms, every iteration of the loop processes
one element from the set waitlist, and computes all abstract successors for that ab-
stract state. The set waitlist is empty if the fixed point of the iteration is reached.

Now, for every abstract successor state, the algorithm merges the new abstract
state with every existing abstract state in the set reached. It depends solely on the
merge operator how often abstract states from reached are combined and how ab-
stractly they are combined. In the case that the merge operator does not produce a
new combined state, it simply returns the existing abstract state that was given as
second parameter. Otherwise, it returns a new abstract state that entails the exist-
ing abstract state. In the latter case, the existing abstract state is removed from the
sets reached and waitlist and the new abstract state is added to the sets reached and
waitlist. (Obviously, an efficient implementation of the algorithm applies optimiza-
tion to the for each loop from line 7 to line 12, e.g., using partitions or projections
for the set reached.)

After the current abstract successor state has been merged with all existing ab-
stract states, the stop operator determines whether the algorithm needs to store the
current abstract state in the sets reached and waitlist. For example, if all concrete
states that are represented by the current abstract state are covered (i.e., also repre-
sented) by existing abstract states in the set reached, then the current state may be
ignored.

The set reached, at the fixed point of the iteration, represents the program in-
variant. Such fixed-point iterations and several other algorithms for constructing
program invariants are discussed in Sect. 16.6.

16 Combining Model Checking and Data-Flow Analysis 509

16.3.5 Discussion

Effectiveness. The effectiveness of an analysis refers to the degree of precision with
which the analysis determines whether a program satisfies or violates a given spec-
ification (number of false positives and false negatives). Model checking has a high
degree of precision, due to the fact that all reachable abstract states are stored sep-
arately in the set of reachable states, i.e., model checking is automatically path-
sensitive due to never applying join operations (if the set of reachable abstract states
is seen as the reachability tree that represents execution paths). Data-flow analysis
is often imprecise, when join operations are applied in order to reduce two abstract
states to one. In comparison to standard data-flow analysis, power-set constructions
for increasing the precision (e.g., for making an analysis path-sensitive) are not nec-
essary in a configurable program analysis: the effect can easily be achieved by set-
ting the merge operator to not join.

This is the strength of defining program analyses as CPA: the components ab-
stract domain, transfer relation, merge operator, and stop operator separate concerns
and provide a flexible way of tuning these components or exchanging them with
others. For example, the merge operator encodes whether the algorithm works like
MFP, or MOP, or uses a hybrid approach (cf. the merge operator used in adjustable-
block encoding [22]). Each of the components has an important impact on the pre-
cision and performance of the program analysis.

Efficiency. The efficiency (also called performance) of an analysis measures the re-
source consumption of an algorithm (in time or space). The resources required for
an analysis often decide whether the analysis should be applied to the problem or
not. For example, the run time of a data-flow analysis is determined by the height of
the abstract domain’s lattice, the size of the control-flow automaton, and the number
of variables in the program. Most of the classic data-flow analyses are efficient (low
polynomial run time) and can be used in compilers for optimization. Model check-
ing sometimes requires resources exponential in the program size (if terminating at
all). Due to the high precision of typical model-checking domains, such as predi-
cate abstraction, the sub-problem of computing an abstract successor state is often
NP-hard already.

Iteration Order. The iteration order defines the sequence in which abstract states
from the set waitlist are processed by the exploration algorithm. We did not discuss
this parameter because it is orthogonal to the difference between data-flow analysis
and model checking, i.e., most iteration orders can be used for both techniques. In
Algorithm 2, the iteration order is implemented in the operator choose. The most
simple iteration orders are breadth-first search (BFS) and depth-first search (DFS).
The iteration order DFS is often not advisable for data-flow analysis, because after
each join operation, the algorithm has to re-explore all successors of abstract states
that represent more concrete states after the join. For model checking, both orders
are applicable, while some existing implementations of model-checking tools prefer
the DFS order (e.g., BLAST [13]). The best iteration order is often a combination of

510 D. Beyer et al.

both, for example by using a topological (reverse post-order) algorithm in which
DFS is performed until a meet point, while further exploration has to wait for the
control flow to arrive via all other branches [22]. Also chaotic iteration orders [29]
were investigated and found to be useful. More details can be found in Sect. 16.6.1.

16.3.6 Composition of Configurable Program Analyses

Different CPAs have different strengths and weaknesses, and therefore, we need
to construct combinations of component analyses to pick the advantages of several
components, in order to achieve more effective program analyses.

Composite. A configurable program analysis can be composed of several config-
urable program analyses [17]. A composite program analysis C = (D1,D2,�×,

merge×, stop×)10 consists of two configurable program analyses D1 and D2 shar-
ing the same set C of concrete states with E1 and E2 being their respective sets of
abstract states, a composite transfer relation �× ⊆ (E1 × E2) × G × (E1 × E2),
a composite merge operator merge× : (E1 × E2) × (E1 × E2) → (E1 × E2), and
a composite termination check stop× : (E1 × E2) × 2E1×E2 → B. The three com-
posites �×, merge×, and stop× are expressions over the components of D1 and D2
(�i ,mergei , stopi , [[·]]i ,Ei,�i ,
i ,�i), as well as the operators ↓ and � (defined
below). The composite operators can manipulate lattice elements only through those
components, never directly (e.g., if D1 is already a result of a composition, then we
cannot access the tuple elements of abstract states from E1, nor redefine merge1).
The only way of using additional information is through the operators ↓ and �.

Strengthen. The strengthening operator ↓ : E1 ×E2 → E1 computes a stronger ele-
ment from the lattice set E1 by using the information of a lattice element from E2;
it has to meet the requirement ↓(e, e′) � e. The strengthening operator can be used
to define a composite transfer relation �× that is stronger than a direct product
relation. For example, if we combine predicate analysis and constant propagation,
the strengthening operator ↓CO,P can “sharpen” the explicit-value assignment of the
constant propagation (cf. Sect. 16.4.2) by considering the predicates in the predicate
analysis (cf. Sect. 16.4.4).

Compare. Furthermore, we allow the definitions of composite operators to use the
compare relation �⊆ E1 ×E2, to compare elements of different lattices.

Composition. For a given composite program analysis C = (D1,D2,�×,merge×,

stop×), we can construct the configurable program analysis D× = (D×,�×,

merge×, stop×), where the product domain D× is defined as the direct product

10We extend this notation to any finite number of Di .

16 Combining Model Checking and Data-Flow Analysis 511

of D1 and D2: D× = D1 × D2 = (C,E×, [[·]]×). The product lattice is E× =
E1 × E2 = (E1 × E2,�×,
×, (�1,�2)) with (e1, e2) �× (e′1, e′2) if e1 �1 e′1 and
e2 �2 e′2 (and for the join operation the following holds (e1, e2)
× (e′1, e′2) = (e1
1
e′1, e2
2 e′2)). The product concretization function [[·]]× is such that [[(d1, d2)]]× =
[[d1]]1 ∩ [[d2]]2.

The literature agrees that this direct product itself is often not sharp enough [36,
39]. Even improvements over the direct product (e.g., the reduced product [28, 39]
or the logical product [61]) do not solve the problem completely. However, in a
configurable program analysis, we can specify the desired degree of “sharpness” in
the composite operators �×, merge×, and stop×. For a given product domain, the
definitions of the three composite operators determine the precision of the resulting
configurable program analysis. In previous approaches, a redefinition of basic op-
erations was necessary, but using configurable program analysis, we can reuse the
existing abstract interpreters. For certain numerical abstract domains, the composite
transfer relation can be automatically constructed: if the abstract domains of two
given CPAs fulfill certain requirements (convex, stably infinite, disjoint) then the
most precise abstract transfer relation can be computed [61].

16.4 Classic Examples (Component Analyses)

We now define and explain some well-known classic example analyses, in order to
demonstrate the formalism of configurable program analysis. We use the notations
that were introduced in Sects. 16.3.1, 16.3.4, and 16.3.6.

16.4.1 Reachable-Code Analysis

The reachable-code analysis (also known as dead-code analysis) identifies all lo-
cations of the control-flow automaton that can be reached from the program entry
location. This classic analysis tracks only syntactic reachability, i.e., the operations
are not interpreted.

The location analysis is a configurable program analysis L= (DL,�L,mergeL,

stopL) that tracks the reachability of program locations and consists of the following
components:

1. The abstract domain DL is based on the semi-lattice for the set L of program
locations: DL = (C,L , [[·]]), with L = (L ∪ {�},�,
,�) (also called a “flat
semi-lattice”), l � �, and l �= l′ ⇒ l �� l′ for all elements l, l′ ∈ L (this implies
�
 l =�, l
 l′ = � for all elements l, l′ ∈ L, l �= l′), and [[�]] = C, and for all
l ∈ L: [[l]] = {c ∈ C | c(pc) = l}.

The element � represents the fact that the program location is not known.
2. The transfer relation �L has the transfer l

g�Ll′ if g = (l,op, l′), and has the
transfer � g�L� for all g ∈ G.

512 D. Beyer et al.

The transfer relation determines the syntactic successor in the CFA without
considering the semantics of the operation op.

3. The merge operator does not combine elements when the control flow meets:
mergeL = mergesep.

4. The termination check considers abstract states individually: stopL = stopsep.

This (simple) abstract domain can be used to perform a syntactic reachability
analysis, for example to eliminate control-flow operations that can never be exe-
cuted. More importantly, this CPA can be used to track the program location when
combined with other CPAs, in order to separate the concern of location tracking
from other analyses. In practice, a semantic reachable-code analysis would be pre-
ferred to search for dead code, for example using a predicate analysis, as was done
in the context of model-checking-based test-case generation [7]. More details about
the connection between model checking and testing are provided in Chap. 19.

16.4.2 Constant Propagation

The constant-propagation analysis identifies variables that store constant values at
certain program locations, i.e., at a given program location, the value is always the
same. This classic domain of data-flow analysis can be used to reduce the number
of variables in a program by substituting constants for variables.

The constant-propagation analysis is a configurable program analysis CO =
(DCO,�CO,mergeCO, stopCO) that tries to determine, for each program location,
the value of each variable, and consists of the following components (we use the
set L of program locations, the set X �= {} of program variables, and the set Z of
integer values):

1. The abstract domain DCO = (C,E , [[·]]) consists of the following three compo-
nents. The set C is the set of concrete states. The semi-lattice E represents the
abstract states, which store for a program location an abstract variable assign-
ment. Formally, the semi-lattice E = ((L ∪ {�L}) × (X → Z),�,
, (�L, v�)),
with Z = Z ∪ {�Z }, is induced by the partial order � that is defined as
(l, v) � (l′, v′) if (l = l′ or l′ = �L) and ∀x ∈ X : v(x) = v′(x) or v′(x)=�Z .
(The join operator
 yields the least upper bound, and v� is the abstract variable
assignment with v�(x) = �Z for each x ∈ X.) A concrete state c matches a
program location l if c(pc) = l or l = �L. Similarly, a concrete state c is com-
patible with an abstract variable assignment v if for all x ∈ X, c(x) = v(x) or
v(x) = �Z . The concretization function [[·]] assigns to an abstract state (l, v)

all concrete states that match the program location l and are compatible with the
abstract variable assignment v.

2. The transfer relation �CO has the transfer (l, v)
g�(l′, v′) if

(1) g = (l,assume(p), l′) and φ(p,v) is satisfiable and for all x ∈ X:

v′(x) =
⎧
⎨

⎩

c if c is the only satisfying assignment of φ(p,v)
for variable x

v(x) otherwise

16 Combining Model Checking and Data-Flow Analysis 513

where, given a predicate p over variables in X and an abstract variable as-
signment v, we define φ(p,v) := p ∧ ∧

x∈X,v(x) �=�Z
x = v(x) or

(2) g = (l,w := e, l′) and for all x ∈ X:

v′(x) =
{

eval(e, v) if x = w
v(x) otherwise

where, given an expression e over variables in X and an abstract variable
assignment v,

eval(e, v) :=
⎧
⎨

⎩

�Z if v(x) =�Z for some x ∈ X that occurs in e

z otherwise, where expression e evaluates to z when
each variable x is replaced by v(x) in e

or
(3) l = l′ = �L and v′ = v�.

3. The merge operator is defined by

mergeCO
(
(l, v),

(
l′, v′)) =

{
(l, v)
 (l′, v′) if l = l′
(l′, v′) otherwise

(The two abstract variable assignments are combined where the control flow
meets.)

4. The termination check is defined by stopCO = stopsep.

Example 6 Consider the C function in Fig. 1(a) again, and construct a CPA for con-
stant propagation. The following lattice element is an example of an abstract state
that is reachable in the program code from Fig. 1(a): (4, {x �→ 0, y �→ �Z , z �→ 0}).

Note that CPA CO performs an MFP computation, which is not precise enough
for proving the correctness of the function in Fig. 1(a). If we change the merge
operator mergeCO to mergesep, then we move from MFP to what corresponds to
abstract reachability trees (never join). This changed analysis is similar to explicit-
value analysis [24]. Explicit-state model checking is discussed in Chap. 5.

Example 7 Considering the example from Fig. 1 again, but using mergesep as
merge operator, we obtain the following two different abstract states for program
location 9: (9, {x �→ 1,y �→ 1,z �→ 0}) and (9, {x �→ 0,y �→ �Z ,z �→ 1}). This
proves that a division by zero is not possible.

16.4.3 Reaching Definitions

The reaching-definitions analysis computes for every program location and for ev-
ery variable a set of assignment operations that may have defined the value of the

514 D. Beyer et al.

variable (i.e., definitions that “reach” the location). This classic domain of data-flow
analysis (very similar to use-def analysis) is used in compiler optimization to in-
fer dependencies between operations [2], and in code-structure analysis to quan-
titatively measure the data-flow [12]. Furthermore, in selective test-case genera-
tion [102], an efficient use-def analysis is necessary to determine which program
locations need to be covered by a test case (for a given changed definition, we need
to compute all uses of that definition).

An assigning CFA edge e is a reaching definition for program location l and
variable x if there exists a path in the CFA through edge e to program location l

without any (re-)definition of x (compare with Sect. 16.2.3).
The reaching-definitions analysis is a configurable program analysis RD =

(DRD,�RD,mergeRD, stopRD), which computes the set of reaching definitions for
each program location, and consists of the following components (X is the set of
program variables):

1. The abstract domain DRD = (C,E , [[·]]) consists of the set C of concrete states,
the semi-lattice E , and the concretization function [[·]]. The semi-lattice is given
by E = ((L ∪ {�L}) × 2E,�RD,
RD, (�L,E)), where E ⊆ X × (L × L) is the
set of definitions (variables paired with their defining edge) in the program, and
we define (l, S) �RD (l′, S′) if (l = l′ or l′ = �L) and S ⊆ S′, which implies the
join operator:

(l, S)
RD

(
l′, S′) =

{
(l, S ∪ S′) if l = l′
(�L, S ∪ S′) otherwise.

2. The transfer relation �RD has the transfer (l, S)�(l′, S′) if

(1) there exists a CFA edge g = (l,op, l′) ∈ G and

S′ =
⎧
⎨

⎩

(S \ {(x, k, k′) | k, k′ ∈ L})∪ {(x, l, l′)} if op has the form
x := <expr>;

S otherwise

or
(2) l = l′ = �L and S′ = E.

3. The merge operator is defined as

mergeRD
(
(l, S),

(
l′, S′)) =

{
(l′, S ∪ S′) if l = l′
(l′, S′) otherwise.

(The two sets of reaching definitions are united where the control flow meets.)
4. The termination check is defined as stopRD = stopsep.

Example 8 In the program of Fig. 1, variable x has the following reaching defini-
tions at location 9: {(x,2,3), (x,5,9)}.

16 Combining Model Checking and Data-Flow Analysis 515

16.4.4 Predicate Analysis

For a given formula φ and a set π of predicates, the Cartesian predicate abstrac-
tion (φ)πC is the strongest conjunction of predicates from π that is implied by φ,
and the Boolean predicate abstraction (φ)πB is the strongest Boolean combination
of predicates from π that is implied by φ.

Predicate analysis is a program analysis that uses predicate abstraction to con-
struct abstract states. The precision π of the predicate analysis is a finite set of
predicates that controls the coarseness of the over-approximation of the abstract
states. The precision can be refined during the analysis using CEGAR [34] and in-
terpolation [69], and there can be different values for the precision at different pro-
gram locations using lazy abstraction refinement [13, 71], however, for simplicity of
presentation, we assume a fixed set of predicates. This classic domain of software
model checking became popular and successful in the last decade due to the recent
breakthroughs in decision procedures (SMT solvers) for Boolean formulas over ex-
pressions in the theory of linear arithmetic (LA) and equality with uninterpreted
functions (EUF).

The Cartesian predicate analysis is a configurable program analysis P =
(DP,�P,mergeP, stopP), which uses Cartesian predicate abstraction and consists
of the following components (where the precision is given by the finite set π of
predicates over the set X of program variables, with false ∈ π , that are tracked by
the analysis; for a set r ⊆ π of predicates, we write ϕr to denote the conjunction of
all predicates in r , in particular ϕ{} = true):
1. The domain DP = (C,P, [[·]]) is based on the idea that regions are repre-

sented by conjunctions over a finite set of predicates. The semi-lattice is given
as P = (2π ,�,
,�), where the partial order � is defined as r � r ′ if r ⊇ r ′
(note that if r � r ′ then ϕr implies ϕr ′). The least upper bound r
 r ′ is given
by r ∩ r ′ (note that ϕr
r ′ is implied by ϕr ∨ ϕr ′). The element � = {} leaves
the abstract state unconstrained (true), i.e., every concrete state is represented.
We used the subsets of π as the lattice elements and their subset relationship as
the partial order; alternatively, one could define a lattice for predicate abstrac-
tion using conjunctions over predicates from π as the lattice elements and their
formula-implication relationship as partial order. The concretization function [[·]]
is defined by [[r]] = {c ∈ C | c |= ϕr}.

2. The transfer relation �P has the transfer r
g�Pr ′ if post(ϕr , g) is satisfiable

and r ′ is the largest set of predicates from π such that ϕr implies pre(p,g)

for each p ∈ r ′, where post(ϕ, g) and pre(ϕ, g) denote the strongest post-
condition and the weakest pre-condition, respectively, for a formula ϕ

and a control-flow edge g. The two operators post and pre are defined
such that [[post(ϕ, g)]] = {c′ ∈ C | ∃c ∈ C : c g→c′ ∧ c |= ϕ} and [[pre(ϕ, g)]] =
{c ∈ C | ∃c′ ∈ C : c g→c′ ∧ c′ |= ϕ}. The Cartesian abstraction of the successor
state is obtained by separate entailment checks for each predicate in π , which
can be implemented by |π | calls of a theorem prover.11

11A more efficient formulation of the same problem is based on the weakest pre-condition in order
to avoid existential quantification.

516 D. Beyer et al.

3. The merge operator does not combine elements when the control flow meets:
mergeP = mergesep.

4. The termination check considers abstract states individually: stopP = stopsep.

Note that the CPA P cannot run alone: it is a component analysis that works in a
composite analysis with the location analysis from Sect. 16.4.1 as another compo-
nent CPA. The analysis could in principle be designed such that the predicates in π

also constrain the program location, but this is not considered here.
The first practical implementations of a program analysis with Cartesian pred-

icate abstraction were developed more than ten years ago (cf. SLAM [3, 4]
and BLAST [13, 71]). More recent advancements in predicate analysis use Boolean
abstraction [9] instead of Cartesian abstraction, and a complete temporal separation
of the computation of the predicate abstraction for a formula from the computa-
tion of the strongest post-condition for a program operation [22]. An overview of
Cartesian predicate abstraction is also given in Chap. 15, and of SAT solving in
Chap. 9.

16.4.5 Explicit-Heap Analysis

In the following, we outline a simple analysis of dynamic data structures on the heap
(as an extension of the simple programming language that we used so far), which is,
for example, used as a basis for an accelerated abstraction in shape analysis [18, 19];
we give only a coarse overview here.

The explicit-heap analysis is a configurable program analysis H = (DH,�H,

mergeH, stopH), which tracks explicit heap structures up to a certain size and con-
sists of the following components:

1. The domain of the explicit-heap analysis stores concrete instances of data struc-
tures in its abstract states. Each abstract state represents an explicit, finite part
of the memory. An abstract state H = (v,h) of an explicit-heap analysis con-
sists of the following two components: (1) the variable assignment v : X → Z�
is a total function that maps each variable identifier (integer or pointer vari-
able) to an integer (representing an integer value or a structure address) or the
special value � (representing the value “unknown”); and (2) the heap assign-
ment h : Z ⇀ (F → Z�) is a partial function that maps every valid structure ad-
dress to a field assignment, also called a structure cell (memory content). A field
assignment is a total function that maps each field identifier f ∈ F of the struc-
ture to an integer, or the special value �. We call H an explicit heap. The initial
explicit heap H0 = (v0, {}), with v0(x) =� for every program variable x, repre-
sents all program states. Given an explicit heap H and a structure address a, the
depth of H from a, denoted by depth(H,a), is defined as the maximum length
of an acyclic path whose nodes are addresses and where an edge from a1 to a2
exists if h(a1)(f) = a2 for some field f , starting from v(a). The depth of H ,
denoted by depth(H), is defined as maxa∈X depth(H,a).

16 Combining Model Checking and Data-Flow Analysis 517

Fig. 3 Sample explicit heap for a doubly-linked list

2. The transfer relation �H has the transfer H
g�HH ′ if H ′ = (v′, h′) is the ex-

plicit heap that results from applying the control-flow edge g = (l,op, l′) to the
explicit heap H = (v,h) according to the semantics of op. The new variable
assignment v′ maps every pointer variable p to � for which depth(H,p) > c,
where c is an analysis-dependent constant maximal depth value of the heap struc-
tures.12 (The analysis stops tracking structures that have a depth greater than the
maximal depth value.)

3. The merge operator does not combine elements when the control flow meets:
mergeH = mergesep.

4. The termination check considers abstract states individually: stopH = stopsep.

Besides explicit-heap analysis, which can only serve as an auxiliary analysis or
for bounded bug finding, several approaches for symbolic-heap analysis were pro-
posed in the literature [16, 19, 32, 45, 75, 103].

Example 9 Figure 3 graphically depicts an explicit heap (v,h) that can occur in a
program operating on a structure elem {int data; elem∗ succ; elem∗ prev}, with
v = {l1 �→ 1} and h = {
1 �→ {data �→ �,succ �→ 2,prev �→ 0},
2 �→ {data �→ �,succ �→ 3,prev �→ 1},
3 �→ {data �→ �,succ �→ 4,prev �→ 2},
4 �→ {data �→ �,succ �→ 5,prev �→ 3},
5 �→ {data �→ �,succ �→ 0,prev �→ 4}
}.

16.4.6 BDD Analysis

Binary decision diagrams (BDDs) [31] are a popular data structure in model-
checking algorithms. In the following, we define a configurable program analysis
that uses BDDs to represent abstract states. For the details, we refer to an article
on the topic [25]. An introduction to BDDs is given in Chap. 7 and to BDD-based
model checking in Chap. 8. Given a first-order formula ϕ over the set X of program
variables, we use Bϕ to denote the BDD that is constructed from ϕ, and [[ϕ]] to
denote all variable assignments that fulfill ϕ. Given a BDD B over X, we use [[B]]
to denote all variable assignments that B represents ([[Bϕ]] = [[ϕ]]).

12The analysis has to apply garbage collection in heap assignments of the abstract states.

518 D. Beyer et al.

The BDD analysis is a configurable program analysis BPA = (DBPA,�BPA,

mergeBPA, stopBPA) that represents the data states of the program symbolically, by
storing the values of variables in BDDs. The CPA consists of the following compo-
nents (taken from [25]):

1. The abstract domain DBPA = (C,EB, [[·]]) is based on the semi-lattice EB of
BDDs, i.e., every abstract state consists of a BDD. The concretization func-
tion [[·]] assigns to an abstract state B the set [[B]] of all concrete states that
are represented by the BDD. Formally, the semi-lattice EB = (B̂,�,
,�)—
where B̂ is the set of all BDDs and � = Btrue is the BDD that represents all
concrete states (1-terminal node)—is induced by the partial order � that is de-
fined as: B � B′ if [[B]] ⊆ [[B′]]. The join operator
 for two BDDs B and
B′ yields the least upper bound B ∨ B′.

2. The transfer relation �BPA has the transfer B
g�B′ with

B′ =
{

B ∧ Bp if g = (l,assume(p), l′) and [[B ∧ Bp]] �= {}
(∃w : B) ∧ Bw=e if g = (l,w := e, l′).

3. The merge operator is defined by mergeBPA = mergejoin.
4. The termination check is defined by stopBPA = stopsep.

A complete program analysis can be instantiated by composing the CPA BPA
for BDD-based analysis with the CPA L for location analysis, in order to also track
the program locations.

16.4.7 Observer Automata

Many software verifiers require the user to encode the safety property to be veri-
fied as a reachability problem inside the program source code. It has been shown
that tools can provide more convenient and elegant specification languages for ex-
pressing safety properties separately from the program [5, 8]. This approach has
the advantages that the property need not be present in the program source code,
and that different properties can be checked independently (and possibly simultane-
ously). The software model checker BLAST [8] provides a transformation technique
that takes as input the original program and the specification, and produces an in-
strumented program. The instrumented program is then given to the standard model
checker, which simply checks for reachability of an error label.

This approach can be realized even more elegantly using a composite analysis
that transforms the specification into an observer automaton that runs in parallel
with the other analyses of the verifier in a composition. Such a strategy was imple-
mented, for example, in the software verifiers BLAST [120], CPACHECKER [21], and
ORION [44].

A specification is an abstract description of a set of valid program paths for a
given program. We represent such a specification as an observer automaton that

16 Combining Model Checking and Data-Flow Analysis 519

Fig. 4 Simple observer automaton

observes whether an invalid program path is encountered. Observer automata are
also called “monitors” in the literature and can be generated from temporal-logic
specifications. This idea is also used in test-case generation, where (temporal) cov-
erage criteria are transformed into test-goal automata [20], and for re-playing error
witnesses [11, 26].

Example 10 Consider as specification that each user input that the program reads
(e.g., via scanf) must be validated by a call to a function validate before it is
consumed (e.g., via function consume). The observer automaton in Fig. 4 starts in
accepting state qinit, and switches to another accepting state qcheck when scanf is
called. From there, the automaton switches back to state qinit if function validate
is called, but it switches to a non-accepting sink state if the input value is consumed
without validation.

An observer automaton A = (Q,Σ, δ, qinit,F) for a CFA (L, l0,G) is a non-
deterministic finite automaton, with the finite set Q of control states, the alphabet
Σ ⊆ 2G × Φ consisting of pairs that consist of a finite set of CFA edges and a state
condition, the transition relation δ ⊆ Q × Σ × Q, the initial control state qinit ∈ Q,
and the set F of final control states (usually, all control states except the error control
state qerr ∈ Q are accepting control states, i.e., F = Q \ {qerr}). Let p ∈ Q be the
current state of an automaton A. The meaning of a transition (p, (D,ψ), q) ∈ δ is
as follows: for a given control-flow edge g of the program analysis, the successor
control state is control state q if the edge g matches one of the edges in the set D

of edges. In combination with another CPA, using a strengthening operator, the
successor state can be required to fulfill condition ψ (a later section will describe
this). The observer automaton A accepts all program paths that have not reached the
error control state, and rejects all program paths that reach the error control state.
The specification that the observer automaton represents is fulfilled if all program
paths are accepted by the observer automaton.

The observer analysis for an observer automaton A is a configurable program
analysis O= (DO,�O,mergeO, stopO), that tracks the control state of the observer
automaton A = (Q,Σ, δ, qinit,F), with Σ ⊆ 2G ×Φ , and consists of the following
components (for a given CFA (L, l0,G)):

1. The abstract domain DO = (C,Q, [[·]]) consists of the set C of concrete states,
the semi-lattice Q, and a concretization function [[·]]. The semi-lattice Q =
(Z,�,
,�Q), with Z = (Q ∪ {�}) × Φ , consists of the set Z of abstract

520 D. Beyer et al.

data states, which are pairs of a control state from Q (or special lattice ele-
ment) and a condition from Φ , a partial order �, the join operator
, and the
top element �Q . The partial order � is defined such that (q,ψ) � (q ′,ψ ′) if
(q ′ = � or q = q ′) and ψ ⇒ ψ ′, the join
 is the least upper bound of two ab-
stract data states, and the top element �Q = (�, true) is the least upper bound
of the set of all abstract data states. The concretization function [[·]] : Z → 2C is
a mapping that assigns to each abstract data state (q,ψ) the set [[ψ]] of concrete
states.

2. The transfer relation �O has the transfer (q,ψ)
g�O(q ′,ψ ′) if the observer au-

tomaton A has a transition (q, (D,ψ ′), q ′) ∈ δ such that g ∈ D. The condition ψ ′
of the state transition is stored in the successor in order to enable a compos-
ite strengthening operator to strengthen the successor abstract data state of an-
other component analysis in the composite analysis using information from con-
dition ψ ′.

3. The merge operator combines elements with the same control state:

mergeO
(
(q,ψ),

(
q ′,ψ ′)) =

{
(q ′,ψ ∨ ψ ′) if q = q ′
(q ′,ψ ′) otherwise.

4. The termination check considers control states and conditions of the automaton
individually: stopO = stopsep.

16.5 Combination Examples (Composite Analyses)

We describe several examples in which component analyses are assembled into
composite analyses that are neither pure data-flow analyses nor pure model check-
ing. We show that such combinations are relatively easy to express in the CPA for-
malism, and explain what is taken from which approach and why it is useful to
combine them.

16.5.1 Predicate Analysis + Constant Propagation

“Predicated lattices” are a practical combination of the predicate-abstraction do-
main with a classic data-flow domain [49]. The predicate analysis behaves as in
model checking: abstract predicate states are never joined. The composite analysis
performs a merge of two composite abstract states as follows: if the two component
abstract states of the predicate analysis are equal, then the two component abstract
states of the data-flow analysis are joined and the composite analysis stores one
composite abstract state, otherwise the composite analysis stores two separate com-
posite abstract states.

16 Combining Model Checking and Data-Flow Analysis 521

Given the CPA P for predicate analysis and any CPA for data-flow analysis,
for example, the CPA CO for constant propagation. The composite program anal-
ysis CPCO = (L,P,CO,�×,merge×, stop×) for a predicated constant propaga-
tion consists of the following components: the CPA L for location tracking from
Sect. 16.4.1, the CPA P for predicate analysis from Sect. 16.4.4, the CPA CO for
constant propagation from Sect. 16.4.2, the composite transfer relation �×, the
composite merge operator merge×, and the composite termination check stop×.
The composite transfer relation �× has the transfer (e1, e2, e3)

g�×(e′1, e′2, e′3) if
e1

g�Le′1 and e2
g�Pe′2 and e3

g�COe′3. The composite merge operator merge× is de-
fined by

merge×
(
(e1, e2, e3),

(
e′1, e′2, e′3

))

=
{

(e1, e2,mergeCO(e3, e
′
3)) if e1 = e′1 and e2 = e′2

(e′1, e′2, e′3) otherwise.

The composite termination check is defined by stop× = stopsep.
For the combination of predicate analysis with a data-flow analysis for pointers,

it has been shown that this configuration can significantly improve the verification
performance [49].

16.5.2 Predicate Analysis + Constant Propagation + Strengthen

Now we extend the above composite program analysis by using a strengthening
operator in the transfer relation. Again, a strengthening operator ↓ : E1 ×E2 → E1
takes an abstract state e1 ∈ E1 as input and uses information stored in an abstract
state e2 ∈ E2 from another CPA to constrain (“strengthen”) the set of concrete states
that the resulting abstract state ↓(e1, e2) represents.

We use a strengthening operator of the concrete type ↓CO,P : ECO×EP → ECO,
i.e., it strengthens a variable assignment from the constant propagation with an ab-
stract state from the predicate analysis (set of predicates that are satisfied). The
strengthening operator ↓CO,P(v, r) is defined, if φv ∧ φr is satisfiable, as follows,
for every variable x:

↓CO,P(v, r)(x) =
{

c if c is the only satisfying assignment of φv ∧ φr for x

v(x) otherwise

where φv := ∧
x∈X,v(x)�=�Z

x = v(x).
We now define the transfer relation for the new composite program analysis:

The composite transfer relation �× has the transfer (e1, e2, e3)
g�×(e′1, e′2, e′3) if

e1
g�Le′1, and e2

g�Pe′2, and e3
g�COe′′3 , and ↓(e′′3 , e′2) is defined, and e′3 =↓(e′′3 , e′2).

This combined analysis is more precise than the component analyses alone,
which will be illustrated in the following example. A more flexible extension of this
combination was presented using the concept of dynamic precision adjustment [18].
Experiments with this extension have shown that combinations with strengthening

522 D. Beyer et al.

Fig. 5 Example C function, used to illustrate predicated lattices with strengthening. Neither pred-
icate analysis, nor constant propagation, nor a predicated lattice without strengthening are precise
enough to prove the correctness of this function, but the combination with strengthening is

operators can be more effective and more efficient than Cartesian products of analy-
ses. While the effects of such “reduced products” [39] have been known for decades,
the framework of configurable program analysis enables us to express such combi-
nations in a simple and elegant implementation.

Example 11 Consider the example program in Fig. 5, which extends the previous
example with a non-linear expression. The safety property to be checked is that no
division by zero is executed. Suppose we use a predicate analysis for the theory of
linear arithmetics (LA) and equalities with uninterpreted functions (EUF), with the
precision (i.e., set of predicates to track) {x= 1,z= 1,z= 5,y≥ 1,y≤ 1} and a
constant-propagation analysis.

The predicate analysis with location tracking does not succeed in proving this
example safe: At program location 7, we have the predicate abstract data state
x= 1 ∧ z= 1 ∧ y≥ 1. At program location 10, we have the abstract data
state x= 1 ∧ z= 1 ∧ y≥ 1 ∧ y≤ 1. At program location 11, however, we
have no information about z, due to the fact that the non-linear operation “*” is
modeled as an uninterpreted function, resulting in the following abstract data state:
x= 1 ∧ y≥ 1 ∧ y≤ 1. Thus, the analysis conservatively assumes that the program
can fail with a division by zero. This cannot be remedied by adding other predicates.

The constant propagation stores the value � for program variable y after the
assume operations from the if statements in lines 4 and 7, and thus, also cannot
determine the value of z before the division is computed, and conservatively reports
that the division might fail.

Also the “predicated lattice” (without strengthening) from Sect. 16.5.1 is not pre-
cise enough to prove that a division by zero cannot occur. Although the analysis is
now path-sensitive with respect to the predicates, the constant propagation (which
can precisely interpret the multiplication) cannot determine the value of program
variable y, and the predicate analysis cannot determine the result of the multiplica-
tion, regardless of the predicates used.

The composite analysis with strengthening can transfer information from
the predicate abstract data states to the variable assignments of the constant-

16 Combining Model Checking and Data-Flow Analysis 523

Fig. 6 Example observer automaton with conditions

propagation analysis. At program location 10, we have the abstract data state
x= 1 ∧ z= 1 ∧ y≥ 1 ∧ y≤ 1 for the predicate analysis and {x �→ 1,y �→ �,

z �→ 1} for the constant-propagation analysis. Now, the composite analysis does
not store the direct product of these two abstract data states as a composite abstract
state, but first strengthens the variable assignment, in particular, of variable y: the
only value for y that satisfies the predicate abstract data state is 1, and therefore,
the new variable assignment after strengthening is {x �→ 1,y �→ 1,z �→ 1}. The
constant-propagation analysis can now compute a value not equal to � for program
variable z for the assignment from location 10 to 11, and thus, is able to prove the
program correct, i.e., that there is no division by zero.

16.5.3 Predicate Analysis + Explicit-Heap Analysis

Similarly to the analysis that incorporates the results of an inexpensive constant-
propagation analysis into a predicate analysis, we can enhance the analysis by us-
ing the result of the explicit-heap analysis. Of course, in order to keep the analysis
practically relevant, the threshold for the heap analysis should be small. This way,
information about the heap that is normally not tracked by the predicate analysis
can be fed to the predicate analysis via a composite strengthening operator, in order
to make the path decisions of the predicate analysis more precise. A combination
of an abstract domain with an explicit-heap analysis was used already in a differ-
ent context [19], where a symbolic abstract shape representation was extracted from
the explicit-heap results. The combination was shown to be able to verify more
programs than the component analyses alone. This direction of combinations of
program analyses is largely unexplored in the literature.

16.5.4 Predicate Analysis + Observer Automata

The following example observer automaton contains conditions at the transitions,
but the observer analysis from Sect. 16.4.7 is not able to respect the conditions.
After the motivating example, we introduce a combination analysis that is able to
consider the conditions during the state-space exploration.

Example 12 Let us consider a specification that requires the pre-condition x > 0 ∧
y < 0 to be fulfilled whenever function foo is called. Figure 6 shows an observer

524 D. Beyer et al.

automaton for this specification, with initial state qinit and error state qerr . The
observer automaton starts in control state qinit . As long as the exploration of the
program encounters only control-flow edges different from gfoo, the automaton stays
in control state qinit . Once a control-flow edge gfoo is taken in the exploration, our
observer automaton has to consider the conditions at the transitions for gfoo: if the
condition ψ = x > 0 ∧ y < 0 is fulfilled (specification satisfied) then the automaton
stays in (accepting) control state qinit , otherwise the observer automaton switches
to (non-accepting) control state qerr . The error state qerr is a sink state and thus the
explored program path will be rejected (because it violates the specification).

We construct a composite program analysis that runs both the predicate analysis
and the observer analysis as components. The resulting program analysis combines
the abstract data states in such a way that (1) it uses information from the predicate
analysis to determine the actual transition switch of the observer automaton, and
(2) it marks all paths through the program that violate the specification with the
control state qerr:

1. The composite domain D× = DP×DO is the product of the component domains
DP for the predicate analysis and DO for the observer analysis.

2. The transfer relation �× has the transfer (ϕ, (q,ψ))
g�×(ϕ′, (q ′,ψ ′))

if ϕ
g�Pϕ′, and (q,ψ)

g�O(q ′,ψ ′), and ↓P,O(ϕ′, (q ′,ψ ′)) is defined. The strength-
ening operator ↓P,O is defined only if ϕ′ ∧ ψ ′ is satisfiable, in which case it re-
turns ϕ′ ∧ ψ ′ as the abstract data state of the predicate analysis. In other words,
the strengthening operator (a) eliminates successors of the observer automaton
with conditions that contradict the abstract state of the predicate analysis and
(b) restricts the abstract state of the predicate analysis to those concrete states
that satisfy the condition of the observer automaton. The strengthening operator
is necessary because both (a) and (b) can be evaluated only after the successors
of all participating CPAs are known.

3. The merge operator keeps different abstract states separate: merge× = mergesep.
4. The termination check considers abstract states individually: stop× = stopsep.

Note on Soundness. The strengthening operator might replace the original abstract
state by a new abstract state that represents fewer concrete states. To guarantee
soundness of the composition program analysis, the observer automaton must not
restrict the program exploration of other analyses, i.e., for all control states q ∈ Q,
the disjunction of the conditions ψ ′

i of all transitions (q, (Di,ψ
′
i), qi) that leave

control state q must be equivalent to true.13

There are applications for which the soundness requirement is not desirable and
the automata are used to control (restrict) the program exploration of the other
analyses, for example, as used in test-goal automata [20] and error-witness au-
tomata [11, 26].

13This soundness requirement is easy to fulfill on the syntactical level by using a SPLIT operation
in the definition of transitions of the automaton. The transition syntax SPLIT(x > 0 ∧ y < 0, qinit ,
qerr), for example, defines the two transitions from control state qinit to qinit and to qerr (cf. Fig. 6).

16 Combining Model Checking and Data-Flow Analysis 525

16.6 Algorithms for Constructing Program Invariants

While the previous section focuses on abstract domains and how to practically com-
bine abstract domains from data-flow analysis with abstract domains from model
checking in a unifying, configurable framework, this section discusses different al-
gorithmic styles that are used to compute program invariants in data-flow analysis
and model checking.

The general idea is to construct a witness that proves the correctness or incor-
rectness of the program. To show that a program violates a property, an error path
(counterexample [34], exchangeable error witness [11]) is constructed. To show that
a program satisfies a property, a program invariant (main ingredient of a correct-
ness proof) is constructed; program invariants can be stored as certificates [70] or
exchangeable correctness witnesses [10]. The program invariants look different de-
pending on the algorithm that is used to construct it.

Both data-flow analysis and model checking construct over-approximations of
the reachable concrete states (Algorithm 1). For data-flow analysis, the program
invariant is a function reached, which assigns to each reachable program location
an over-approximation of all concrete data states that can occur at that location.
For model checking, the program invariant is a set reached, which contains a set
of abstract states that contain all concrete states of the program (possibly many
abstract states for the same program location, depending on how path-sensitive the
analysis is).

If the program invariant is computed via a fixed-point iteration, then the pro-
gram invariant is called the solution for the fixed-point problem. In the follow-
ing, we describe different algorithmic approaches to compute program invariants
(fixed points).

16.6.1 Iterative and Monotonic Fixed-Point Approaches

The most commonly known and used algorithm for computing a program invariant
consists of an iteration that initializes the unknown program invariants to a lower
bound (or upper bound) of the abstract values and then updates them monotonically
to compute a least (or greatest) fixed point over the underlying abstract domain or
invariant language (cf. Sects. 16.2.2 and 16.3.2). This technique is used in various
standard approaches to data-flow analysis and model checking. One notable dimen-
sion for analyses in this category is whether the analysis is forward or backward.

Forward analyses start from pre-conditions and propagate them forward (iter-
atively across loops until a fixed point is reached) to compute invariants at vari-
ous program locations. Forward analyses have the advantage of not requiring the
code to be annotated with post-conditions and hence can generate invariants not
only for program verification but also for applications such as compiler optimiza-
tion. The key challenge in designing a forward analysis is to design abstract trans-
fer relations and merge operators (including join and widen) that can compute

526 D. Beyer et al.

over-approximations of strongest post-conditions (cf. Sect. 16.3.5). Such trans-
fer relations are known for a variety of abstract domains, including linear arith-
metic [41, 92], uninterpreted functions [57], combination of linear arithmetic and
uninterpreted functions [61], heap-shape domains [16, 45, 103], combination of
arithmetic and heap-shape domains [55], and quantified array properties [56].

Backward analyses typically require post-conditions to start with, but have the
advantage of being goal-directed. The key challenge in backward analysis is to
have an abduct procedure for computing under-approximations of weakest pre-
conditions (as opposed to forward abstract transfer relations, which perform over-
approximations of strongest post-conditions). Such procedures are known for some
abstract domains including linear arithmetic [62], uninterpreted functions [62], com-
binations of linear arithmetic and uninterpreted functions [60], and heap shapes [32].
Backward analyses have received less attention in terms of research projects com-
pared to forward analyses, but become more important in the context of combination
of forward and backward reachability analysis [119].

Another notable dimension for analyses in this category is the order of itera-
tion (cf. Sect. 16.3.5). In Algorithm 2, the iteration order is encoded in the operator
choose, which selects the next abstract state to explore from the set waitlist of ab-
stract states that are still to be processed. Besides the two simple graph-traversal or-
ders depth-first search (DFS) and breadth-first search (BFS), there are many possible
implementations of the choose operator, such as random order, chaotic order [29],
post-order, reverse post-order [22], topological order, and many more (e.g., [88]).

16.6.2 Counterexample-Guided Abstraction Refinement

One of the challenges in data-flow analysis and model checking is to automatically
construct an abstract model of a program, or more precisely, the level of abstraction
for a given abstract domain. Many classic analyses hard-wire the abstraction level
into the abstract domain, but the precision of the analysis can also be treated as a
separate concern [18]. For example, if the abstract domain is taken from constant
propagation, then the precision can be a set of variables and determine which vari-
ables are tracked; if the abstract domain is predicate abstraction, the precision is the
set of predicates that are tracked.

The problem of computing an appropriate precision can be solved by counter-
example-guided abstraction refinement (CEGAR) [34]. This technique works or-
thogonally to the above-mentioned iteration techniques. The analysis approach (e.g.,
iterative) starts with a coarse precision (very abstract model), and successively re-
fines the abstract model by adding information to the precision. If the analysis finds
a violation of the property to be verified, then the abstract error path is analyzed. If
the abstract error path represents a concrete error path (executable violation), then
the analysis can stop and report the violation. If the abstract error path does not
represent a concrete error path (infeasible path) then that path was found due to a
too-coarse (too imprecise) abstract model, and the abstract error path can be used

16 Combining Model Checking and Data-Flow Analysis 527

to find out what information is necessary to track in the abstract model in order to
eliminate this abstract error path from further explorations. The extracted informa-
tion is added to the precision, the set of reached abstract states is updated, and the
analysis continues.

While CEGAR is most popular for predicate analysis, the technique has also been
explored for value analysis [24, 96] and symbolic execution [23]. There are several
techniques to extract information from counterexamples, for example, extraction
from syntax and weakest pre-conditions using a set of heuristics [4, 13, 21, 35],
using Craig interpolation [13, 21, 42, 69], and using invariant synthesis [15]. More
details are provided in Chap. 14 on interpolation and in Chap. 13 on CEGAR.

16.6.3 Template- and Constraint-Based Approaches

Constraint-based approaches construct the program invariant by guessing a second-
order template for each necessary loop invariant such that the only unknowns in
the second-order template are first-order quantities. Then, the approach generates
constraints over those first-order unknowns (after substituting the guessed form into
the program invariant). The generated constraints are existentially quantified in the
first-order unknowns, but universally quantified in the program variables. The chal-
lenge of solving these constraints is to have a procedure to eliminate the universally
quantified variables from the constraints, and then solve the constraints for the exis-
tentially quantified variables by using some off-the-shelf constraint solver.

Consider the following example program:

Suppose we guess that the loop invariant that is required to prove the assertion is of
the form ax+by+ cn+d = 0, where a, b, c, and d are unknown integer constants.
Substituting this loop-invariant template into the program invariant for the above
program yields the following constraints for the loop head, where all program vari-
ables x, y, and n are universally quantified:

n> 0 ∧ x= 0 ∧ y= 1 ⇒ ax+ by+ cn+ d = 0

ax+ by+ cn+ d = 0 ∧ x= n ⇒ y= 2n+ 1

ax+ by+ cn+ d = 0 ∧ x �= n ⇒ (ax+ by+ cn+ d = 0)[x�→(x+1),y�→(y+2)].

Farkas’ lemma can be used to eliminate universally quantified variables from the
above constraint, thereby obtaining the following constraint:

c = 0 ∧ b + d = 0 ∧ 2b + a + c = 0 ∧ b �= 0.

An off-the-shelf first-order constraint solver may now generate the solution
a =−2, b = 1, d =−1, thereby yielding the invariant y = 2x + 1.

528 D. Beyer et al.

This kind of invariant-computation technique has been developed for a variety of
abstract domains including linear inequalities [104], disjunctions of linear inequal-
ities [58], non-linear inequalities [63, 105], combination of linear inequality and
uninterpreted functions [14], predicate abstraction [15, 59], and quantified invari-
ants [111]. The key component in the algorithms for these domains is often a novel
procedure to eliminate universal quantification.

16.6.4 Proof-Rule-Based Approaches

Approaches that are based on proof rules require the analysis designer to have a
good understanding of the design patterns (for loop behaviors) that occur in practice,
and then to develop proof rules for each of these design patterns. The beauty of this
approach is that it usually enables the analysis of program loops by simply reasoning
about their (loop-free) bodies in order to identify the appropriate design pattern and
apply the corresponding rule. The reasoning about loop-free code fragments can be
done using off-the-shelf SMT solvers. This approach has been applied for a variety
of program analyses, including symbolic computational-complexity analysis [64],
continuity analysis [33], and variable-bound analysis [54].

Example 13 If the transition system of a loop implies that x′ = x<< 1 ∧ x �= 0 or
x′ = x&(x− 1) ∧ x �= 0, then LSB(x) is a ranking function for that loop (where x
is any loop variable, x′ denotes the update to that loop variable, and LSB(x) returns
the least significant bit of x, and << and & represent bitwise-left-shift and bitwise-
and operators respectively) [64]. As another example, if the transition system of
a loop is of the form s1 ∨ s2, and r1 and r2 are ranking functions for s1 and s2,
respectively, and s1 (resp., s2) implies that r2 (resp., r1) is non-increasing, then the
number of iterations of the loop above is bounded by Max(0, r1)+Max(0, r2) [64].
Note that these judgments about loop properties require discharging standard SMT
queries that are constructed using transition systems that represent loop-free code
fragments.

16.6.5 Iterative, but Non-monotonic Approaches

There are techniques for computing fixed points that are iterative and converging,
but have non-monotonic progress towards a fixed-point solution [50]. In each of the
two techniques that we explain below, the non-monotonic iteration has the unifying
property that the distance between the iterated abstract states and a fixed-point so-
lution (according to some underlying distance measure) decreases in each iteration
(as in the case of Newton’s method for computing the roots of an equation).

Probabilistic Inference. Inspired by techniques from machine learning, we can pose
the problem of computing a program invariant as an inference in probabilistic graph

16 Combining Model Checking and Data-Flow Analysis 529

models, which allows the use of probabilistic inference techniques like belief prop-
agation, in order to perform the fixed-point computation. This technique requires us
to develop appropriate distance measures between any two abstract states of an ab-
stract domain (which traditionally is equipped with only a partial order) to guide the
progress of the probabilistic inference algorithm. This technique has been applied to
discovering disjunctive quantifier-free invariants on numerical programs [53]. The
algorithm iteratively selects a program location randomly and updates the current
abstract state to make it more locally consistent with respect to the abstractions at
the neighboring program locations (as per the underlying distance measure, until
convergence). Interestingly, this simple algorithm was shown to converge in a few
rounds for the chosen benchmark examples, yielding the desired invariants. The dis-
tance measure, for a pair of abstract states e1 and e2, was chosen to be proportional
to the number of pairs (i, j) such that ei

1 does not imply e
j

2 , where
∨n

i=1 ei
1 is the

disjunctive normal form representation of e1 and
∧m

j=1 e
j

2 is the conjunctive normal

form representation of e2. (Note that if e1 implies e2 then each ei
1 implies each e

j

2 .)
Observe that the local inconsistency of the abstract state at a program location is
thus a monotonic measure of the set of abstract states that are not consistent with
the abstract states at the neighboring program locations.

Learning. Inspired by techniques from concept learning, we can pose the problem of
computing a program invariant as an instance of algorithmic learning that requires
an oracle to answer simpler questions about the invariant, such as whether a given in-
variant is the desired one (equivalence question), or whether a given state is a model
of the desired invariant (membership question). This technique has been applied to
discover quantifier-free invariants [76] as well as quantified invariants [83].

16.6.6 Comparison with Standard Recurrence Solving

The three techniques “iterative monotonic,” “template-based,” and “proof-rule-
based” for computing program invariants bear striking similarity to the three stan-
dard techniques that have long been known in the area of algorithms for generating
closed form upper/lower approximations for recurrences [37]. A recurrence is an
equation or inequality that describes a function in terms of its value on smaller in-
puts. Recurrences are useful to describe the run time of recursive algorithms.

Substitution Method. The substitution method guesses the template of the solution
and then generates constraints (over the first-order unknowns in the guessed tem-
plate) after substituting the guessed template into the recurrence relation. Any solu-
tion to the generated constraints is a valid solution to the recurrence relation. This
method is powerful, but requires a template of the answer to be guessed, which takes
experience and sometimes requires creativity.

530 D. Beyer et al.

Example 14 Consider the problem of computing a closed form solution for the re-
currence T (n) = T (n − 1) + 6n with the boundary condition T (1) = 2. Suppose
we guess that the solution is of the form T (n) = an3 + bn2 + cn + d , for some (un-
known) constants a, b, c, and d . Substituting the guessed form into the recurrence
relation and the boundary conditions yields the following constraints:

an3 + bn2 + cn+ d ≡ a(n− 1)3 + b(n− 1)2 + c(n− 1) + d + 6n,

a + b + c + d ≡ 2.

These constraints imply a = 0, c = b = 3, and d = −4. This yields the solution
T (n) = 3n2 + 3n− 4.

Iteration Method. The idea of the iteration method is to expand (iterate) the recur-
rence and express it as a sum of terms that are dependent only on n and the initial
conditions. Techniques for evaluating sums can then be used to provide bounds on
the solution.

Example 15 Consider the recurrence T (n) = 3T (�n/4�)+ n. We iterate it and then
express it as a summation as follows (using the observation that the sub-problem
size hits n = 1 when i exceeds log4 n):

T (n) = n+ 3T
(�n/4�)

= n+ 3
(�n/4� + 3T

(�n/16�))

= n+ 3
(�n/4� + 3

(�n/16� + 3T
(�n/64�)))

= n+ 3 �n/4� + 9 �n/16� + 27T �n/64�
≤ n+ 3n/4 + 9n/16 + 27n/64 + · · · + 3log4 nΘ(1)

≤ n

∞∑

i=0

(3/4)i +Θ
(
nlog4 3)

= 4n+ o(n)

= O(n).

Master Method. The master method relies on the following theorem, which provides
a case-based method for solving recurrences of the form T (n) = aT (n/b) + f (n).

Theorem 1 (Master Theorem [37]) Let a ≥ 1 and b > 1 be constants, let f (n) be
a function, and let T (n) be defined on the non-negative integers by the recurrence

T (n) = aT (n/b) + f (n)

where we interpret n/b to mean either �n/b� or �n/b . Then, T (n) can be bounded
asymptotically as follows:

16 Combining Model Checking and Data-Flow Analysis 531

1. If f (n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).
2. If f (n) = Θ(nlogb a) then T (n) = Θ(nlogb a lgn).
3. If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if a · f (n/b) ≤ c · f (n) for

some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n)).

Example 16 (Using the Master Method [37]) To use the master method, we simply
need to determine which case (if any) of the master theorem matches the given
recurrence relation. For example, for the recurrence T (n) = 9T (n/3) + n, we have
a = 9, b = 3, f (n) = n, and thus nlogb a = Θ(n2). Since f (n) = O(nlog3 9−ε), where
ε = 1, we can apply Case 1 of the master theorem to conclude that T (n) = Θ(n2).

Connections. The substitution method for solving recurrences is quite similar to the
template-based method for program invariant generation. The iteration method for
solving recurrences is similar to the iterative monotonic techniques for invariant
generation in that both require iteration (or unrolling) of the underlying recursive
system of equations to perform an appropriate generalization. The master method
for solving recurrences is in the same category as the proof-rule-based method for
invariant generation since both involve (manually) establishing non-trivial theorems
to allow easy automated reasoning of most instances by simply requiring a match-
ing engine to match the given instance against an existing small collection of general
rules. It is heartening to observe that two different communities have ended up dis-
covering similar classes of useful techniques for reasoning about recursive systems!

16.6.7 Discussion

We now briefly discuss the advantages and disadvantages of the different techniques.
The iterative monotonic techniques have been the most popular choice in the

domains of data-flow analysis and model checking, primarily because they are the
oldest and most well-understood techniques. These techniques have also been very
successful because they generally allow for selecting the right trade-off between
precision and scalability.

The CEGAR algorithm is popular mainly in model checking; it is not applicable
to path-insensitive data-flow analysis, because if a property violation is found, then
an error path needs to be constructed. The technique is orthogonal to the algorithm
that constructs the program invariant—it only requires a notion of precision in order
to determine and adjust the abstraction level of the analysis.

Template-based techniques are generally the least scalable because they often in-
volve the use of sophisticated constraint solvers; they are not successful in practice if
used in isolation because of the scaling problem. However, these techniques are most
effective in analyzing sophisticated properties of small programs, and can be practi-
cable if applied to smaller sub-problems in a larger verification setting, such as com-
puting invariants for path programs [15] during the verification of large programs.
The techniques also have further enabled synthesis of small programs [74, 112].

532 D. Beyer et al.

Proof-rule-based techniques are the most scalable, and have been applied to the
analysis of large programs; they are limited in applicability because they require the
existence and knowledge of a small set of design patterns that occur in the programs
to be analyzed. When applicable, proof-rule-based techniques might be the best
choice (just as the master method is the most popular choice for analyzing the run
time of standard recursive algorithms as found in textbooks).

Probabilistic inference and learning-based techniques are not yet widely used,
and it remains to be seen whether they can produce new impactful results in the
area of program verification. Their true strength may lie in dealing with noisy or
under-specified systems, and especially in the synthesis of systems.

16.7 Combinations in Tool Implementations

During recent years, combining approaches from data-flow analysis and model
checking became state-of-the-art in tool implementations. To witness this devel-
opment, we give an overview of the techniques and features that modern software
verifiers implement. As a reference collection of tools for software verification, we
refer to the Competition on Software Verification. In 2014, a total of 15 verifiers
participated in the competition (including demo track); detailed results are available
in the competition report [6] and on the competition web site.14

Table 1 lists the features and technologies that are used in the verification
tools. This illustrates that techniques from data-flow analysis and model check-
ing are combined to achieve better results: Counterexample-guided abstraction re-
finement (CEGAR, cf. Chap. 13, [34]), predicate abstraction (cf. Chap. 15, [52]),
bounded model checking (BMC, cf. Chap. 10, [27]), abstract reachability graphs
(ARGs, cf. [13]), lazy abstraction (cf. [16, 71]), interpolation for predicate re-
finement (cf. Chap. 14, [69]), and termination checking via ranking functions
(cf. Chap. 15, [98]) are typical examples of techniques contributed by the model-
checking community. Value analysis (similar to constant propagation, cf. [24]), in-
terval analysis (cf. [94]), and shape analysis (cf. [32, 45, 75, 103]) are typical exam-
ples of abstract domains from the data-flow community.

16.8 Conclusion

In theory, there is no difference in expressive power between data-flow analysis
and model checking. This chapter describes the paradigmatic and practical differ-
ences of the two approaches, which are relevant especially for precision and per-
formance characteristics. The unifying formal framework of configurable program

14http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/

16 Combining Model Checking and Data-Flow Analysis 533

Table 1 Techniques that current verification tools implement (adapted from [6])

Verification tool C
E

G
A

R

Pr
ed

ic
at

e
ab

st
ra

ct
io

n

B
ou

nd
ed

m
od

el
ch

ec
ki

ng

E
xp

lic
it-

va
lu

e
an

al
ys

is

In
te

rv
al

an
al

ys
is

Sh
ap

e
an

al
ys

is

A
R

G
-b

as
ed

an
al

ys
is

L
az

y
ab

st
ra

ct
io

n

In
te

rp
ol

at
io

n

R
an

ki
ng

fu
nc

tio
ns

APROVE [51] ✓

BLAST [13, 109] ✓ ✓ ✓ ✓ ✓

CBMC [85] ✓

CPALIEN [91] ✓ ✓

CPACHECKER [21, 87] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CSEQ [72, 117] ✓

ESBMC [90] ✓

FUNCTION [118] ✓ ✓

FRANKENBIT [66] ✓ ✓

LLBMC [48] ✓

PREDATOR [46] ✓

SYMBIOTIC [110]

T2 [30] ✓ ✓ ✓ ✓ ✓ ✓ ✓

TAN [84] ✓ ✓ ✓ ✓ ✓ ✓

THREADER [99] ✓ ✓ ✓ ✓

UFO [65] ✓ ✓ ✓ ✓ ✓ ✓ ✓

ULTIMATE [47, 67, 68] ✓ ✓ ✓ ✓ ✓

analysis makes the differences explicit. This framework enables an easy combina-
tion of abstract domains, no matter whether they were invented for data-flow anal-
ysis or for model checking. Several examples demonstrate that the combination of
abstract domains designed for data-flow analysis with abstract domains designed
for software model checking improves both effectiveness (precision) and efficiency
(performance) of such analyses. The new, configurable combinations make it pos-
sible to plug together composite program analyses that are strictly more powerful
than the component analyses. The chapter also provides an overview of the different
flavors of algorithms for computing the same solution: program invariants. There
are several different approaches, originating from different research communities,
and combinations have a large potential for further improving the state of the art.
Modern tools for software verification—as witnesses of our considerations—almost
always combine techniques from data-flow analysis with techniques from model
checking.

534 D. Beyer et al.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-

Wesley, Reading (1986)
3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstractions for model check-

ing C programs. In: Margaria, T., Yi, W. (eds.) Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 2031, pp. 268–283. Springer,
Heidelberg (2001)

4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis.
In: Launchbury, J., Mitchell, J.C. (eds.) Symp. on Principles of Programming Languages
(POPL), pp. 1–3. ACM, New York (2002)

5. Ball, T., Rajamani, S.K.: SLIC: a specification language for interface checking (of C). Tech.
Rep. MSR-TR-2001-21, Microsoft Research (2002)

6. Beyer, D.: Status report on software verification (competition summary SV-COMP 2014). In:
Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg
(2014)

7. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating tests from
counterexamples. In: Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.) Intl. Conf. on
Software Engineering (ICSE), pp. 326–335. IEEE, Piscataway (2004)

8. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST query lan-
guage for software verification. In: Giacobazzi, R. (ed.) Intl. Symp. on Static Analysis (SAS).
LNCS, vol. 3148, pp. 2–18. Springer, Heidelberg (2004)

9. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model check-
ing via large-block encoding. In: Formal Methods in Computer Aided Design (FMCAD),
pp. 25–32. IEEE, Piscataway (2009)

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchanging ver-
ification results between verifiers. In: Intl. Symp. on Foundations of Software Engineering
(FSE). ACM, New York (2016)

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation and
stepwise testification across software verifiers. In: Nitto, E.D., Harman, M., Heymans, P.
(eds.) Intl. Symp. on Foundations of Software Engineering (FSE), pp. 721–733. ACM, New
York (2015)

12. Beyer, D., Fararooy, A.: A simple and effective measure for complex low-level dependencies.
In: Intl. Conf. on Program Comprehension (ICPC), pp. 80–83. IEEE, Piscataway (2010)

13. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.
Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007)

14. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for com-
bined theories. In: Cook, B., Podelski, A. (eds.) Intl. Conf. on Verification, Model Checking
and Abstract Interpretation (VMCAI). LNCS, vol. 4349, pp. 378–394. Springer, Heidelberg
(2007)

15. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: Ferrante, J.,
McKinley, K.S. (eds.) Conf. on Programming Language Design and Implementation (PLDI),
pp. 300–309. ACM, New York (2007)

16. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones, R.B.
(eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 532–546.
Springer, Heidelberg (2006)

17. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: concretizing
the convergence of model checking and program analysis. In: Damm, W., Hermanns, H.
(eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4590, pp. 504–518.
Springer, Heidelberg (2007)

16 Combining Model Checking and Data-Flow Analysis 535

18. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjust-
ment. In: Intl. Conf. on Automated Software Engineering (ASE), pp. 29–38. IEEE, Piscat-
away (2008)

19. Beyer, D., Henzinger, T.A., Théoduloz, G., Zufferey, D.: Shape refinement through explicit
heap analysis. In: Rosenblum, D.S., Taentzer, G. (eds.) Intl. Conf. on Fundamental Ap-
proaches to Software Engineering (FASE). LNCS, vol. 6013, pp. 263–277. Springer, Hei-
delberg (2010)

20. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Information reuse for multi-goal reachabil-
ity analyses. In: Felleisen, M., Gardner, P. (eds.) European Symp. on Programming (ESOP).
LNCS, vol. 7792, pp. 472–491. Springer, Heidelberg (2013)

21. Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software verification.
In: Gopalakrishnan, G., Qadeer, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011)

22. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block en-
coding. In: Bloem, R., Sharygina, N. (eds.) Formal Methods in Computer Aided Design
(FMCAD), pp. 189–197 (2010)

23. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Intl. Conf. on Verified Soft-
ware: Theories, Tools, and Experiments (VSTTE). LNCS. Springer, Heidelberg (2016)

24. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpola-
tion. In: Cortellessa, V., Varró, D. (eds.) Intl. Conf. on Fundamental Approaches to Software
Engineering (FASE). LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013)

25. Beyer, D., Stahlbauer, A.: BDD-based software model checking with CPACHECKER. In:
Kucera, A., Henzinger, T.A., Nesetril, J., Vojnar, T., Antos, D. (eds.) Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science (MEMICS). LNCS, vol. 7721,
pp. 1–11. Springer, Heidelberg (2013)

26. Beyer, D., Wendler, P.: Reuse of verification results: conditional model checking, precision
reuse, and verification witnesses. In: Bartocci, E., Ramakrishnan, C.R. (eds.) Intl. Sympo-
sium on Model Checking of Software (SPIN). LNCS, vol. 7976, pp. 1–17. Springer, Heidel-
berg (2013)

27. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, R. (ed.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

28. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: Conf. on Programming Language
Design and Implementation (PLDI), pp. 196–207. ACM, New York (2003)

29. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner, D., Broy,
M., Pottosin, I.V. (eds.) Formal Methods in Programming and Their Applications. LNCS,
vol. 735, pp. 128–141. Springer, Heidelberg (1993)

30. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooperation. In:
Sharygina, N., Veith, H. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 8044, pp. 413–429. Springer, Heidelberg (2013)

31. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. C-35(8), 677–691 (1986)

32. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: Symp. on Principles of Programming Languages (POPL),
pp. 289–300. ACM, New York (2009)

33. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
Hermenegildo, M.V., Palsberg, J. (eds.) Symp. on Principles of Programming Languages
(POPL), pp. 57–70. ACM, New York (2010)

34. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

536 D. Beyer et al.

35. Clarke, E.M., Kröning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstrac-
tion for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 3440, pp. 570–574.
Springer, Heidelberg (2005)

36. Codish, M., Mulkers, A., Bruynooghe, M., de la Banda, M.G., Hermenegildo, M.: Improving
abstract interpretations by combining domains. In: ACM Workshop on Partial Evaluation and
Program Manipulation (PEPM), pp. 194–205. ACM, New York (1993)

37. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cam-
bridge (1990)

38. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for the static analy-
sis of programs by construction or approximation of fixpoints. In: Symp. on Principles of
Programming Languages (POPL), pp. 238–252. ACM, New York (1977)

39. Cousot, P., Cousot, R.: Systematic design of program-analysis frameworks. In: Aho, A.V.,
Zilles, S.N., Rosen, B.K. (eds.) Symp. on Principles of Programming Languages (POPL),
pp. 269–282. ACM, New York (1979)

40. Cousot, P., Cousot, R.: Formal language, grammar, and set-constraint-based program anal-
ysis by abstract interpretation. In: Intl. Conf. on Functional Programming Languages and
Computer Architecture (FPCA), pp. 170–181. ACM, New York (1995)

41. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Symp. on Principles of Programming Languages (POPL), pp. 84–96. ACM,
New York (1978)

42. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log.
22(3), 250–268 (1957)

43. Damas, L., Milner, R.: Principal type schemes for functional languages. In: Symp. on Prin-
ciples of Programming Languages (POPL), pp. 207–212. ACM, New York (1982)

44. Dams, D., Namjoshi, K.S.: Orion: high-precision methods for static error analysis of C and
C++ programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Intl.
Symp. on Formal Methods for Components and Objects (FMCO). LNCS, vol. 4111, pp. 138–
160. Springer, Heidelberg (2005)

45. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manipulation.
In: Logozzo, F., Fähndrich, M. (eds.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 7935,
pp. 215–237. Springer, Heidelberg (2013)

46. Dudka, K., Peringer, P., Vojnar, T.: Predator: a shape analyzer based on symbolic memory
graphs (competition contribution). In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 8413,
pp. 412–414. Springer, Heidelberg (2014)

47. Ermis, E., Nutz, A., Dietsch, D., Hoenicke, J., Podelski, A.: Ultimate Kojak (competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 421–423.
Springer, Heidelberg (2014)

48. Falke, S., Merz, F., Sinz, C.L.: Improved bounded model checking of C programs using
LLVM (competition contribution). In: Piterman, N., Smolka, S.A. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 7795,
pp. 623–626. Springer, Heidelberg (2013)

49. Fischer, J., Jhala, R., Majumdar, R.: Joining data flow with predicates. In: Intl. Symp. on
Foundations of Software Engineering (FSE), pp. 227–236. ACM, New York (2005)

50. Geser, A., Knoop, J., Lüttgen, G., Rüthing, O., Steffen, B.: Non-monotone fixpoint iterations
to resolve second-order effects. In: Gyimóthy, T. (ed.) Intl. Conf. on Compiler Construction
(CC). LNCS, vol. 1060, pp. 106–120. Springer, Heidelberg (1996)

51. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in
the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) Intl. Joint Conf. on Au-
tomated Reasoning (IJCAR). LNAI, vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

16 Combining Model Checking and Data-Flow Analysis 537

52. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1254, pp. 72–83. Springer,
Heidelberg (1997)

53. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: Hofmann, M.,
Felleisen, M. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 277–289.
ACM, New York (2007)

54. Gulwani, S., Juvekar, S.: Bound analysis using backward symbolic execution. Tech. Rep.
MSR-TR-2009-156, Microsoft Research (2009)

55. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: Shao, Z., Pierce, B.C. (eds.) Symp. on Principles of Programming Languages (POPL),
pp. 239–251. ACM, New York (2009)

56. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: Necula, G.C., Wadler, P. (eds.) Symp. on Principles of Programming Languages
(POPL), pp. 235–246. ACM, New York (2008)

57. Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value numbering. In:
Giacobazzi, R. (ed.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 3148, pp. 212–227.
Springer, Heidelberg (2004)

58. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In:
Gupta, R., Amarasinghe, S.P. (eds.) Conf. on Programming Language Design and Imple-
mentation (PLDI), pp. 281–292. ACM, New York (2008)

59. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over pred-
icate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) Intl. Conf. on Verification, Model
Checking and Abstract Interpretation (VMCAI). LNCS, vol. 5403, pp. 120–135. Springer,
Heidelberg (2009)

60. Gulwani, S., Tiwari, A.: Assertion checking over combined abstraction of linear arithmetic
and uninterpreted functions. In: Sestoft, P. (ed.) European Symp. on Programming (ESOP).
LNCS, vol. 3924, pp. 279–293. Springer, Heidelberg (2006)

61. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Schwartzbach, M.I., Ball, T.
(eds.) Conf. on Programming Language Design and Implementation (PLDI), pp. 376–386.
ACM, New York (2006)

62. Gulwani, S., Tiwari, A.: Assertion checking unified. In: Cook, B., Podelski, A. (eds.)
Intl. Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI). LNCS,
vol. 4349, pp. 363–377. Springer, Heidelberg (2007)

63. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta,
A., Malik, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 5123,
pp. 190–203. Springer, Heidelberg (2008)

64. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: Zorn, B.G., Aiken, A. (eds.)
Conf. on Programming Language Design and Implementation (PLDI), pp. 292–304. ACM,
New York (2010)

65. Gurfinkel, A., Albarghouthi, A., Chaki, S., Li, Y., Chechik, M.U.: Verification with inter-
polants and abstract interpretation (competition contribution). In: Piterman, N., Smolka, S.A.
(eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 7795, pp. 637–640. Springer, Heidelberg (2013)

66. Gurfinkel, A., Belov, A.: FrankenBit: bit-precise verification with many bits (competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 408–411.
Springer, Heidelberg (2014)

67. Heizmann, M., Christ, J., Dietsch, D., Hoenicke, J., Lindenmann, M., Musa, B., Schilling,
C., Wissert, S., Podelski, A.: Ultimate Automizer with unsatisfiable cores (competition con-
tribution). In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 418–420. Springer,
Heidelberg (2014)

538 D. Beyer et al.

68. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso programs.
In: Hung, D.V., Ogawa, M. (eds.) Intl. Symp. Automated Technology for Verification and
Analysis (ATVA). LNCS, vol. 8172, pp. 365–380. Springer, Heidelberg (2013)

69. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
Damm, W., Hermanns, H. (eds.) Symp. on Principles of Programming Languages (POPL),
pp. 232–244. ACM, New York (2004)

70. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.: Temporal-
safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-
Aided Verification (CAV). LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002)

71. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Launchbury, J.,
Mitchell, J.C. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 58–70.
ACM, New York (2002)

72. Inverso, O., Tomasco, E., Fischer, B., Torre, S.L., Parlato, G.: Lazy-CSeq: a lazy sequen-
tialization tool for C (competition contribution). In: Ábrahám, E., Havelund, K. (eds.) Intl.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 8413, pp. 398–401. Springer, Heidelberg (2014)

73. Johannes, K., Helmut, V.: JAKSTAB: a static analysis platform for binaries. In: Gupta, A., Ma-
lik, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 5123, pp. 423–
427. Springer, Heidelberg (2008)

74. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program syn-
thesis. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) Intl. Conf. on Software
Engineering (ICSE), pp. 215–224. ACM, New York (2010)

75. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data-flow analysis and
programs with recursive data structures. In: Symp. on Principles of Programming Languages
(POPL), pp. 66–74. ACM, New York (1982)

76. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants by algorithmic learning, decision
procedures, and predicate abstraction. In: Barthe, G., Hermenegildo, M.V. (eds.) Intl. Conf.
on Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 5944,
pp. 180–196. Springer, Heidelberg (2010)

77. Kam, J., Ullman, J.: Global data-flow analysis and iterative algorithms. J. ACM 23(1), 158–
171 (1976)

78. Kennedy, K.: A survey of data-flow analysis techniques. In: Jones, N.D., Muchniek, S.S.
(eds.) Program Flow Analysis: Theory and Applications, pp. 5–54. Prentice Hall, New York
(1981)

79. Klein, M., Knoop, J., Koschützki, D., Steffen, B.: DFA&OPT-METAFrame: a tool kit for
program analysis and optimization. In: Margaria, T., Steffen, B. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 1055,
pp. 422–426. Springer, Heidelberg (1996)

80. Knoop, J., Rüthing, O., Steffen, B.: Towards a tool kit for the automatic generation of inter-
procedural data-flow analyses. J. Program. Lang. 4(4), 211–246 (1996)

81. Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. In: Conf. on Programming Language
Design and Implementation (PLDI). ACM, New York (1992)

82. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145 (1968)
83. Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically inferring quantified in-

variants via algorithmic learning from simple templates. In: Ueda, K. (ed.) Asian Symp. on
Programming Languages and Systems (APLAS). LNCS, vol. 6461, pp. 328–343 (2010)

84. Kröning, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.: Termination analysis with com-
positional transition invariants. In: Touili, T., Cook, B., Jackson, P. (eds.) Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg
(2010)

85. Kröning, D., Tautschnig, M.: CBMC: C bounded model checker (competition contribution).
In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 389–391. Springer, Heidelberg
(2014)

16 Combining Model Checking and Data-Flow Analysis 539

86. Lewis, P., Rosenkrantz, D., Stearns, R.: Compiler Design Theory. Addison-Wesley, Reading
(1976)

87. Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination of explicit-
value analyses and predicate analyses (competition contribution). In: Ábrahám, E., Havelund,
K. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 8413, pp. 392–394. Springer, Heidelberg (2014)

88. Mohnen, M.: A graph-free approach to data-flow analysis. In: Horspool, R.N. (ed.) Intl. Conf.
on Compiler Construction (CC). LNCS, vol. 2304, pp. 46–61. Springer, Heidelberg (2002)

89. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundancies. Com-
mun. ACM 22(1) (1979)

90. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 405–407.
Springer, Heidelberg (2014)

91. Muller, P., Vojnar, T.: CPAlien: shape analyzer for CPAchecker (competition contribution).
In: Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 395–397. Springer, Heidelberg
(2014)

92. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: Jones,
N.D., Leroy, X. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 330–
341. ACM, New York (2004)

93. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: Paul, M., Robinet, B.
(eds.) European Symp. on Programming (ESOP). LNCS, vol. 167, pp. 217–228. Springer,
Heidelberg (1984)

94. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg
(1999)

95. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type Theory. Oxford
University Press, Oxford (1990)

96. Pasareanu, C.S., Dwyer, M.B., Visser, W.: Finding feasible counter-examples when model
checking abstracted Java programs. In: Margaria, T., Yi, W. (eds.) Intl. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2031, pp. 284–
298. Springer, Heidelberg (2001)

97. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
98. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking func-

tions. In: Steffen, B., Levi, G. (eds.) Intl. Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI). LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)

99. Popeea, C., Rybalchenko, A.: Threader: a verifier for multi-threaded programs (competition
contribution). In: Piterman, N., Smolka, S.A. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 7795, pp. 633–636.
Springer, Heidelberg (2013)

100. Reps, T.W., Horwitz, S., Sagiv, M.: Precise interprocedural data-flow analysis via graph
reachability. In: Cytron, R.K., Lee, P. (eds.) Symp. on Principles of Programming Languages
(POPL), pp. 49–61. ACM, New York (1995)

101. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant computa-
tions. In: Symp. on Principles of Programming Languages (POPL), pp. 12–27. ACM, New
York (1988)

102. Rothermel, G., Harrold, M.: Analyzing regression test selection techniques. IEEE Trans.
Softw. Eng. 22(8), 529–551 (1996)

103. Sagiv, M., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

104. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis.
In: Giacobazzi, R. (ed.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 3148, pp. 53–68.
Springer, Heidelberg (2004)

540 D. Beyer et al.

105. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant generation using
Gröbner bases. In: Symp. on Principles of Programming Languages (POPL), pp. 318–329.
ACM, New York (2004)

106. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. Allyn
& Bacon, Needham Heights (1986)

107. Schmidt, D.A.: Data-flow analysis is model checking of abstract interpretations. In: Symp.
on Principles of Programming Languages (POPL). ACM, New York (1998)

108. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract interpretations.
In: Levi, G. (ed.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 1503, pp. 351–380.
Springer, Heidelberg (1998)

109. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7 (competition con-
tribution). In: Flanagan, C., König, B. (eds.) Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 7214, pp. 525–527. Springer,
Heidelberg (2012)

110. Slaby, J., Strejcek, J.: Symbiotic 2: more precise slicing (competition contribution). In:
Ábrahám, E., Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 415–417. Springer, Heidelberg
(2014)

111. Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstrac-
tion. In: Conf. on Programming Language Design and Implementation (PLDI), pp. 223–234.
ACM, New York (2009)

112. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program synthesis.
In: Hermenegildo, M.V., Palsberg, J. (eds.) Symp. on Principles of Programming Languages
(POPL), pp. 313–326. ACM, New York (2010)

113. Steffen, B.: Data-flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.) Intl. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS,
vol. 536, pp. 346–365. Springer, Heidelberg (1991)

114. Steffen, B.: Generating data-flow analysis algorithms from modal specifications. Sci. Com-
put. Program. 21(2), 115–139 (1993)

115. Steffen, B.: Property-oriented expansion. In: Cousot, R., Schmidt, D.A. (eds.) Intl. Symp. on
Static Analysis (SAS). LNCS, vol. 1145, pp. 22–41. Springer, Heidelberg (1996)

116. Steffen, B., Claßen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis machine. In:
Lee, I., Smolka, S.A. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 962,
pp. 72–87. Springer, Heidelberg (1995)

117. Tomasco, E., Inverso, O., Fischer, B., Torre, S.L., Parlato, G.: MU-CSeq: sequentialization
of C programs by shared memory unwindings (competition contribution). In: Ábrahám, E.,
Havelund, K. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). LNCS, vol. 8413, pp. 402–404. Springer, Heidelberg (2014)

118. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions. In: Shao,
Z. (ed.) European Symp. on Programming (ESOP). LNCS, vol. 8410, pp. 412–431. Springer,
Heidelberg (2014)

119. Vizel, Y., Grumberg, O., Shoham, S.: Intertwined forward-backward reachability analysis
using interpolants. In: Piterman, N., Smolka, S.A. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 7795, pp. 308–323.
Springer, Heidelberg (2013)

120. Šerý, O.: Enhanced property specification and verification in BLAST. In: Chechik, M., Wirs-
ing, M. (eds.) Intl. Conf. on Fundamental Approaches to Software Engineering (FASE).
LNCS, vol. 5503, pp. 456–469. Springer, Heidelberg (2009)

	Chapter 16: Combining Model Checking and Data-Flow Analysis
	16.1 Introduction
	16.2 General Considerations
	16.2.1 Type Checking
	16.2.2 Data-Flow Analysis
	16.2.3 Model Checking

	16.3 Unifying Formal Framework/Comparison of Algorithms
	16.3.1 Preliminaries
	16.3.2 Algorithm of Data-Flow Analysis
	16.3.3 Algorithm of Model Checking
	16.3.4 Uniﬁed Algorithm Using Conﬁgurable Program Analysis
	16.3.5 Discussion
	16.3.6 Composition of Conﬁgurable Program Analyses

	16.4 Classic Examples (Component Analyses)
	16.4.1 Reachable-Code Analysis
	16.4.2 Constant Propagation
	16.4.3 Reaching Deﬁnitions
	16.4.4 Predicate Analysis
	16.4.5 Explicit-Heap Analysis
	16.4.6 BDD Analysis
	16.4.7 Observer Automata

	16.5 Combination Examples (Composite Analyses)
	16.5.1 Predicate Analysis + Constant Propagation
	16.5.2 Predicate Analysis + Constant Propagation + Strengthen
	16.5.3 Predicate Analysis + Explicit-Heap Analysis
	16.5.4 Predicate Analysis + Observer Automata

	16.6 Algorithms for Constructing Program Invariants
	16.6.1 Iterative and Monotonic Fixed-Point Approaches
	16.6.2 Counterexample-Guided Abstraction Reﬁnement
	16.6.3 Template- and Constraint-Based Approaches
	16.6.4 Proof-Rule-Based Approaches
	16.6.5 Iterative, but Non-monotonic Approaches
	16.6.6 Comparison with Standard Recurrence Solving
	16.6.7 Discussion

	16.7 Combinations in Tool Implementations
	16.8 Conclusion
	References

