
Reducer-Based Construction of Conditional Verifiers

Dirk Beyer
LMU Munich, Germany

Marie-Christine Jakobs∗

LMU Munich, Germany

Thomas Lemberger
LMU Munich, Germany

Heike Wehrheim∗

Paderborn University, Germany

ABSTRACT

Despite recent advances, software verification remains challenging.

To solve hard verification tasks, we need to leverage not just one

but several different verifiers employing different technologies.

To this end, we need to exchange information between verifiers.

Conditional model checking was proposed as a solution to exactly

this problem: The idea is to let the first verifier output a condition

which describes the state space that it successfully verified and to

instruct the second verifier to verify the yet unverified state space

using this condition. However, most verifiers do not understand

conditions as input.

In this paper, we propose the usage of an off-the-shelf construc-

tion of a conditional verifier from a given traditional verifier and a

reducer. The reducer takes as input the program to be verified and

the condition, and outputs a residual program whose paths cover

the unverified state space described by the condition. As a proof

of concept, we designed and implemented one particular reducer

and composed three conditional model checkers from the three

best verifiers at SV-COMP 2017. We defined a set of claims and

experimentally evaluated their validity. All experimental data and

results are available for replication.

CCS CONCEPTS

• Software and its engineering → Formal methods; Formal

software verification;

KEYWORDS

Conditional Model Checking, Formal Verification, Testing, Program

Analysis, Software Verification, Sequential Combination

ACM Reference Format:

Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, and Heike

Wehrheim. 2018. Reducer-Based Construction of Conditional Verifiers. In

Proceedings of the 40th International Conference on Software Engineering

(ICSE 2018). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3180155.3180259

∗This author was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre “On-The-Fly Computing" (SFB 901).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180259

1 INTRODUCTION

Software model checking [47] has received lots of attention in

academia and industry [2, 48] in the past two decades — yet, there

are many programs that are in principle verifiable, but no existing

verifier can solve them automatically. There are many different

approaches, but none is superior. The competition on software

verification (SV-COMP) [5] gives a yearly overview over the state of

the art, in terms of both strengths of verifiers on various categories

and weaknesses as shown by a large amount of unsolved problems.

One promising idea is to combine the strengths of different

verifiers by condition passing, which was formalized as conditional

model checking (CMC) [10] six years ago. The idea is simple and

effective: The first verifier reports what it had successfully verified

and summarizes its work done as a condition. The next verifier reads

the condition and verifies only the part of the state space not yet

covered by the condition. This technique was shown to be effective,

and sometimes even more efficient. Unfortunately, it is difficult

to write a verifier that can parse the complicated conditions and

effectively reduce the state space of the verifier. This complication

is responsible for the situation that the technique is not as widely

applied as it could be: only a few conditional model checkers exist.

To solve this problem, we developed an automatic construction

template that can be used to construct a conditional verifier from

a given arbitrary classical verifier. The original work proposed

to run a product analysis that guides the state-space exploration

such that it concentrates on the state space not covered by the

condition. We propose an alternative solution, inspired by earlier

work on conditional model checking and testing [35]: We define a

program reducer, which takes as input a program and a condition,

and computes a program whose executions are restricted to those

not yet covered by the given condition. Having developed this

component once, it is easy to construct a new conditional verifier

using the equation CMC = V ◦ R, where R is the reducer, V is an

arbitrary verifier, and ◦ is the sequential application of first R to a

given program and then V to the output program of R. The new
verifier CMC is a conditional verifier that takes as input a program

and a condition. Figure 1 illustrates this composition visually. There

can be different implementations of reducers, and the reducers

might leverage a notion of abstraction, causing the residual program

to be more compact but less precise. We implemented a reducer

that is based on a product construction, i.e., program and condition

Reducer Verifier
Program

Conditional Verifier

Program

Conditi
on

Result

Figure 1: Construction of a conditional verifier

1182

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

1 int val = nondet_int();
2 if (val >= 0) {
3 int out = val%2 * val%3;

}
else {

4 int out = -val;
}

5 assert (out >= 0);
6

(a) Source code

q0

q1

qf q2

q3

q4

(1,int val = nondet_int(), 2)

(2, val < 0, 4) (2, val >= 0, 3)

(3, int out = val%2 * val%3, 5)

(5, assert(out >= 0), 6)

*

(b) Condition

1 int val = nondet_int();
2 if (val >= 0) {
3 int out = val%2 * val%3;
4 assert (out >=0);
5 }
6 else
7 ;

(c) Residual program

Figure 2: Example: (a) fragment of a C program, (b) condition generated by CPAchecker with accepting states as double circles,

assumptions elided (all true), label * subsuming all control-flow edges, and (c) residual program constructed by Reducer

are converted into automata and the reduced product automaton is

converted back to a program.

In our study, we show that the constructionworks and is effective.

We do not claim that our implementation of the reducer is the best

possible, but we show for a number of verifiers how to increase the

number of obtained results with the reducer-based construction of

conditional verifiers. The approach can in some cases even reduce

the resource consumption.

Contributions.We make the following contributions:

• We provide a reducer that understands more extensive condi-

tions than a reducer that was previously used in the context

of conditional model checking and testing [35].

• We construct a number of conditional verifiers from existing

verifiers in order to experimentally show that new combina-

tions with condition passing can significantly increase the

number of verified programs.

• We apply the concept also to test-case generation and show

that the construction effectively works.

• Our reducer and all experimental data are available for other

researchers and practitioners for replication or to strengthen

their own verification infrastructure by using newly con-

structed conditional verifiers that were not available before.

2 CONDITION-BASED REDUCERS

The objective of our work is the construction of conditional veri-

fiers. Conditional verifiers are verification tools accepting programs

together with conditions as input. A conditional verifier should

check the parts of the program not covered by the condition. To

this end, we employ reducers constructing residual programs from

conditions. We start with giving a formal account of conditions and

reducers. In our notation, we follow previous work [11].

2.1 Foundations

Programs are represented by control-flow automata1 (CFAs) C =
(L, �0,G) that consist of a set of locations L, an initial location �0,
and a set of control-flow edgesG ⊆ L×Ops×L, whereOps is the set
1CFAs are a variant of control-flow graphs [1], with operations attached to the edges.

of operations. Intuitively, a program and its CFA are semantically

equivalent because the CFA contains exactly the operations of

the program on its control-flow edges and in exactly the same

order. Our construction of reducers relies on soundly converting

programs to CFAs and back within tools. We let C be the set of all

CFAs. In our presentation, we consider operations from a simple

programming language, with assume operations and assignments

on integer variables. Our implementation covers C programs.

We let X be the set of variables occurring in the operations

Ops . A concrete data state c is thus a mapping of X to Z. A

concrete program path of a CFA C = (L, �0,G) is a sequence

(c0, �0) −д1−→ . . . −дn−−→ (cn , �n) such that c0 assigns 0 to all variables,

дi = (�i−1,opi , �i) ∈ G, and ci−1 −opi−−→ ci , i.e., (a) in case of as-

sume operations, ci−1 |= opi (opi is the assumption) and ci−1 = ci ,
and (b) in case of assignments, ci = SPopi (ci−1), where SP is the
strongest-post operator of the operational semantics. From a con-

crete program path π = (c0, �0) −д1−→ . . . −дn−−→ (cn , �n), we can derive
an execution ex (π) = c0c1 . . . cn . We let path(C) be the set of all con-
crete program paths and ex (C) be the set of executions of a CFA C .
A CFAC is deterministic (and hence representable as a C program) if

the following holds for all � ∈ L, (�,op1, �1), (�,op2, �2) ∈ G: either
op1 = op2 and �1 = �2, or op1 is an assume operation and op1 ∧ op2
is unsatisfiable.

Conditions subsume the results of verification runs on programs.

A condition basically states which paths have been explored. In

addition, a condition might involve assumptions under which the

verifier has explored a certain path. Assumptions are given as state

conditions (from a set Φ). We write c |= φ to say that a concrete

state c satisfies a state condition φ.

Definition 2.1. A condition automaton (CA) (short: condition)

A = (Q, Σ,δ ,q0, F) consists of

• a finite set Q of states and an initial state q0 ∈ Q ,
• an alphabet Σ ⊆ 2G × Φ,
• a transition relation δ ⊆ Q × Σ ×Q , and
• a set F ⊆ Q of accepting states,

and satisfies the following well-formedness condition:

¬∃(qf , ∗,q) ∈ δ with qf ∈ F ∧ q � F .

1183

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

We let A be the set of condition automata. Accepting states

in conditions are used to describe paths of the CFA which have

already been successfully verified. Figure 2 shows an example C

program and a condition automaton as generated by CPAchecker .

The condition shows that the verifier explored the else-branch of

the if-statement (path leading to accepting stateqf) and successfully
verified the assertion to hold on that path. Due to the non-linear

arithmetic, the verifier could not handle the then-branch, which

hence appears in the automaton on a path not entering qf .

Definition 2.2. A condition automaton A = (Q, Σ,δ ,q0, F) covers

a path π = (c0, �0) −д1−→ (c1, �1) −д2−→ . . . −дn−−→ (cn , �n) if there is a run

ρ = q0 −(G1,φ1)−−−−−−→ q1 −(G2,φ2)−−−−−−→ . . . −(Gk ,φk)−−−−−−→ qk , 0 ≤ k ≤ n, in A, s.t.

(1) qk ∈ F ,
(2) ∀i, 1 ≤ i ≤ k : дi ∈ Gi , and

(3) ∀i, 1 ≤ i ≤ k : ci |= φi .

The task of a reducer is now the generation of a new program

that contains the paths of the original program except for (at most)

those already covered by the condition.

Definition 2.3. A reducer is a mapping red : C×A→ C satisfying

the following residual condition:

Res. ∀C ∈ C,∀A ∈ A :

ex (C) \ {ex (π) | A covers π } ⊆ ex (red (C,A)) ⊆ ex (C).

In the following, we refer to the output of a reducer as the residual

program. Note that the Identity relation on CFAs, i.e., red (C,A) =
C , is a reducer, though not a very effective one. Note also that –
contrary to Czech et al. [35] – the residual condition Res is not

specific to safety properties, i.e., unreachability of error locations.

It simply states a coverage property for the residual program. Our

definitions allow us to use conditions and reducers as a means

for various combinations of verifiers. As one example, both the

condition generating verifier A as well the condition processing

verifier B could be tools generating test vectors, and together they

manage to achieve complete code coverage. Tools A and B could,

on the other hand, also both be formal software verifiers proving

validity of assertions, and together they prove safety of the program.

2.2 Implementation

A reducer takes as input a program (in the form of a CFA) together

with a condition automaton and returns a residual program. Note

that the definition of reducers gives us some freedom in construct-

ing residual programs, in particular, there is more than one residual

program possible. Here, we will present one such reducer.

Our reducer builds upon the idea of Czech et al. [35]. It constructs

the residual program by means of a parallel composition of original

program and condition, cutting off paths whenever the condition

has reached an accepting state. The construction called Reducer

is given in Alg. 1. In contrast to Czech et al. [35], Alg. 1 employs

an additional residual state qr to subsume states that the condi-
tion automaton either has not investigated, or has investigated but

under a non-true assumption. Note that Czech et al. do not need

qr because they consider a restricted class of conditions, which,
e.g., only considers true assumptions. Depending on the condition,

the reduction might restructure the program as to isolate paths

which need to be cut off. In our example (Fig. 2), the generated

Algorithm 1 Reducer

Input: CFA C = (L, �0,G) � original program

CA A = (Q, Σ,δ ,q0, F) s.t. qr � Q � condition automaton

Output: CFA Cr = (Lr , �0,r ,Gr) � residual program

1: Lr := {(�0,q0)}; �0,r := (�0,q0); Gr := ∅;
2: waitlist := Lr ;
3: while waitlist � ∅ do
4: choose (�1,q1) ∈ waitlist; remove (�1,q1) from waitlist;

5: for each д = (�1,op, �2) ∈ G do

6: if q1 ∈ Q ∧ ∃(q1, (G1, true),q2) ∈ δ s.t. д ∈ G1 then

7: for each (q1, (G1, true),q2) ∈ δ s.t. д ∈ G1 do

8: if q2 � F ∧ (�2,q2) � Lr then
9: waitlist := waitlist ∪ {(�2,q2)};
10: Lr := Lr ∪ {(�2,q2)};
11: Gr := Gr ∪

{(
(�1,q1),op, (�2,q2)

)}
;

12: else

13: if (�2,qr) � Lr then
14: waitlist := waitlist ∪ {(�2,qr)};
15: Lr := Lr ∪ {(�2,qr)};
16: Gr := Gr ∪

{(
(�1,q1),op, (�2,qr)

)}
;

17: return Cr

condition describes that paths taking the else-branch have been

successfully verified while paths taking the then-branch still need

to be explored. Hence, the reducer generates a residual program

where the assertion is moved inside the then-branch so as to ensure

that the assertion need not be checked again for the else-branch.

Theorem 2.4. Algorithm Reducer is a reducer.

Proof. Assume C,A,Cr as used in Alg. 1. We have to show

ex (C) \ {ex (π) | A covers π } ⊆ ex (Cr) ⊆ ex (C).
We separately look at the two set inclusions:

ex (Cr) ⊆ ex (C) : Let c0 . . . cn ∈ ex (Cr). Then, there exists a

path π = (c0, (�0,q0)) −д1−→ . . . −дn−−→ (cn , (�n ,qn)) ∈ path(Cr)
such that дi = ((�i−1,qi−1),opi , (�i ,qi)) and ci−1 −opi−−→ ci .
From this, we inductively construct a path π ′ of C (and

hence the execution of C):
• Induction start: take π ′ = (c0, �0).
• Induction step: assume path π ′ to be constructed up to
some (c j , �j), j < n.
We know that дj+1 = ((�j ,qj),opj+1, (�j+1,qj+1)) ∈ Gr

(as π is a path ofCr). New elements are inserted intoGr in

lines 11 and 16 of the algorithm only, while iterating over

elements ofG (line 5). Hence (�j ,opj+1, �j+1) ∈ G, and we

can extend π ′ by (c j , �j) −(�j ,opj+1, �j+1)−−−−−−−−−−−−→ (c j+1, �j+1).
ex (C) \ {ex (π) | A covers π } ⊆ ex (Cr) : Let c0 . . . cn ∈ ex (C) \
{ex (π) | A covers π }. Then, there is a path π = (c0, �0) −д1−→
. . . −дn−−→ (cn , �n) ofC that is not covered byA. Note that thus
q0 � F , as otherwise all paths are covered. We inductively

construct a path π ′ = (c0, (�0,q0)) −д
′
1−→ . . . −д

′
n−−→ (cn , (�n ,qn))

of Cr with д′i = ((�i−1,qi−1),opi , (�i ,qi)) together with a

run ρ = q0 −(G1,φ1)−−−−−−→ . . . −(Gm,φm)−−−−−−−→ qm of A s.t. 0 ≤ m ≤ n.

1184

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

They satisfy the following properties: (a) ∀i, 0 ≤ i ≤ n : qi �
F , (b) ∀i, 0 ≤ i < n: (�i ,qi) is an element of waitlist at
some point in time during the algorithm, and (c) at position

m the path is split into two parts, the second of which may

be empty, such that: (i) ∀i ≤ m : qi � qr , i = 0∨φi = true ∧
дi ∈ Gi , and (ii) ∀j > m : qj = qr .
• Induction start: take π ′ = (c0, (�0,q0)) and ρ = q0. Then,
q0 � F , q0 � qr , and (�0,q0) is initially in waitlist.

• Induction step: assume path π ′ to be constructed up to
some (c j , (�j ,qj)), j < n, and ρ up to some ql , l < m.

We know that дj+1 = (�j ,opj+1, �j+1) ∈ G and c j −opj+1−−−−→
c j+1 (as π is path of C). We have two cases to consider:

(1) qj � qr : Hence, qj ∈ Q and by induction hypothesis,

qj � F , qj = ql , j = l . Again two cases:
(a) ∃(qj , (G j+1, true),qj+1) ∈ δ ,дj+1 ∈ G j+1 (line 6): We

extend π ′ by (c j , (�j ,qj)) −дj+1−−−→ (c j+1, (�j+1,qj+1))
and ρ by (qj , (G j+1, true),qj+1). We have qj+1 � F
as the path π is not covered byA and ρ would witness
coverage otherwise. Hence, (�j+1,qj+1) is added to
waitlist (unless it has been in there before). We stay

in the first part of the path.

(b) Else (line 12): We switch to the second part of the

path. We extend the path π ′ by (c j , (�j ,qj)) −дj+1−−−→
(c j+1, (�j+1,qr)) and let ρ remain unchanged. We

have qr � F (as it is an extra state) and (�j+1,qr)
is added to waitlist (unless it has been in there be-
fore).

(2) qj = qr : Then, we are in the second part of the path and
proceed as in (1), case (b). �

To be usable by the condition processing verifier, the residual

CFA has to be transformed back into a C program. The residual CFA

obtained by Reducer from a deterministic CFA (i.e., a C program)

is again deterministic since the condition generated by CPAchecker

is always deterministic. Moreover, note that we currently inline

procedure calls. Thus, Reducer may fail on recursive programs.

3 REDUCER-BASED VERIFIERS

In the previous section, we introduced two reducers, Identity

and Reducer. Next, we introduce the second component of our

conditional verifiers, the off-the-shelf tools that we transform into

conditional verifiers. In this paper, we transform four verifiers and

three test-generation tools. As verifiers, we use the best three tools

CPAseq, Smack, and Ultimate Automizer from SV-COMP 2017 [5]

(Table 1 gives an overview). Additionally, we use the value analysis

from the CPAchecker framework [15], which supports condition

automata as input conditions (an in-tool CMC solution [10]) and

allows us to compare the concept of reducer-based conditional

verifiers against an in-tool solution. As test-generation tools, we

chose AFL-fuzz, Crest-ppc, and Klee. All three are open source and

have lately attracted high interest by research [17, 23, 27, 49, 55, 56,

59]. In the next paragraphs, we explain the technologies underlying

the selected verifiers and test-generation tools.

Value Analysis. CPAchecker’s value analysis is a configurable pro-

gram analysis [11]. Its reachability analysis tracks the values of

certain variables of interest explicitly while assuming that the re-

maining variables may have any possible value. The precision [11]

is increased iteratively, based on counterexample-guided abstrac-

tion refinement (CEGAR) [31] and lazy refinement [43]. To get

the best refinement, the analysis applies refinement selection [20].

Given an infeasible error path, path-prefix slicing [21] is used to

compute different overapproximations of the error path s.t. each

overapproximation replaces some assume operations with no-ops.

For each overapproximation, interpolation [18] is used to compute

a refinement candidate. In the end, the best refinement is selected.

CPAseq. CPAseq uses the CPAchecker framework [15] to run four

different analyses in sequence. Whenever an analysis gives up (due

to timeout or unknown result), the next analysis starts. A definite

answer (feasible error path or proof) of an analysis is returned

immediately. CPAseq starts with a simple value analysis without

refinement, which tracks all variable values immediately. Next, a

value analysis similar to the one described above is used. The third

analysis is a bit-precise predicate analysis [16] that uses adjustable-

block encoding [16] to compute predicate abstractions only at loop

heads. The set of predicates is determined by a combination of inter-

polation [42] and CEGAR [31] with lazy refinement [43]. The last

analysis runs k-induction in parallel with invariant generation [9].

The invariants found so far are used to improve the k-induction

step and are provided by numerical and predicate analyses.

Smack. The Smack [54] verifier consists of a translation front end

and a verification back end. First, it translates the input program

to Boogie code (via intermediate LLVM code). Based on heuristics,

the Boogie code is either verified with Boogie or Corral. Boogie [3]

proves a verification condition generated with the weakest precon-

dition calculus. Corral [50] tries to find a property violation with a

two-staged CEGAR approach. First, it uses variable abstraction to

compute an overapproximation of the program, which only consid-

ers a subset of the program variables. The variable abstraction is

adapted whenever the second CEGAR approach fails to rule out an

infeasible error path. On the second stage, Corral inlines functions

(summaries) up to a given recursion depth (loops are assumed to

be written as recursive functions). Functions are only inlined if the

function summary appears in an infeasible error path.

Ultimate Automizer. Ultimate Automizer (UAutomizer) [40, 41]

uses an automata-based verification approach. In principle, it main-

tains an overapproximation of error paths in form of an automaton.

A CEGAR approach successively refines the overapproximation,

i.e., it removes infeasible error paths, until a feasible error path is

found or the automaton language is empty. In each refinement step,

a generalization of an infeasible error path is excluded from the

current overapproximation. The generalization of the error path

is described by a Floyd-Hoare automaton [41], which associates

boolean formulas over predicates with its states. The initial state

is associated with true, accepting states are associated with false,

and transitions describe valid Hoare triples. The predicates used in

the Hoare triples are obtained via interpolation along the infeasible

error path.

AFL-fuzz. AFL-fuzz is a random fuzzing tester. Given a set of start

inputs, it performs different mutations on the existing inputs, exe-

cutes these newly created inputs, and checks whether new program

parts are explored. If this is the case, the inputs are kept and used

for further mutation. Otherwise, the inputs are discarded. 2

2AFL (American Fuzzy Lop) is available at http://lcamtuf.coredump.cx/afl/.

1185

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

Table 1: Overview of applied verification technologies in the verifiers

Refinement

Verifier Technique CEGAR Lazy abstraction Interpolation Bitprecise

CPAseq ARG, explicit and numerical values, predicates, k-induction � � � �
Smack property-driven reachability [24], bounded model checking [22] � � × �
UAutomizer automata, predicates � � � �

Klee. Klee [26] uses symbolic execution for test-case generation.

Symbolic execution is an extension to concrete execution of a pro-

gram. For every unknown input value to a program, a new symbolic

value is introduced that initially represents any possible value. Dur-

ing execution, the symbolic values are constrained by branching

conditions along the program (e.g., if-branches in a C program).

These constraints are used to compute whether a given program

path is feasible, and which class of input values will lead to execu-

tions that take this path. Whenever both branches are feasible in

a symbolic execution, Klee copies its current symbolic execution

state and continues to explore one branch with the current state and

the other with the copied state. After each step in a program, Klee

heuristically chooses with which of the existing execution states to

continue. Given several heuristics, Klee alternates between them.

Crest-ppc. Crest-ppc [49] is an improved version of Crest [25].

Crest uses concolic execution for testing and provides different

heuristics to achieve higher code coverage. Concolic execution is

a combination of symbolic execution and concrete execution. A

program under test is executed with concrete inputs that determine

one concrete execution path. In parallel, a symbolic execution is

performed on that path to obtain constraints over program inputs

on this path. Based on these path constraints, a constraint solver

computes new inputs that lead to the execution of another, yet

unvisited program part. New executions are performed and new

inputs are generated until all program parts are explored. Crest

uses heuristics to choose which unvisited program part to explore

next. To increase the performance, Crest-ppc adds a heuristic to

Crest that submits more calls to the constraint solver but uses fewer

constraints per call.

4 EVALUATION

4.1 Claims to be Evaluated

In the following, we list our claims and how we plan to evaluate

them. The claims are not on efficiency, but on effectiveness. That

is, we provide means for solving additional verification tasks by

investing more computing resources, but without implementing or

changing verification tools.

Feasibility Hypothesis. A reducer can be used to effectively con-

struct conditional verifiers from existing verification tools. Evalua-

tion Plan:We show this by implementing one particular instance of

a reducer, and apply our reducer-based construction of conditional

verifiers to three model checkers and three testers. The result is a

set of six conditional verifiers, and we take standard configurations

“out of the box”, without changing a single line of the verifiers.

Null Hypothesis. Applying a reducer has no effect. Evaluation

Plan:We compare the results using our reducer against the results

using the identity function as replacement for the reducer.

Claim 1. Reducer-based conditional verification is not much worse

then “native” conditional verification. Evaluation Plan: The original

proposal of CMC [10] implements the restriction of the state space

that the condition describes internally in the exploration engine

of the verifier. We claim that it also works reasonably well to use

an external reducer instead, which opens the door for constructing

new conditional verifiers without actual implementation work.

Claim 2. The technique of conditional verification can effectively

increase the number of overall solved verification tasks if additional

resources are provided. Evaluation Plan:We select a number of hard-

to-solve verification tasks and perform experiments on them using

the original verifiers and the constructed verifiers.

Claim 3. Conditional verification with condition passing can solve

verification tasks that neither CPAseq, Smack, nor Ultimate Au-

tomizer can solve. Evaluation Plan:We select from a given set of

verification tasks those verification tasks that none of the original

verifiers, but at least one of the conditional verifiers can solve.

Claim 4. The use of different conditional verifiers improves the

overall effectiveness. Evaluation Plan:We report results for different

conditional verifiers and consider verification tasks that only one

conditional combination can solve.

Claim 5. Reducer-based conditional verification is also applicable

to test-case generation. Evaluation Plan:We construct conditional

verifiers from three test-generation tools and compare the number

of generated crashing tests against the result of the test-generation

tools alone.

4.2 Setup

Computing Resources.We performed our experiments on ma-

chines with an Intel Xeon E3-1230 v5 CPU with 8 processing units

each, a frequency of 3.4 GHz, 33 GB of memory, and an Ubuntu 16.04

operating system with Linux kernel 4.4. We limited each analysis

run to 15GB of memory and a varying time limit, depending on the

experiment, and allowed it to use all 8 processing units. We report

CPU time and memory use with two significant digits.

Verification Tasks. To get a representative set of verification tasks,

we used all 5 687 programs from ReachSafety categories of the SV-

COMP benchmark set3 in revision cc49668 4. For all input programs,

we verify the property that function __VERIFIER_error is never

called. A total of 1 501 of the 5 687 programs are unsafe, i.e., the call

to __VERIFIER_error is reachable, and 4 186 programs are safe.

Tools.We used a predicate analysis for condition generation and

a value analysis for comparison with native conditional model

checking, both from the CPAchecker project. Our implementation

of a reducer is also available in the CPAchecker project. For all

experiments, we used CPAchecker from branch reducer-patch in

revision r25656. For the verifiers in the composition of our reducer

with a verifier, we use the three best tools from SV-COMP 2017,

as submitted to the competition5 (without any modifications) and

3https://sv-comp.sosy-lab.org/2017/benchmarks.php
4https://github.com/sosy-lab/sv-benchmarks
5https://sv-comp.sosy-lab.org/2017/systems.php

1186

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

 1

 10

 100

 1000

 1 10 100 1000

CP
U

 T
im

e
fo

r
Id

en
tit

y
(s

)

CPU Time for Reducer (s)
(a) Reducer vs. Identity (pure sequential combination)

 1

 10

 100

 1000

 1 10 100 1000

CP
U

 T
im

e
fo

r
N

at
iv

e
CM

C
(s

)

CPU Time for Reducer (s)
(b) Reducer vs. native CMC implementation in CPAchecker

Figure 3: Comparison of CPU time of different CMC solutions for predicate (100s) + value analysis

the three test-generation tools described previously. To streamline

the testing process for the test-generation tools, we use the testing

framework tbf [17] 6 in revision b60a924. We run our experiments

with BenchExec [19] (version 1.14).7

Availability. All our experimental data are available online [14].8

4.3 Experiments

Feasibility Hypothesis.We designed and implemented a proof-of

concept reducer, and licensed the reducer using the open-source

license Apache 2.0 such that other researchers can later use it.

While our implementation certainly has potential for improvement,

we show that the approach of composing a conditional verifier

from an arbitrary verifier and our reducer works in practice. We

demonstrated this by using the three best verifiers directly from

the SV-COMP web site and composed the conditional verifiers

without any change to the verifiers. In addition, we also composed

conditional verifiers from test-generation tools, in order to help

test-generators to produce crashing tests for more verification tasks.

Null Hypothesis.We have experimented with verification runs

in which we replaced our reducer by an identity function Identity,

i.e., the reducer is effectively removed from the tool chain. The first

verifier, which generates the condition, is a predicate analysis that

we restrict to at most 100 s of CPU time. For the second verifier, we

use CPAchecker’s value analysis with a time limit of 900 s.

Figure 3a uses a scatter plot to illustrate the CPU times of the

reducer-based approach using Reducer (x-axis) against using Iden-

tity (i.e., pure sequential combination). The scatter plot shows

results only for those verification tasks that at least one of the two

combinations can solve and that none of them solved incorrectly

or crashed on. Thus, the plot only displays results that have a use-

ful result. Often, the results are similar (data points close to the

6https://github.com/sosy-lab/tbf
7https://github.com/sosy-lab/benchexec
8https://www.sosy-lab.org/research/reducer/

diagonal). In this case, the predicate analysis alone already solved

the verification task. For some tasks, Reducer is slower or even

times out, due to the large size of residual programs. The reason

is that Reducer restructures the program, e.g., unfolds loops and

the program structure. The residual program becomes much larger

and more complex in its structure, which complicates the task of

the second verifier in these cases. However, there are also a set

of tasks for which Reducer is significantly faster: the data points

close to the upper border represent tasks for which the conditional

combination with Reducer solved the task while the combination

with Identity timed out. Thus, the null hypothesis is rejected.

Claim 1 (Comparison against native implementation). We

compare our proposed reducer-based approach to construct con-

ditional verifiers against the approach of the original implementa-

tion [10], which we refer to as ‘native’ approach because it imple-

ments the restriction of the state space according to the condition

internally in the verifier. We use the same setup as above, but re-

place the second verifier by CPAchecker’s value analysis with the

internal condition treatment enabled. Figure 3b shows the useful

results as scatter plot, again. Most of the data points are close to

the diagonal, i.e., the two solutions perform similarly. However, as

above, when the residual program gets too large, the reducer-based

solution sometimes uses too much time (right side). For some tasks,

the reducer-based solution is even faster than the native approach

(top). Thus, Claim 1 is valid.

Claim 2 (Effective increase of number of verified programs).

We now evaluate the claim that the use of two complementing

verifiers joined by reducer-based conditional verification can effec-

tively solve additional verification problems if additional resources

are spent on running a combination after the runs of the original

verifier. In our experiments, we always first run a conditional ver-

ifier based on predicate analysis to output the conditions, with a

time limit of 100 s of CPU time. The predicate analysis combines

lazy abstraction refinement [43] with predicate abstraction with

adjustable-block encoding (ABE) [16]. ABE is configured to abstract

1187

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

Table 2: Results of using a verifier on its own vs. a combina-

tion with predicate analysis and condition passing

CPAseq Smack UAuto Predicate +

CPAseq Smack UAuto

Correct 513 415 238 789 695 789

Correct proof 265 76 170 387 296 386

Correct alarm 248 339 68 402 399 403

Incorrect 0 0 7 0 0 4

Incorrect proof 0 0 4 0 0 0

Incorrect alarm 0 0 3 0 0 4

Unknown 307 405 575 31 125 27

Total 820 820 820 820 820 820

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800

CP
U

tim
e

(s
)

n-th fastest correct result

CPA-seq
SMACK

Ultimate Automizer
Predicate + CPA-seq
Predicate + SMACK

Predicate + Ultimate Automizer

Figure 4: Quantile plots for the six verification approaches

at loop heads only. Let us refer to this verifier as A. The conditional

verifier in the second verification step is always constructed from

our reducer and an off-the-shelf verifier; we limit the CPU time

to 900 s. Let us refer to this kind of verifier as B. Verifier B tries

to solve all tasks that A was not yet able to solve, with the help

of the conditions generated by A for these tasks. The time limit

of 900 s of CPU time is considered a community standard (cf. SV-

COMP), because most verification tasks can either be solved way

below this time limit or cannot be solved at all. As verifier B, we

compose our reducer with the three best tools from SV-COMP 2017

on reachability properties: CPAseq, Smack, and Ultimate Automizer.

Many of the verification tasks in the considered task set from the

SV-COMP benchmarks are easy to solve for the standard verifiers.

For those tasks, we do not need to further experiment because

our aim is to show that the new approach can increase the overall

number of verified programs. Therefore, we restrict our experiment

to verification tasks that are hard-to-solve; in particular, we select

those verification tasks for which at least one verifier B fails but

the corresponding combination with condition passing of A and B

solves the task. This results in a benchmark set containing 820 hard-

to-solve verification tasks.

Table 2 breaks down the effectiveness of each verification ap-

proach. It lists the number of verification tasks that each verification

approach solved correctly, solved incorrectly, and which it cannot

solve (‘Unknown’). The correct and incorrect results are further

classified into answers that reported a proof and a bug, respectively.

Inspecting the numbers, we observe the following: In all three

cases, the reducer-based CMC combination with condition passing

of verifiers A and B solves significantly more tasks correctly than

verifier B alone. At the same time, the number of wrong answers

is not increased by the conditional verifier. There are two possible

reasons for this improvement: First, verifierA already accomplished

the verification task, in which verifier B has no work (suggested by

the data points on the diagonal with less than 100 s in Fig 3a). Or

second, verifier A verified a significant portion of the verification

task such that the residual program generated by Reducer becomes

easier to analyze for verifier B (suggested by the middle and lower

part of Table 3).

Figure 4 shows quantile plots for all six verification approaches.

A data point (x ,y) on such a graph means that the x fastest correct
results can be solved all in max. y s of CPU time each. We observe

that all reducer-based approaches significantly outperform their

standalone counterpart by investing max. 100 s of CPU time. These

observations together with Table 2 validate our Claim 2.

Claim 3 (Solving problems that none of the three can solve).

We consider a particular subset of the verification tasks, namely

those that none of the verifiers CPAseq, Smack, and Ultimate Au-

tomizer can solve as standard verifier but at least one combination

can. These tasks seem to be particularly hard for verifiers while not

being too hard for our approach. Table 3 shows an excerpt of those

143 programs of the task set. For each verification task (identified

by name and expected verification result), the table contains groups

of result, CPU time, and max. memory usage, for each of the three

standard verifiers and their reducer-based combination with con-

dition passing. From the table, it can be observed that Claim 3 is

valid: there exist programs that conditional combinations can solve

but none of the given standard verifiers can.

Claim 4 (Different back ends have different strengths). None

of the conditional verifiers is superior. Each verifier has its strengths:

for two verifiers B there exist verification tasks that only a combi-

nation with that verifier can solve and no other combination (cf.

Table 2). And each verifier has its weaknesses: for each verifier,

there are some verification tasks that the verifier, even in combina-

tion, cannot solve. To solve all difficult tasks, we need to leverage

different technologies. The experimental results validate Claim 4.

This last observation makes the contribution of our reducer-

based approach important: It does not make sense to extend existing

verifiers to become conditional verifiers (in terms of accepting con-

ditions as inputs), because we need many conditional verifiers. Our

approach to take an arbitrary verifier off-the-shelf and construct

a conditional verifier without implementation work significantly

improves the overall achieved verification power.

Claim 5 (Reducer-based construction works also for testing).

To demonstrate that our approach can be applied to tools other

than model checkers, we combine our Reducer with three test-

generation tools, namely AFL-fuzz (v2.46b), Crest (revision 31c32f4),

and Klee (v1.4.0). As in the other experiments, the first analysis

(which generates the condition) is the predicate analysis, again

limited to 100 s. The test-generation is limited to 900 s.

Analogous to Claim 2, we restrict the experiment to those verifi-

cation tasks that are hard-to-solve with test generation: we select

those tasks for which at least one test generator fails to uncover

a bug in, but that the corresponding combination with condition

passing can correctly solve. In addition, since testing cannot prove

correctness, we only consider verification tasks that are unsafe.

1188

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

Table 3: Results of verification tasks for which all considered verifiers A alone could not compute a result, but for which at least

one verifier B succeeded in a reducer-based combination with condition passing. Column R shows the expected result of the

corresponding task: either no property violation exists (T) in the program or a property violation exists (F). Column S reports

whether the task was solved by the corresponding verifier, t is the CPU time in seconds spent to achieve the corresponding

result, andM the used memory in GB.

Task R CPAseq Smack UAutomizer +CPAseq +Smack +UAutomizer
S t (s) M (GB) S t (s) M (GB) S t (s) M (GB) S t (s) M (GB) S t (s) M (GB) S t (s) M (GB)

loop-acc overflow T � 910 7.8 � 880 0.93 � 900 1.3 � 2.6 0.27 � 2.6 0.27 � 2.6 0.27

mutex_unbounded F � 910 4.9 � 0.13 0.021 � 900 0.94 � 5.6 0.32 � 5.6 0.32 � 5.6 0.32

mutex_unlock F � 320 4.9 � 0.11 0.020 � 900 1.2 � 11 0.47 � 11 0.47 � 11 0.47

lin-4.0 legousbtower F � 180 15 � 880 0.56 � 900 4.0 � 12 0.48 � 12 0.48 � 12 0.48

lin-4.0 net2272 F � 56 15 � 890 1.0 � 900 7.3 � 15 0.53 � 15 0.53 � 15 0.53

fib_longer F � 900 3.7 � 880 0.15 � 8.6 0.30 � 15 0.61 � 15 0.61 � 15 0.61

lin-3.4 vivi F � 230 15 � 880 0.25 � 48 1.3 � 15 0.59 � 15 0.59 � 15 0.59

lin-3.0 block-loop F � 900 8.5 � 880 0.48 � 900 3.8 � 16 0.51 � 16 0.51 � 16 0.51

lin-4.2 lm78 T � 950 6.8 � 890 1.2 � 910 13 � 18 0.63 � 18 0.63 � 18 0.63

lin-3.4 synaptics F � 210 15 � 880 0.43 � 900 1.6 � 18 0.62 � 18 0.62 � 18 0.62

lin-3.16 mISDN T � 910 8.8 � 950 3.0 � 900 5.7 � 26 0.96 � 26 0.96 � 26 0.96

lin-4.2 vfio F � 910 8.1 � 890 0.47 � 900 5.3 � 26 0.70 � 26 0.70 � 26 0.70

val-0.8 g_printer F � 910 8.4 � 880 0.73 � 900 5.5 � 28 0.87 � 28 0.87 � 28 0.87

val-0.6 g_printer F � 910 8.4 � 880 0.71 � 900 5.6 � 28 0.85 � 28 0.85 � 28 0.85

. . .
Problem19_label20 T � 520 15 � 880 2.8 � 900 13 � 110 0.37 � 110 0.37 � 110 0.37

Problem19_label57 T � 440 15 � 880 2.9 � 900 13 � 110 0.36 � 110 0.37 � 110 0.38

Problem19_label37 T � 440 15 � 880 3.2 � 900 13 � 110 0.38 � 110 0.37 � 110 0.37

Problem19_label15 T � 440 15 � 880 3.0 � 900 11 � 110 0.37 � 110 0.37 � 110 0.38

Problem19_label44 T � 440 15 � 880 2.9 � 900 12 � 110 0.39 � 110 0.37 � 110 0.37

Problem19_label36 T � 500 15 � 880 2.9 � 900 13 � 110 0.38 � 110 0.38 � 120 0.38

Problem19_label06 T � 460 15 � 880 2.9 � 910 14 � 110 0.37 � 110 0.38 � 110 0.36

Problem19_label56 T � 440 15 � 880 2.9 � 910 13 � 110 0.39 � 110 0.37 � 110 0.37

Problem19_label30 T � 450 15 � 880 3.2 � 910 13 � 110 0.36 � 110 0.37 � 110 0.37

Problem19_label01 T � 440 15 � 880 2.9 � 900 11 � 110 0.37 � 110 0.37 � 110 0.37

Problem19_label09 T � 550 15 � 880 3.0 � 900 11 � 110 0.37 � 110 0.37 � 110 0.37

Problem19_label40 T � 450 15 � 880 2.9 � 900 13 � 110 0.38 � 110 0.37 � 110 0.36

Problem13_label33 T � 550 15 � 880 3.1 � 900 7.2 � 110 0.29 � 110 0.30 � 110 0.32

Problem19_label05 T � 450 15 � 880 2.9 � 900 12 � 110 0.38 � 110 0.37 � 110 0.36

. . .
lin-4.2 vlsi_ir T � 910 7.9 � 890 0.97 � 900 13 � 490 10 � 130 0.67 � 150 0.77

lin-3.14 vsp1 T � 920 6.9 � 890 0.70 � 910 14 � 550 1.5 � 610 1.5 � 640 1.5

lin-3.14 vxge T � 930 11 � 190 14 � 19 0.51 � 760 1.4 � 630 1.5 � 650 1.5

lin-4.2 w83781d T � 910 6.7 � 900 3.7 � 910 14 � 690 1.5 � 660 1.4 � 660 1.5

lin-4.2 zd1211rw T � 930 6.3 � 890 0.96 � 140 11 � 720 1.5 � 670 1.5 � 660 1.5

lin-3.14 vmxnet3 T � 930 6.9 � 890 1.2 � 900 10 � 540 1.5 � 640 1.4 � 670 1.4

lin-3.14 skge T � 950 7.3 � 940 3.6 � 410 15 � 650 1.5 � 600 1.5 � 670 1.5

lin-3.16 ath5k T � 950 5.9 � 950 4.7 � 900 13 � 710 1.5 � 730 1.5 � 710 1.5

lin-3.14 ipw2200 T � 950 7.6 � 950 6.6 � 15 0.39 � 700 1.5 � 730 1.5 � 720 1.5

lin-3.14 bttv T � 950 5.8 � 910 5.0 � 20 0.51 � 720 1.5 � 770 1.4 � 750 1.5

lin-4.2 cciss T � 920 7.1 � 330 12 � 900 4.7 � 790 10 � 120 0.77 � 180 5.3

floodmax.4 T � 910 3.0 � 880 0.53 � 910 13 � 900 4.3 � 110 0.42 �1 100 7.9

sep20 T � 900 3.2 � 880 0.10 � 910 13 � 1 000 2.6 � 110 0.27 � 150 0.99

Sum 0 100 k 1 600 0 110 k 500 0 110 k 1 200 120 28 k 180 42 24 k 130 121 25 k 160

Average 720 11 800 3.5 760 8.1 200 1.2 170 0.89 170 1.1

The full version of this table can be found at https://www.sosy-lab.org/research/reducer/ .

1189

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

Table 4: Test generation vs. CMC combination

AFL-fuzz Crest Klee Predicate +

AFL-fuzz Crest Klee

Correct alarm 96 44 277 479 476 477

Incorrect proof 0 0 0 0 0 0

Unknown 384 436 203 1 4 3

Total 480 480 480 480 480 480

 1

 10

 100

 1000

 1 10 100 1000

CP
U

 T
im

e
fo

r
Id

en
tit

y
Re

du
ce

r
w

ith
 A

FL
-fu

zz
 (s

)

CPU Time for Reducer with AFL-fuzz (s)
Figure 5: CPU time for predicate analysis and AFL-fuzz com-

bined with Reducer (CMC) and with Identity (sequential)

As a result, we get 480 tasks. Table 4 compares the performance

of the CMC scenarios with the tester performance. Similar to Ta-

ble 2, it shows the numbers of correct alarms, incorrect proofs,

and unsolved tasks. However, it leaves out the rows related to safe

verification tasks. We see that for all three test-generation tools

the number of correct alarms of our reducer-based combination

with condition passing is higher than for the respective tester. In

general, such an improvement is not only caused by the use of the

verifier A, but often a result of the combination of tools. To further

support this statement, we present Fig. 5. It shows the CPU time of

two reducer-based CMC solutions, both using the predicate anal-

ysis mentioned above to generate conditions, using the full set of

1 501 verification tasks with expected result false. The first solution

(x-axis) uses the reducer Reducer with AFL-fuzz and the second

solution (y-axis) uses the Identity reducer with AFL-fuzz (pure

sequential combination). For better visualization, we removed the

results that the predicate analysis can solve on its own. Due to the

mentioned blowup of the residual program, the Reducer based

solution (Reducer plus AFL-fuzz) performs worse for some tasks,

but it can also solve a significant amount of tasks faster than the

pure sequential combination (Identity plus AFL-fuzz).

Size of residual programs. As already mentioned, the residual

program created by Reducer may become significantly larger than

the original program. The reason is a large amount of branching in

the condition, i.e., unfolding of loops and program structure, which

is needed to record the verification work already performed. To

study this in more detail, we compared the sizes of the original

and the residual program in terms of locations in the CFA. At

worst, the residual program was more than 10 times larger than the

original program (1 934 vs. 22 325 locations). At best, the number of

locations in the residual program is less than 1% of the number of

original program locations (200 253 vs. 127 locations). On average,

the residual program contains fewer locations (with a mean of 27 %

and a median of 14 % of the number of locations in the original

program). While the residual program can be much larger, it is

often much smaller.

4.4 Threats to Validity

We did not cross-check the reported verification results with an

independent verifier because we currently do not know how to

construct correctness or violation witnesses [7, 8] in the setting

of reducer-based conditional model checking. While we are sure

that the standalone verifiers did a proper inspection (they success-

fully participated in SV-COMP or provide a test), tools might have

guessed the correct answer when run as part of the conditional

verifier. Yet, we think that guessing is unlikely. The tools are laid out

to provide witnesses and thus properly perform their verification.

The correctness of the residual program is another threat. Like

other analysis tools, we rely on the soundness of the transformation

from program to CFA and back. Additionally, we rely on the sound-

ness of the existing condition generating tool in that the condition

only covers paths the verifier has already inspected. Furthermore,

our implementation of Reducer is a prototype which revealed bugs

during evaluation. In principle, the bugs might be the reason for

the effectiveness of the reducer-based approach. However, the bugs

we observed led the conditional verifier to report a wrong result.

Additionally, we checked the null hypothesis and claim 1 only

with a single condition generating analysis and a single conditional

verifier. Thus, the corresponding results might not be universally

valid in any reducer-based conditional-model-checking setup.

When using a combination of two verification tools with CMC, it

is also possible that the increase in solvable tasks is simply because

the different tools can solve a distinct set of tasks each in a very

short time. E.g., in our configuration, it could have been possible

that the full increase in additionally solvable tasks is only due to

a competence of the predicate analysis in quickly solving a set

of tasks that none of the other verifiers can solve. To make sure

that our considered tool combinations actually benefit from the

use of condition passing, we provided a comparison with a pure

sequential combination (Identity) that showed the general benefit.

In addition, CPAseq includes a 200 s run of predicate analysis in its

configuration—this ensures that all benefits for our combination

of CPAseq and predicate analysis are actually due to our Reducer

approach. Of the 820 tasks considered in the experiments backing

claim 2, 143 cannot be solved by any of the sequential combinations,

but only when using CMC with condition passing.

We only consider a subset of the SV-COMP tasks and the three

best verifiers from SV-COMP. These three verifiers might be tuned

to SV-COMP tasks and may perform worse on our generated resid-

ual programs. Despite this possible bias, our approach still improves

the existing verifiers. In addition, the three test-generation tools

used never participated in any edition of SV-COMP and are unlikely

biased. Our approach still shows improvements for them.

1190

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

5 RELATEDWORK

Our concept of reducers allows us to combine a condition generat-

ing software verifier with an arbitrary second verifier. Techniques

for combining different verification approaches have intensively

been studied in the past. The approaches are executed in paral-

lel, interleaved, or sequentially. Orthogonally, the approaches are

integrated in a white-box or black-box style. White-box combina-

tions tightly integrate typically orthogonal approaches, whereas

black-box combinations aim at a loose coupling of different tools.

Parallel Combinations. Parallel combinations are often used in a

white-box style if the analysis algorithms are similar. Typically, com-

binations [12, 32, 33] let different domains interoperate to obtain

analyses that are more precise than a product combination.

Interleaved Combinations. Interleaved combinations are often

white-box combinations that unite different techniques in one al-

gorithm. For example, SYNERGY [39] and DASH [4] perform an

alternation of test generation and proof construction. Test genera-

tion is guided by the abstract error paths and the abstraction for the

proof construction is adapted according to the tests. SMASH [38]

combines underapproximationwith overapproximation. In contrast,

abstraction-driven concolic testing [36] is a black-box integration

that alternates concolic testing with model checking. The main goal

of the model checker is to identify and exclude infeasible paths.

Given the open test goals (encoded as error locations), the model

checker builds an abstract reachability graph (ARG). The built ARGs

successively restrict the (original) program considered by the tester,

i.e., after each model-checking run the new program for the tester

becomes the intersection of its previous program with the ARG.

Sequential Combinations Testifying Verification Result.

Many sequential combinations aim at excluding false alarms after

an imprecise static analysis, typically using a black-box combina-

tion. For example, Blast [6], Check’n’Crash [34], DyTa [37], and

SANTE [28] try to build a test case for each alarm and only re-

port those alarms that are backed by a test. Post et al. [53] and

CPAchecker [57] use bounded model checking to check whether

an alarm is realizable. Residual investigation [51] tries to reduce

the number of false or irrelevant alarms. It only reports alarms for

which dynamic analysis observed program behavior indicating that

a warning is appropriate. In contrast, proof-carrying code (PCC)

approaches [44, 52] check a complete proof. Standardized verifier

exchange formats like correctness or error witnesses [7, 8] enable

cross-checks between different tools.

Sequential Combinations Splitting Verification Effort. Pro-

gram partitioning [46] suggests to use the test data to partition the

control-flow graph (CFG) into tested and not-tested. The non-tested

partition, a subgraph of the CFG, is analyzed by a static analyzer.

Conditional model checking [10] uses a sequential combination:

A first verifier constructs a condition summarizing the performed

verification, the next verifier uses that condition to steer its verifi-

cation. We use the same idea for the first verifier, but we transform

the condition into a residual program checked by the next verifier.

Multi-goal reachability analysis for testing [13] reuses the ver-

ification effort of one (test) goal for another one. The idea is to

transform the ARG that was built to achieve the test goal, s.t. it fits

for a new test goal. The test-goal automata can be seen as conditions

encoding sets of program paths.

Christakis et al. [29, 30] propose that a verifier should add pro-

gram annotations stating which assertions under which conditions

were verified. In the experiments, the static analyzer Clousot pro-

duces annotations that guide the exploration of the tester PEX.

Czech et al. [35] use conditions and a residual-program construc-

tion to combine model checking and testing in the context of safety

checking. They propose two basic program constructions. Their

synchronous composition of condition and program is similar to

our Reducer. However, they consider a restricted class of condi-

tions and thus do not need to consider assumptions nor program

paths that are not covered by the condition. The second approach

slices the program for assertions that are not fully verified.

Generating Programs fromVerification Results. Program par-

titioning [46] extracts a subgraph of the program which has not

been tested. Abstraction-driven concolic testing [36] computes a

program from the intersection of an ARG and a program. A similar

idea, namely using ARGs to generate programs, has already been

proposed in a PCC context [45, 58]. Czech et al. [35] compute a

synchronous combination of condition and program. As already

mentioned, our residual-program construction is similar to the

approach of Czech et al. [35]. Our implementation constructs an

ARG, representing the combination of condition and control-flow

graph, which is translated into a program. In contrast to program

partitioning [46], the generated programs need not be subgraphs.

6 CONCLUSION

Software verification is an undecidable problem, but still, almost all

live-critical systems are controlled by software, and thus, we need to

verify these large software systems. One research direction is to de-

velop faster verification algorithms and theories; another direction

is to leverage existing results by combinations. Our contribution

falls into the second research area. Conditional model checking is a

promising approach to combine the strengths of different verifiers.

However, it is a large effort to make a verifier understand and use

the condition that describes what the first verifier already achieved.

To solve this problem, we propose an easy, automatic template

construction that turns an off-the-shelf verifier into one that un-

derstands conditions. Our idea is to use a preprocessor, the reducer,

which takes the condition and the original program to compute

a residual program. The residual program encodes the remaining

verification task in a format that is understandable by every verifier:

program code. In this paper, we suggested one possible reducer. Our

experiments on hard tasks of the SV-COMP benchmark collection

show that our reducer-based CMC solution is effective. Using the

new combination technique, we can solve many verification tasks

that were not solvable before, and thus advance the frontier of what

is possible with existing software verifiers.

The main conclusion from our experiments is that we need many

conditional verifiers, but that it is not worth the effort to change

existing verifiers. Rather we can simply apply our construction

to get k conditional verifiers from k arbitrary existing verifiers,

without changing one line of code. Even if the task is to find crash-

ing test cases with state-of-the-art test-generation tools, we can

significantly increase the number of found bugs by using a plug-

and-play construction that does not cost any development effort,

but increases the number of valuable test cases significantly.

1191

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. 1986. Compilers: Principles, Techniques, and

Tools. Addison-Wesley. http://www.worldcat.org/oclc/12285707
[2] T. Ball and S. K. Rajamani. 2002. The Slam Project: Debugging System Software

via Static Analysis. In Proc. POPL. ACM, 1–3. https://doi.org/10.1145/503272.
503274

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. 2005. Boo-
gie: A Modular Reusable Verifier for Object-Oriented Programs. In Proc. FMCO
(LNCS 4111). Springer, 364–387. https://doi.org/10.1007/11804192_17

[4] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. 2008. Proofs from
Tests. In Proc. ISSTA. ACM, 3–14. https://doi.org/10.1145/1390630.1390634

[5] D. Beyer. 2017. Software Verification with Validation of Results (Report on SV-
COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331–349. https://doi.org/10.
1007/978-3-662-54580-5_20

[6] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004.
Generating Tests from Counterexamples. In Proc. ICSE. IEEE, 326–335. https:
//doi.org/10.1109/ICSE.2004.1317455

[7] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In Proc. FSE. ACM, 326–337.
https://doi.org/10.1145/2950290.2950351

[8] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness
Validation and Stepwise Testification Across Software Verifiers. In Proc. ESEC/FSE.
ACM, 721–733. https://doi.org/10.1145/2786805.2786867

[9] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-Induction with
Continuously-Refined Invariants. In Proc. CAV (LNCS 9206). Springer, 622–640.
https://doi.org/10.1007/978-3-319-21690-4_42

[10] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional
Model Checking: A Technique to Pass Information Between Verifiers. In Proc.
FSE. ACM, 57. https://doi.org/10.1145/2393596.2393664

[11] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis. In Proc. CAV (LNCS 4590). Springer, 504–518. https://doi.org/10.1007/
978-3-540-73368-3_51

[12] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program Analysis with
Dynamic Precision Adjustment. In Proc. ASE. IEEE, 29–38. https://doi.org/10.
1109/ASE.2008.13

[13] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. 2013. Information Reuse for
Multi-goal Reachability Analyses. In Proc. ESOP (LNCS 7792). Springer, 472–491.
https://doi.org/10.1007/978-3-642-37036-6_26

[14] D. Beyer, M.-C. Jakobs, T. Lemberger, andH.Wehrheim. 2018. Replication Package
for Article “Reducer-Based Construction of Conditional Verifiers”, Proc. ICSE’18.
https://doi.org/10.5281/zenodo.1172228

[15] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184–190. https://doi.
org/10.1007/978-3-642-22110-1_16

[16] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Abstraction with
Adjustable-Block Encoding. In Proc. FMCAD. IEEE, 189–197. http://ieeexplore.
ieee.org/document/5770949/

[17] D. Beyer and T. Lemberger. 2017. Software Verification: Testing vs. Model
Checking. In Proc. HVC (LNCS 10629). Springer, 99–114. https://doi.org/10.1007/
978-3-319-70389-3_7

[18] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking Based
on CEGAR and Interpolation. In Proc. FASE (LNCS 7793). Springer, 146–162.
https://doi.org/10.1007/978-3-642-37057-1_11

[19] D. Beyer, S. Löwe, and P. Wendler. 2015. Benchmarking and Resource Mea-
surement. In Proc. SPIN (LNCS 9232). Springer, 160–178. https://doi.org/10.1007/
978-3-319-23404-5_12

[20] D. Beyer, S. Löwe, and P. Wendler. 2015. Refinement Selection. In Proc. SPIN
(LNCS 9232). Springer, 20–38. https://doi.org/10.1007/978-3-319-23404-5_3

[21] D. Beyer, S. Löwe, and P. Wendler. 2015. Sliced Path Prefixes: An Effective Method
to Enable Refinement Selection. In Proc. FORTE (LNCS 9039). Springer, 228–243.
https://doi.org/10.1007/978-3-319-19195-9_15

[22] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. 2003. Bounded Model Checking. Advances in Computers 58 (2003),
117–148. https://doi.org/10.1016/S0065-2458(03)58003-2

[23] M. Böhme, V.-T. Pham, and A. Roychoudhury. 2016. Coverage-based Greybox
Fuzzing as Markov Chain. In Proc. SIGSAC. ACM, New York, NY, USA, 1032–1043.
https://doi.org/10.1145/2976749.2978428

[24] A. R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Proc.
VMCAI (LNCS 6538). Springer, 70–87. https://doi.org/10.1007/978-3-642-18275-4_
7

[25] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
Proc. ASE. IEEE, 443–446. https://doi.org/10.1109/ASE.2008.69

[26] C. Cadar, D. Dunbar, and D. R. Engler. 2008. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proc. OSDI.
USENIX Association, 209–224. http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

[27] M. Chalupa, M. Vitovská, M. Jonás, J. Slaby, and J. Strejcek. 2017. Symbiotic 4:
Beyond Reachability (Competition Contribution). In Proc. TACAS (LNCS 10206).
Springer, 385–389. https://doi.org/10.1007/978-3-662-54580-5_28

[28] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand. 2012. Program Slicing
Enhances a Verification Technique Combining Static and Dynamic Analysis. In
Proc. SAC. ACM, 1284–1291. https://doi.org/10.1145/2245276.2231980

[29] M. Christakis, P. Müller, and V. Wüstholz. 2012. Collaborative Verification and
Testing with Explicit Assumptions. In Proc. FM (LNCS 7436). Springer, 132–146.
https://doi.org/10.1007/978-3-642-32759-9_13

[30] M. Christakis, P. Müller, and V. Wüstholz. 2016. Guiding Dynamic Symbolic
Execution Toward Unverified Program Executions. In Proc. ICSE. ACM, 144–155.
https://doi.org/10.1145/2884781.2884843

[31] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided Abstraction Refinement for Symbolic Model Checking. J. ACM 50, 5
(2003), 752–794. https://doi.org/10.1145/876638.876643

[32] P. Cousot and R. Cousot. 1979. Systematic Design of Program Analysis Frame-
works. In POPL. ACM Press, 269–282. https://doi.org/10.1145/567752.567778

[33] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
2006. Combination of Abstractions in the ASTRÉE Static Analyzer. In Proc. ASIAN
(LNCS 4435). Springer, 272–300. https://doi.org/10.1007/978-3-540-77505-8_23

[34] C. Csallner and Y. Smaragdakis. 2005. Check ’N’ Crash: Combining Static Check-
ing and Testing. In Proc. ICSE. ACM, 422–431. https://doi.org/10.1145/1062455.
1062533

[35] M. Czech, M.-C. Jakobs, and H. Wehrheim. 2015. Just Test What You Cannot
Verify!. In Proc. FASE (LNCS 9033). Springer, 100–114. https://doi.org/10.1007/
978-3-662-46675-9_7

[36] P. Daca, A. Gupta, and T. A. Henzinger. 2016. Abstraction-Driven Concolic
Testing. In Proc. VMCAI (LNCS 9583). Springer, 328–347. https://doi.org/10.1007/
978-3-662-49122-5_16

[37] X. Ge, K. Taneja, T. Xie, and N. Tillmann. 2011. DyTa: Dynamic Symbolic Ex-
ecution Guided with Static Verification Results. In Proc. ICSE. ACM, 992–994.
https://doi.org/10.1145/1985793.1985971

[38] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. 2010. Compositional
May-must Program Analysis: Unleashing the Power of Alternation. In Proc. POPL.
ACM, 43–56. https://doi.org/10.1145/1706299.1706307

[39] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. 2006.
SYNERGY: A New Algorithm for Property Checking. In Proc. FSE. ACM, 117–127.
https://doi.org/10.1145/1181775.1181790

[40] M. Heizmann, Y.-W. Chen, D. Dietsch, M. Greitschus, A. Nutz, B. Musa, C. Schät-
zle, C. Schilling, F. Schüssele, and A. Podelski. 2017. Ultimate Automizer with
an On-Demand Construction of Floyd-Hoare Automata (Competition Contribu-
tion). In Proc. TACAS (LNCS 10206). Springer, 394–398. https://doi.org/10.1007/
978-3-662-54580-5_30

[41] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software Model Checking
for People Who Love Automata. In Proc. CAV (LNCS 8044). Springer, 36–52.
https://doi.org/10.1007/978-3-642-39799-8_2

[42] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. 2004. Abstractions
from Proofs. In Proc. POPL. ACM, 232–244. https://doi.org/10.1145/964001.964021

[43] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. 2002. Lazy Abstraction. In
Proc. POPL. ACM, 58–70. https://doi.org/10.1145/503272.503279

[44] M.-C. Jakobs and H. Wehrheim. 2014. Certification for Configurable Program
Analysis. In Proc. SPIN. ACM, 30–39. https://doi.org/10.1145/2632362.2632372

[45] M.-C. Jakobs and H. Wehrheim. 2015. Programs from Proofs of Predicated
Dataflow Analyses. In Proc. SAC. ACM, 1729–1736. https://doi.org/10.1145/
2695664.2695690

[46] P. Jalote, V. Vangala, T. Singh, and P. Jain. 2006. Program Partitioning: A Frame-
work for Combining Static and Dynamic Analysis. In Proc. WODA. ACM, 11–16.
https://doi.org/10.1145/1138912.1138916

[47] R. Jhala and R. Majumdar. 2009. Software Model Checking. Comput. Surveys 41,
4, Article 21 (2009), 54 pages. https://doi.org/10.1145/1592434.1592438

[48] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. 2009. Es-
tablishing Linux Driver Verification Process. In Proc. Ershov Memorial Confer-
ence (LNCS 5947). Springer, Berlin, Heidelberg, 165–176. https://doi.org/10.1007/
978-3-642-11486-1_14

[49] Y. Köroglu and A. Sen. 2016. Design of a Modified Concolic Testing Algorithm
with Smaller Constraints. In Proc. CSTVA@ISSTA (CEUR 1639). CEUR-WS.org,
3–14. http://ceur-ws.org/Vol-1639/paper-03.pdf

[50] A. Lal, S. Qadeer, and S. K. Lahiri. 2012. A Solver for Reachability Modulo
Theories. In Proc. CAV (LNCS 7358). Springer, 427–443. https://doi.org/10.1007/
978-3-642-31424-7_32

[51] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. 2014. Residual Investiga-
tion: Predictive and Precise Bug Detection. ACM Transactions on Software Engi-
neering and Methodology 24, 2 (2014), 7:1–7:32. https://doi.org/10.1145/2656201

[52] G. C. Necula. 1997. Proof-Carrying Code. In Proc. POPL. ACM Press, 106–119.
https://doi.org/10.1145/263699.263712

[53] H. Post, C. Sinz, A. Kaiser, and T. Gorges. 2008. Reducing False Positives by
Combining Abstract Interpretation and Bounded Model Checking. In Proc. ASE.
IEEE, 188–197. https://doi.org/10.1109/ASE.2008.29

1192

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

[54] Z. Rakamaric and M. Emmi. 2014. SMACK: Decoupling Source Language Details
from Verifier Implementations. In Proc. CAV (LNCS 8559). Springer, 106–113.
https://doi.org/10.1007/978-3-319-08867-9_7

[55] H. Seo and S. Kim. 2014. How We Get There: A Context-guided Search Strategy
in Concolic Testing. In Proc. FSE. ACM, 413–424. https://doi.org/10.1145/2635868.
2635872

[56] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna. 2016. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In Proc. NDSS. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/

driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
[57] P. Wendler. 2013. CPAchecker with Sequential Combination of Explicit-State

Analysis and Predicate Analysis (Competition Contribution). In Proc. TACAS
(LNCS 7795). Springer, 613–615. https://doi.org/10.1007/978-3-642-36742-7_45

[58] D. Wonisch, A. Schremmer, and H. Wehrheim. 2013. Programs from Proofs - A
PCC Alternative. In Proc. CAV (LNCS 8044). Springer, 912–927. https://doi.org/10.
1007/978-3-642-39799-8_65

[59] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao. 2015. Postconditioned
Symbolic Execution. In Proc. ICST. IEEE, 1–10. https://doi.org/10.1109/ICST.2015.
7102601

1193

