
.

Proc. ISoLA 2018, c© Springer

In-Place vs. Copy-on-Write CEGAR Refinement
for Block Summarization with Caching

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

Abstract. Block summarization is an efficient technique in software
verification to decompose a verification problem into separate tasks and
to avoid repeated exploration of reusable parts of a program. In order to
benefit from abstraction at the same time, block summarization can be
combined with counterexample-guided abstraction refinement (CEGAR).
This causes the following problem: whenever CEGAR instructs the model
checker to refine the abstraction along a path, several block summaries
are affected and need to be updated. There exist two different refinement
strategies: a destructive in-place approach that modifies the existing
block abstractions and a constructive copy-on-write approach that does
not change existing data. While the in-place approach is used in the
field for several years, our new approach of copy-on-write refinement
has the following important advantage: A complete exportable proof
of the program is available after the analysis has finished. Due to the
benefit from avoiding recomputations of missing information as necessary
for in-place updates, the new approach causes almost no computational
overhead overall. We perform a large experimental evaluation to compare
the new approach with the previous one to show that full proofs can be
achieved without overhead.

Keywords: Software Model Checking, Block Summarization, Copy-on-Write,
CEGAR, Abstraction Refinement, CPAchecker, Program Analysis

1 Introduction

Software model checking is a powerful technique for proving programs correct
as well as for finding errors in programs. Given a program and a specification,
a model checker either finds an error path through the program that exposes
the specification violation or proves that the specification is satisfied by the
program. In this paper, we take a look at the combination of two orthogonal
approaches, block summaries and abstraction refinement.

The technique of constructing summaries of program blocks [18] is effective to
reduce the overhead that an exploration without summaries would otherwise cause.
Block-abstraction memoization (BAM) [27] is based on a standard state-space
exploration using a given control-flow automaton (CFA) that represents the pro-
gram. The CFA is partitioned into blocks, which are analyzed separately by BAM.
Block abstractions (e.g., the results of a block’s analysis) represent summaries of

blocks. Block abstraction is a generalization of function summaries, if the block
size is chosen according to function bodies. In general, block abstraction also
works for loop bodies and other block definitions. Block abstractions are stored in
a cache, such that they can be reused whenever the same block is explored again.
The exact behavior of the analysis and the precision of BAM is determined by a
wrapped underlying analysis, such as predicate analysis or explicit-value analysis.

Abstraction, i.e., verifying an overapproximating abstract model of the pro-
gram instead of its concrete state space, is an idea for scaling model checking to
large programs orthogonal to summaries. The verification of the abstract model
is often less complex and more resource-efficient. Counterexample-guided abstrac-
tion refinement (CEGAR) [15] is a property-directed approach for the automatic
construction of an abstract model for a given system: it automatically determines
a level of abstraction for program verification that is coarse enough to omit unnec-
essary information from the abstract model and precise enough to refute spurious
counterexamples. The basic idea is to iteratively identify relevant facts from infea-
sible program paths and use them for the further and more precise state-space ex-
ploration. Many existing software model-checking algorithms are based on this ap-
proach, such as predicate analysis [8], Impact [23], and explicit-value analysis [12].

Our combination of block abstraction with CEGAR needs a special refinement
strategy such that only the necessary parts of the (cached) state space are touched.
However, block abstractions are cached and can be used at different locations
during the analysis and even several times on the same error path. The problem
is how to correctly refine the block abstractions in the context of BAM based
on a the underlying refinement strategy. The original definition of refinement
in BAM [27] describes a destructive in-place update of block abstractions and
explains that holes occur in the state space which are caused by modifications
on existing block abstractions. Those holes need to be recomputed on demand.
However, this is not possible in general, e.g., after the analysis has finished,
because the information which block abstraction was computed for which block
is no longer accessible. Succeeding analysis steps are not able to recompute the
missing information, as not only the block abstractions themselves, but also their
dependencies are deleted in the destructive approach. A recomputation would
imply to rerun a large part of the complete analysis. Due to the unforeseeable
appearance of cache accesses, the recomputation might even produce a completely
different counterexample or proof than the previous analysis.

The user usually wants the model checker to terminate with a proof, which
in this setting might be an abstract reachability graph (ARG). The ARG is
expected to include all initial abstract states and all abstract states that are
reachable from the initial abstract states. This guarantee does not hold if the
ARG contains holes. Succeeding analysis steps that are executed after the termi-
nation of the block-abstraction-based analysis and depend on the full abstract
state space (without holes) have no possibility to recompute the missing parts.
For example, correctness witnesses [6, 22] can not be reliably produced with
block-abstraction-based analyses [1]: the exported correctness witness is either
invalid because no graph from root to all reached abstract states could be

written, or a missing part in the correctness witness (branch in the graph) is
responsible for incorrectly guiding the witness validator.

The main contribution of this paper is a new refinement approach based on a
constructive copy-on-write strategy. Our work includes a comparative evaluation
of the new copy-on-write approach with the previous in-place refinement, showing
that the new approach has only a small computational overhead for run time
and memory usage. Because BAM is independent of (and orthogonal to) other
analyses in a full program analysis, it can be combined with analyses based
on different abstract domains like predicate, value, or interval analysis [11, 12],
or combinations thereof [1, 17]. Our new refinement strategy is fully integrated
into BAM in CPAchecker and does not depend on the underlying analysis.
Thus, there is no change in the behavior of the sub-analyses.

Contributions. We make the following contributions:

• We design a copy-on-write approach that solves two open problems: (i) strictly
monotonic refinement for summary-based approaches in combination with
CEGAR and (ii) abstract reachability graphs without holes that cause prob-
lems in later steps of the analysis.

• We implement the approach of copy-on-write refinement in the verification
framework CPAchecker and make the source code available to others.1

• We experimentally evaluate the new approach on a large number of verification
tasks to show that the copy-on-write approach is about as efficient and
effective as the in-place approach, although the approach produces complete
abstract reachability graphs.

• We make all experimental results, including raw data, tables, experiment
setup, etc., available on a supplementary web site.2

Related Work. There are several techniques based on block-based summa-
rization, as this idea dates back to Hoare [20]. The special case of func-
tion summaries aims at scalability for interprocedural analyses and is inte-
grated in several algorithms and tools.

FunFrog [25, 26] uses an SMT solver and Craig interpolation to compute
function summaries in the context of bounded model checking. Starting from
an initially empty set of function summaries, the tool explores the problem’s
traces and computes interpolants from path formulas for all missing proce-
dure calls. The interpolants are then directly used as summaries. This strat-
egy is applied in a CEGAR loop until the specified property can be proven
or is definitely violated. FunFrog uses a cache for function summaries, but
does never modify existing function summaries.

Bebop [3] and Saturn [28] use binary decision diagrams (BDDs) and SMT to
encode the program’s semantics. The function summary is build by renaming
variables in formulas, such that the direct encoding of a procedure call can be
1 https://cpachecker.sosy-lab.org
2 https://www.sosy-lab.org/research/bam-cow-refinement

https://cpachecker.sosy-lab.org
https://www.sosy-lab.org/research/bam-cow-refinement

reused several times within the same encoding of the program behavior. Both tools
work on a very precise abstraction level and do not refine their summarizations.

BAM is a domain-independent approach for caching and reusing block ab-
stractions. It is independent of functions and can be used with an arbitrary
block size. Instead of being limited to a special domain like BDDs, SMT, or
intervals, BAM works on an abstract level and can be applied to any abstract
domain or even combinations of several domains, including predicate analysis
and explicit value analysis [1]. The integration of CEGAR refinement in BAM
was already described in the context of predicate analysis [27]. Our new ap-
proach of copy-on-write refinement for BAM makes the approach really lazy
(matching the principles of lazy abstraction refinement [19]).

2 Background on Block Summarization

The following section provides an overview of some basic concepts and def-
initions that we use for our approach. We describe the program representa-
tion and the most important details of block-abstraction memoization that
are used for state-space exploration (cf. other literature on block-abstraction
memoization for more detailed descriptions [2, 7, 27]).

2.1 Program and State-Space Representation

A program is represented by a control-flow automaton (CFA) A = (L, l0, G),
which consists of a set L of program locations (modeling the program counter),
a set G ⊆ L × Ops × L (modeling the control flow), and an initial program
location l0 (entry point; initial call of the main function). The set Ops contains
the operations of the program, i.e., assignment and assume operations, function
calls, and function returns. Let V be the set of variables in the program. A
concrete data state assigns a value to each variable from the set V ; the set C
contains all concrete data states. For every edge g ∈ G, the transition relation is
defined by g→ ⊆ C × {g} × C. If there exists a sequence of concrete data states
〈c0, c1, ..., cn〉 with ∀i ∈ [1, n] : ∃g : ci−1

g→ ci ∧ (li−1, g, li) ∈ G, then state cn is
called reachable from c0 for l0, i.e., there exists a syntactic walk through the CFA.

We perform a reachability analysis that unrolls the program lazily [19] into an
abstract reachability graph (ARG) [8]. An ARG S = (N,E) is a directed acyclic
graph, consisting of a set N of ARG nodes (representing the abstract program
states, e.g., including program location and variable assignments) and a set E ⊆
N ×N of edges modeling the transfer that leads from one abstract state to the
next one. We define a subgraph Ss = (s,Ns, Es) as a connected component of an
ARG S = (N,E), starting at a given abstract state s ∈ Ns (denoted as root), such
that Ns ⊆ N , Es ⊆ E, and ∀s′ ∈ Ns : (s

′, s′′) ∈ E ⇒ (s′′ ∈ Ns ∧ (s′, s′′) ∈ Es).

1 void main() {
2 int x = 0;
3 while (x<10) {
4 x = f(x);
5 }
6 assert(x>=10);
7 }
8

9 int f(int n) {
10 return n+1;
11 }

(a) Source code

Bf

Bloop

Bmainl2

l3

l4

l5

l6

l7

l10

l11

call f

return from f

x = f(x)

x = 0

[x < 10]

[x ≥ 10]

assert(x >= 10)

return n+ 1

(b) CFA with blocks

Fig. 1: Example program and its control-flow automaton with 3 blocks

2.2 Block Summarization

Block-abstraction memoization (BAM) [27] is a generalization of several block-
based summarization approaches [18, 24, 25]. BAM divides an input program into
smaller parts, named blocks, to analyze them separately by summary construction.
It uses an arbitrary block size and is not limited to function boundaries. In
addition, BAM uses a cache to reuse block abstractions. The blocks allow us to
abstract from the surrounding context, reducing computational overhead, and
improving the performance of an analysis. The analysis of each block corresponds
to an abstract initial state at the block-entry location and a set of abstract exit
states at the block-exit locations (both described later). Block abstractions (e.g.,
the combination of initial states and exit states of a block’s analysis) are stored in
a cache, such that they can be reused whenever the same block is visited again.

Blocks. The basic components of BAM are blocks, which are formally defined as
parts of a program: A block B = (L′, G′) of a CFA A = (L, l0, G) consists of a set
L′ ⊆ L of connected program locations and a setG′ = {(l1, op, l2) ∈ G | l1, l2 ∈ L′}
of control-flow edges. Two different blocks B1 = (L′1, G

′
1) and B2 = (L′2, G

′
2) are

either disjoint (L′1 ∩ L′2 = ∅) or one block is completely nested in the other
block (L′1 ⊂ L′2). Each block B = (L′, G′) has entry and exit locations, which
are defined as In(B) = {l ∈ L′ | (∃(l′, op, l) ∈ G ∧ l′ 6∈ L′)∨ 6 ∃(l′, op, l) ∈ G} and
Out(B) = {l ∈ L′ | (∃(l, op, l′) ∈ G ∧ l′ 6∈ L′)∨ 6 ∃(l, op, l′) ∈ G}, respectively. In
general, the block size can be freely chosen in BAM. In most cases, function
and loop bodies are taken as blocks, because they represent logical structures
of the program and seem to be a good choice for block abstraction.

Figure 1 shows the CFA (b) for an example program (a). The CFA is structured
into three nested blocks Bmain, Bloop, and Bf , such that their sizes align with

the function and loop bodies. In the example, each block has only one entry and
one exit location, e.g., In(Bmain) = {l2}, Out(Bmain) = {l7}, In(Bloop) = {l3},
Out(Bloop) = {l6}, In(Bf) = {l10}, and Out(Bf) = {l11}.

State-Space Exploration with BAM. BAM is an algorithm for program
analysis that makes use of a wrapped program analysis W, which tracks data
facts and does the actual (block-local) program-analysis work, i.e., computes
abstractions, formulas for paths, or checking whether the property holds. Our
framework is based on the concept of configurable program analysis (CPA) [9]
and uses, for example, predicate analysis (based on SMT solving and predicates),
explicit-value analysis (tracks assignments of variables), or combinations thereof,
with usage of common basic components such as location analysis (tracks the
program counter) or call-stack analysis (tracks the current call stack). Each CPA
provides the analysis operators, like the transfer relation to compute abstract
successor states for a specific abstract domain. BAM is specified as a CPA and
does not know about the internals of the wrapped analysis W, which is also
a CPA. The approach of BAM just operates on abstract states of a (possibly
combined) abstract domain to generate block abstractions.

The state-space exploration with BAM is defined recursively for blocks. The
successor computation for abstract states chooses between two possible steps,
depending on the currently analyzed program location: At an entry location of
a block B, the successor computation B

 B of the containing block executes a
separate nested sub-analysis of the block B (starting with the initial abstract
state for the block-entry location). This step produces a separate ARG that
is later integrated as block abstraction into the surrounding analysis context.
The block abstraction can either be computed or taken from a cache, if the
block has been analyzed before. For block-exit locations of blocks, there is no
succeeding abstract state (in the nested sub-analysis). For other program loca-
tions, the successor computation W is applied, which acts according to the
abstract domain of the wrapped analysis W (e.g., tracks variables or computes
abstractions for abstract states). Abstract states where a specification viola-
tion occurs are handled as if those abstract states are at block-exit locations
of the current block, i.e., the nested sub-analysis terminates and returns the
violating abstract states directly for the block abstraction.

Note that an ARG can contain edges representing block abstractions. The
block of the block abstraction is inlined whenever a concrete program path
without block abstractions is needed. This overhead is the necessary price for
having a block-modular analysis. When CEGAR modifies the ARGs during the
refinement, a problem occurs, which we will describe later.

2.3 CEGAR

Counterexample-guided abstraction refinement (CEGAR) is an approach to
automatically adjust the granularity of an analysis by learning from infeasible
error paths the relevant analysis facts that are needed to verify a program.

We use CEGAR as a wrapper algorithm around the state-space exploration
algorithm, which is implemented as CPA algorithm [10]. The granularity of
the analysis is defined as a precision that is refined in each iteration of the
CEGAR algorithm. Each abstract state in an ARG has a precision. The precision
of an abstract state can be changed during the refinement step. A too coarse
precision would lead to an imprecise analysis that reports false alarms, a too
fine precision would lead to an expensive state-space exploration; CEGAR tries
to find the “right” level of abstraction in between.

CEGAR consists of two steps, an exploration step and a refinement step,
which are executed alternatingly until a feasible error path is found (and a bug
is reported) or all error paths are proven to be infeasible (and a proof can be
reported): The exploration step computes new successor abstract states and
builds the abstract state space in form of an ARG G = (N,E), using the level
of abstraction determined by CEGAR. When finding a possible specification
violation, a feasibility check is applied, which examines the error path to the
violation. A feasible error path is reported and the analysis terminates. An
infeasible error path is used for a refinement step to gain more relevant facts
from the program, e.g., by applying interpolation, and refine the precision. If
the exploration step does not find any property violation and all abstract states
are explored, the algorithm terminates and the program is proven correct.

The refinement step determines a cut point scut ∈ N and a new precision
for this position, such that the new level of abstraction is sufficient to exclude
the infeasible error path from further exploration of the state space. The level of
abstraction depends on the abstract domain of the analysis and might consist of,
e.g., predicates (for predicate analysis) or a set of variables to be tracked (for
value analysis). The outdated (too imprecise) subgraph Sscut

= (scut, N
′, E′) of

the already explored state space is removed from the ARG G and the subgraph’s
root state scut alone is re-added to G, such that the next exploration step of
CEGAR recomputes this part of the state space with a higher precision. There
are several approaches to determine the cut point scut along the error path [13]:

• cut point at root: full eager refinement is applied, where the whole explored
state space is withdrawn and re-exploration starts from the initial root state
of the ARG (e.g. [4, 14, 16]),

• cut point as deep as possible: only a (minimal) part of the explored
state space is removed (lazy refinement [19]), such that a large part of
the explored state space remains intact and can be reused in the further
analysis (e.g. [8, 10]), or

• cut point in between: trade-off between reuse and reexploration is some-
where in between the above two choices [13].

The second approach performs best in most cases and is currently used in the
field. As shown in Alg. 1, the refinement procedure first determines an abstract
state scut where the infeasible subgraph is to be cut off and new facts are applied
to the precision of the analysis. Lazy refinement is based on the idea that some
parts of a program are analyzed with a coarse abstraction level and only some

Algorithm 1 Default refinement procedure of CEGAR
Input: an infeasible error path σ, an ARG G of the analysis
scut,newFacts := refineW(σ)
refinePrecision(G, scut,newFacts)
removeSubgraph(G, scut)

other parts of a program use a more fine-grained precision. Cutting off only a
part of the ARG in each refinement fulfills this requirement.

2.4 Requirement for Refinement Approaches:
New Precision Strictly More Precise

We use a (partial) order on precisions, such that a precision is considered as
more precise compared to another precision, if it causes the analysis to track
more information. For example, if an analysis uses a precision to track a set
of variables or predicates (as predicate analysis and value analysis do), this
relation is implicitly given by the subset relation. If a precision p is a superset of
another precision p′, then p is more precise than p′. Let an infeasible error path
be a sequence of abstract states 〈s0, s1, ...sn〉 with their precisions 〈p0, p1, ...pn〉,
such that s0 is the root of the program and sn violates the specification. The
sequence 〈p0, p1, ...pn〉 of precisions is more precise then a sequence 〈p′0, p′1, ...p′n〉
of precisions if either p0 is more precise than p′0, or p0 = p′0 and the remaining
sequence 〈p1, ...pn〉 of precisions is more precise than the sequence 〈p′1, ...p′n〉.
We require a refined precision to be strictly more precise than its original, in
order to guarantee progress in CEGAR (monotonic refinement).

Sine CEGAR is a fixed-point algorithm that starts with a coarse precision
and refines it until it is sufficiently precise to prove or refute the program,
the termination criterion for the CEGAR loop depends on a refinement ap-
proach that monotonically increases the precision. To ensure progress of the
analysis, the refinement requirement needs to hold for each single refinement
step in a program analysis with CEGAR.

Removing a subgraph Sscut
= (scut, N

′, E′) from an ARG and applying a
refined precision at its cut point scut fulfills the property, because the precision
itself is more precise for the cut point, the predecessors are not touched, and the
successors are deleted (and implicitly inherit the refined precision). Even if the
removed subgraph Sscut contained a more precise precision for some abstract state,
the refinement requirement holds: Because the refined precision is represented
as mapping from locations to precisions, and assigned as precision of the root
abstract state scut of the subgraph, an ancestor of any removed state will be
seeded with the new, refined precision. During re-exploration of the deleted
subgraph, the analysis will re-explore prefixes of previously encountered error
paths in this part of the state space and perform refinements of other error paths
with cut points that also satisfy the refinement requirement. Strengthening the
precision by additional information (like invariants from an external tool) before
applying the update during the refinement also fulfills the property.

sError

s1

s2

s4

s2

sR2

s3

sR3

scut

Fig. 2: State-space exploration with BAM and cut points for refinement

The refinement requirement is not fulfilled by the in-place approach, be-
cause the in-place refinement potentially deletes block abstractions for already
analyzed parts of the state space and causes additional overhead if recom-
putation is needed for those missing block abstractions. The copy-on-write
approach does not suffer from this problem.

After defining all necessary parts, we will now go on with a motivating
example, before giving the detailed description of the refinement approaches in
BAM. Our goal is to replace an implementation that in-place modifies the ARG
by a new copy-on-write-based approach for modifying the ARG. This allows us
to efficiently keep the original as well as the copy for further processing. In the
later evaluation we show that keeping the original data improves our analysis in
several cases, and in particular, leaves the ARG complete (without holes).

3 Motivating Example

The following example illustrates the differences of the two strategies that could
be used as refinement step in a CEGAR approach. In BAM, the analysis explores
the state space and computes block abstractions for blocks. An example for such
a state-space exploration is given in Fig. 2 (gray triangles represent ARGs, rooted
at the top corner; white triangles represent block abstractions). We use block
abstractions for nested blocks at the entry abstract states s2, s3, and s4 with the
corresponding initial abstract states sR2 , sR3 , and sR4 in the nested analysis for the
blocks at those program locations. In the example, let sR4 be equal to sR2 , such that
we can reuse the existing block abstraction here. Block abstractions are shown as
white triangles and are connected with their ARG via dotted lines. When finding
the property violation sError, the analysis stops and performs a refinement for
the found counterexample. The lazy refinement approach determines a possible
cut-state, i.e., an abstract state scut along the error path, from where the found
property violation is no longer reachable if a refined precision is applied.

s1

s2

s4

s2

sR2

s3

sR3

scut

(a) Strategy 1: In-place refinement step with removed block abstrac-
tions and subgraphs

partial copy

scut
′

sR2
′

s3
′

sR3
′

s1

s2

s4

s2

sR2

s3

sR3

scut

(b) Strategy 2: Copy-on-write refinement step with copied ARGs
and changes only in the most outer ARG

Fig. 3: In-place and copy-on-write refinement approach for BAM

At this point, the two refinement strategies differ:

Figure 3a shows the in-place refinement, removing parts of the explored state
space, i.e., everything after the cut point scut and after the block abstractions
(for abstract states s3 and s4). At the abstract state s2 the in-place approach
implicitly invalidates the ARG for the block abstraction and causes a hole in
the surrounding ARG. Here, the applied block abstraction itself remains valid,
because those abstract states were computed before the refinement.

Figure 3b shows the copy-on-write approach, updating the abstract states.
All inner (nested) ARGs are updated copy-on-write. The red horizontal lines
represent the removed abstract successor states after the block abstraction for
abstract state s4. The ARGs rooted at sR2 and sR3 are copied into new ARGs
with roots at sR2

′ and sR3
′, leaving out the parts that are invalid after updating

the precision. The references to or from block abstractions are also updated.
The difference in the refinement strategies is visible in Figs. 3a and 3b.

While the first approach deletes and recomputes parts of the ARGs, the sec-
ond approach works on fresh copies of the ARGs and uses them along with
the old ARGs. In the following we explain both refinement strategies in more
detail and discuss benefits of the second approach.

4 In-Place Refinement for BAM

The existing approach for refinement in BAM (as described earlier [27]) is
sound, simple, and efficient, but has problems when abstract states need to be
accessible afterwards. Briefly worded, the existing approach modifies cached block
abstractions in-place and deletes important information that is not available
after the refinement and needs to be recomputed for further steps of the analysis.

4.1 In-Place Refinement Algorithm for BAM

Algorithm 2 gives an overview of the in-place refinement of CEGAR for BAM,
without going into detail for the further operation of BAM itself (cache manage-
ment). The in-place refinement tries to mimic lazy abstraction refinement and
CEGAR, i.e., it touches only a small number of abstract states and aims to update
only those states where a precision update will avoid the re-exploration of the cur-
rently found infeasible error path. In contrast to Alg. 1, there is no single ARG G
to work on, but with BAM there are several ARGs and the refinement must be ap-
plied to several of them. Algorithm 2 applies the following steps of the refinement:

After the refinement procedure of the underlying analysis has computed new
facts for the analysis and determined an abstract state scut along the error path,
the refinement approach determines the subgraph S = (N,E) where the cut

Algorithm 2 In-place refinement procedure of CEGAR with BAM
Input: an infeasible error path σ
scut,newFacts := refineW(σ)
S := getARG(scut, σ)
refinePrecision(S, scut,newFacts)
removeSubgraph(S, scut)
while S is nested in another ARG S∗ along σ do
s∗ := getInitState(S, S∗, σ)
removeSubgraph(S∗, s∗)
S := S∗

point scut is located. BAM might have used the block abstraction for S several
times along the error path, and thus, we need to find out which outer subgraphs we
need to remove (see Fig. 3a). Thus, we start from the correct block abstraction, and
apply the removal operations for in-place refinement: The cut point scut and its
subgraph Ss(scut, Ns, Es) get removed from S (with scut ∈ Ns ⊆ N and Es ⊆ E).

If the ARG S represents a block abstraction for a block B, i.e., S is nested
within another ARG S∗ = (N∗, E∗), with the ARG S rooted at the initial
abstract state s∗ ∈ N∗, the subgraph Ss∗ starting at the abstract state s∗ of
the nested-block abstraction is removed from the surrounding ARG S∗. This
strategy is applied transitively up to the most outer ARG. The most outer
block is not used as a block abstraction (it represents the whole program) and
thus never referred to elsewhere in the state space.

The succeeding exploration step of CEGAR will re-explore the removed
parts, use or recompute block abstractions and reach the abstract state with the
refined precision, from where the state space is analyzed without exploring the
previously encountered infeasible error path. Every ARG modification happens
in-place and directly modifies the existing block abstractions. This approach
does not consider whether a block abstraction was already used in another part
of the state space, e.g., as part of another another ARG.

4.2 Problem of Cached Block Abstractions with In-Place Updates

The in-place refinement approach suffers from the in-place update of block
abstractions in the following way: Whenever an missing abstract state belonging
to a hole (missing block abstraction) in the state space is needed to be accessed,
e.g., as part of a new error path, the block-entry state of the hole’s block
abstraction is determined (depending on the context) and a possible valid block
abstraction is recomputed. The previously updated ARG can not be used to fill
the hole, because its precision might have been refined and updated in-place,
such that it is more precise than before and leads to different block-exit abstract
states. In order to not loose this refined precision for further exploration, all
abstract states following the recomputed block abstraction need to be replaced
by their recomputed counterparts (which also happens in-place).

In Fig. 3a this case happens when a property violation is found with an error
path going through the removed block abstraction of s2. Then the subgraph of
s2 needs to be removed and recomputed with a new block abstraction.

After BAM terminates (with or without finding a property violation) we often
generate statistics or collect some data from the reached abstract state space.
However, with holes there also comes the problem of missing data. This is only
a minor problem, however might also irritate and mislead the user. Numeral
statistics like the number of abstract states or the number of predicates are
potentially misleading. Missing parts in non-numerical output, such as proofs
and correctness witnesses, cause problems for later processing of the verification
results. For example, we have identified several tasks in SV-COMP’17, for which
CPAchecker (competition contribution BAM-BnB [1]) computed the correct

result during the analysis, but did not write a correctness witness for the val-
idation, or a witness was written, but the graph of the witness was missing
some parts, such that the witness validator was not correctly guided to some
branches and could not successfully validate the result.

The new copy-on-write approach does not suffer from these problems, because
the necessary data are kept until it is no longer needed, and we obtain correct
statistics and valid (and complete) correctness witnesses.

5 Copy-on-Write Refinement for BAM

This section describes our new approach for copy-on-write refinement in BAM
and considers the computational difference to in-place refinement.

5.1 Copy-on-Write Algorithm for BAM

We define a copy of an ARG S = (N,E) as a second graph S′ = (N ′, E′), where
each ARG abstract state from N and transition from E is copied into N ′ and E′.
Technically, a copy is just a new instance of the same ARG. Instead of changing
an existing ARG S, whenever we would need to remove a subgraph Ss from it, the
copy-on-write algorithm (Alg. 3) copies the ARG S into a new ARG S′, omitting
the corresponding subgraph. Then, we update the precision only for abstract
states in the new instance S′. The new ARG S′ is then registered in the cache as
new block abstraction for one position where previously S was used, such that
further explorations use the new instance S′. The old ARG S remains untouched,
is still valid, and can be accessed when revisiting existing block abstractions.

When copying an ARG S that contains an embedded ARG Snested from a
nested sub-analysis, Alg. 3 only references the existing instance Snested in the
new ARG S′ and does not copy it, except Snested itself has to be modified. In
this case, a copy Snested′ is inserted instead of the original Snested.

Algorithm 3 Copy-on-write refinement procedure of CEGAR with BAM
Input: an infeasible error path σ
scut,newFacts := refineW(σ)
S := getARG(scut, σ)
S′, s′cut := copyWithoutSubgraph(S, scut)
registerARG(S′)
refinePrecision(S′, s′cut,newFacts)
while S′ is nested in another ARG S∗ along σ do
S∗ := getInitState(S′, S∗, σ)
S∗′, s∗′ := copyWithoutSubgraph(S∗′, s∗)
registerARG(S∗′)
S′ := S∗′

Computational Overhead for Copy-on-Write Refinement. The run time
of the copy-on-write refinement is similar to the in-place approach, because
every affected ARG is exactly traversed once in each of the approaches. Thus,
the run time of both refinement strategies is linear in the number of reached
states. The conceptional difference comes with the operation performed on
the affected abstract states: Instead of removing a subgraph of abstract states
from an ARG, we create a flat copy of all other abstract states, i.e., those
abstract states that are not part of the subgraph.

To reduce the run time of the copy operation and the memory footprint for
the copied abstract states, the flat copy keeps all internal data of abstract states
untouched (e.g., information about program location, call stack, data state, etc.)
and just references them from the new abstract states. This perfectly matches
the copy-on-write idea and also the internal data structure of our framework,
where abstract states consist of separate components for separate domains. Only
those components where data needs to be changed are effectively constructed
again, the rest is just referenced. This approach has two benefits:

• There is no need to implement and execute methods for copying internal
data of abstract states (predicates, variable assignments, program counter,
call-stack information, ...). Thus our new approach can easily be applied to
all existing analyses.

• The copy-on-write approach has only a small memory overhead, because only
new ARG states are constructed, the internal data of abstract states are
shared and do not require additional memory.

6 Evaluation

Next we give evidence that the improvements in our refinement approach (no
holes in the ARG) do not lead to significant performance drawbacks.

Benchmark Set. We evaluate our new copy-on-write refinement approach on
a large subset of the SV-benchmark suite 3 containing over 5 500 verification
tasks and compare it with the existing in-place approach.

Setup. We run all our experiments on computers with Intel Xeon E3-1230 v5
CPUs with 3.40 GHz, and limit the CPU time to 15 min and the memory to 15
GB. We use our implementation in CPAchecker 4 in revision r29066. The time
needed for parsing the input program and exporting data is rather small compared
to the analysis time, thus we measure the complete CPU time for the verification
run of CPAchecker (i.e., including parsing, analysis, and witness export).

3 https://github.com/sosy-lab/sv-benchmarks
4 https://cpachecker.sosy-lab.org

https://github.com/sosy-lab/sv-benchmarks
https://cpachecker.sosy-lab.org

Analysis Configuration. BAM can be combined with several analyses and for
our experiments, we choose two combinations that are used in practice: BAM
with predicate analysis (PA) and BAM with value analysis (VA) [2]. We configure
BAM to use function and loop bodies as blocks, and predicate analysis computes
abstractions, just as in the original work [27]. The expressive power of the program
analysis depends only on the expressiveness of the predicate analysis or value
analysis, and is not influenced by BAM. Except for the refinement approach
itself, we do not change any configuration for each of the analyses. Thus, each
of analyses should give the same verification answer in both cases.

Results and Discussion. The experiments show nearly no difference in CPU
time and also no significant difference in memory consumption between the two
refinement approaches for each analysis. The reason for this result in terms of
run time is that copy-on-write is extremely efficient and the light overhead is
compensated by savings for recomputing missing parts of the state space. The
reason for the same memory footprint is that the memory overhead for the
additional ARGs is very small compared to the shared data (e.g., formulas for
tracking variables). Note that memory usage is not fully predictable in general,
as the Java garbage collection is applied non-deterministically.

The quantile plots in Fig. 4 show how many tasks are solved correctly with
each of the approaches and each of the analyses. Figure 4a presents the results for
all correctly solved verification tasks with low number of refinements (≤ 1): no
difference in the results is visible for the two approaches per underlying analysis.
For a low number of refinements, the equality of the results for different refinement
approaches was expected, because the effect of missing block abstractions depends
on a sufficiently large number of refinements. With only zero or one refinement the
new approach behaves exactly as the in-place approach. With a growing number
of refinements, the analysis could in principle perform differently. Figure 4b shows
the CPU time for all correctly solved verification tasks where more than one
refinement was needed. Both refinement approaches perform very similar, e.g.,
keeping block abstractions using copy-on-write is as good as recomputing missing
block abstractions for both underlying analyses. (The similar performance of
predicate analysis and value analysis is a coincidence, because both analyses use
completely different techniques to track variables, assignments, and relations.)

Table 1 shows statistics about all verification results, for both approaches.
There are some cases (for both predicate analysis and value analysis), where
the analysis with one refinement approach delivers a result while the other does
not. Sometimes eager application of a refined precision is beneficial, sometimes
the overhead for recomputation of a missing block abstraction is too expensive.
While the difference for value analysis is negligible, predicate analysis performs
better with the in-place refinement, but needs more refinements than with copy-
on-write. It seems that predicate analysis reacts much more fragile to changes in
the refinement strategy and application of refined precisions than value analysis.

0 200 400 600 800 1 000 1 200
1

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

PA in-place
PA copy-on-write
VA in-place
VA copy-on-write

(a) CPU time of refinement approaches of BAM, ≤ 1 refinements only (plots are identical,
because the changed approach does not affect the analysis)

0 250 500 750 1 000 1 250 1 500 1 750 2 000
1

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
)

PA in-place
PA copy-on-write
VA in-place
VA copy-on-write

(b) CPU time of refinement approaches of BAM, ≥ 2 refinements only (plots only differ for
predicate analysis with a larger run time, e.g., over 200 s, because the changed approach
only affects the analysis if several blocks are analyzed repeatedly and the cache is accessed)

Fig. 4: Quantile plots for CPU time of refinement approaches

Predicate Analysis Value Analysis
In-place Copy-on-write In-place Copy-on-write

Found proofs 2 149 2 121 2 352 2 352
Found bugs 425 422 322 322
Incorrectly found proofs 2 2 0 0
Incorrectly found bugs 0 0 2 2
Solved by only one approach 40 9 4 4
Avg. no. of refinements 53.7 19.4 8.21 8.35

Table 1: Statistics of refinement approaches of BAM

1 10 100 1 000
1

10

100

1 000

in-place

co
py

-o
n-
w
ri
te

(a) #Refinements for predicate analysis

1 10 100 1 000
1

10

100

1 000

in-place

co
py

-o
n-
w
ri
te

(b) #Refinements for value analysis

Fig. 5: Comparison of in-place and copy-on-write refinement approach for predi-
cate analysis and value analysis

Figures 5a and 5b compare the number of needed refinements for each solved
task using scatter plots. The number of refinements includes also cases where
a missing block abstraction has to be recomputed (recomputation is lazy and
only applied if an error path with a hole was found; thus it counts as refinement,
too). For predicate analysis with the copy-on-write approach, the majority of
results is computed with a smaller number of refinements than with the in-place
refinement: on average the new approach needs only a third of the refinements.
For value analysis there is no clear difference in the number of refinements
and the average number of refinements is also similar.

Threats to Validity. Our evaluation uses a large publicly available benchmark
suite of C verification tasks in order to optimize the diversity in size and type of
programs. While it seems clear that the concepts and results can be transferred
to other verification tasks, such a claim is not backed up by our experiments.
Besides the internal structure of a verification task, there are other factors
that influence the behavior of an analysis. Thus, the external validity of the
experiments regarding the application of refinements and precision updates is
increased by the large number of experiments on different tasks. The chosen time
limit of 15min and memory limit of 15GB for verifying a given task is inspired
by the research community on software verification (cf. one of the reports on the
International Competition on Software Verification [5]). Of course, the evaluation
of our approach depends on the tool where it is implemented. To our knowledge,
there is no other tool directly implementing the approach of BAM.

7 Conclusion

We developed a new approach for CEGAR-based refinement of block summaries
that is based on copy-on-write. The new approach makes it possible to con-

struct an abstract reachability graph without holes, such that at the end of
the program analysis, a complete proof is available to the user. The proof can
be dumped for inspection, or a correctness witness can be extracted from the
proof. We designed and implemented the copy-on-write refinement and provide a
ready-to-use implementation in the framework CPAchecker. Re-using existing
underlying analyses is possible without any further development overhead. The
experimental comparison showed that there is almost no performance overhead
for copy-on-write. Furthermore, the experimental comparison of the existing
in-place with the new copy-on-write refinement strategy revealed interesting
insights into some aspects of block summarization. In the future, we plan to
design a parallel version of BAM to utilize a network of computers for our
domain-independent analysis technique (cf. Swarm [21]): The new immutable
block abstractions might also be beneficial in the context of resource-intensive
communication between nodes of a computer network.

References

1. P. Andrianov, K. Friedberger, M. U. Mandrykin, V. S. Mutilin, and A. Volkov. CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In Proc. TACAS, LNCS 10206,
pages 355–359. Springer, 2017.

2. P. Andrianov, V. S. Mutilin, M. U. Mandrykin, and A. Vasilyev. CPA-BAM-Slicing:
Block-abstraction memoization and slicing with region-based dependency analysis -
(competition contribution). In Proc. TACAS, LNCS 10806, pages 427–431. Springer,
2018.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs.
In Proc. SPIN, LNCS 1885, pages 113–130. Springer, 2000.

4. T. Ball and S. K. Rajamani. The Slam project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

5. D. Beyer. Software verification with validation of results (Report on SV-COMP
2017). In Proc. TACAS, LNCS 10206, pages 331–349. Springer, 2017.

6. D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses: Ex-
changing verification results between verifiers. In Proc. FSE, pages 326–337. ACM,
2016.

7. D. Beyer and K. Friedberger. Domain-independent multi-threaded software model
checking. In Proc. ASE, pages 634–644. ACM, 2018.

8. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–525, 2007.

9. D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with dynamic
precision adjustment. In Proc. ASE, pages 29–38. IEEE, 2008.

10. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

11. D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

12. D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In Proc. FASE, LNCS 7793, pages 146–162. Springer, 2013.

13. D. Beyer, S. Löwe, and P. Wendler. Refinement selection. In Proc. SPIN, LNCS 9232,
pages 20–38. Springer, 2015.

14. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Trans. Softw. Eng., 30(6):388–402, 2004.

15. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

16. E. M. Clarke, D. Kröning, N. Sharygina, and K. Yorav. SatAbs: SAT-based
predicate abstraction for ANSI-C. In Proc. TACAS, LNCS 3440, pages 570–574.
Springer, 2005.

17. K. Friedberger. CPA-BAM: Block-abstraction memoization with value analysis and
predicate analysis (competition contribution). In Proc. TACAS, LNCS 9636, pages
912–915. Springer, 2016.

18. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In Proc. PLDI, pages 1–13. ACM, 2004.

19. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

20. C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Symposium
on Semantics of Algorithmic Languages, pages 102–116. Springer, 1971.

21. G. J. Holzmann, R. Joshi, and A. Groce. Tackling large verification problems with
the Swarm tool. In Proc. SPIN, LNCS 5156, pages 134–143. Springer, 2008.

22. R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, 2011.

23. K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV, LNCS 4144,
pages 123–136. Springer, 2006.

24. T. W. Reps. Program analysis via graph reachability. In Proceedngs of the 1997
International Symposium on Logic Programming (ILPS’97), pages 5–19. MIT, 1997.

25. O. Sery, G. Fedyukovich, and N. Sharygina. Funfrog: Bounded model checking with
interpolation-based function summarization. In Proc. ATVA, LNCS 7561, pages
203–207. Springer, 2012.

26. O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-based function summaries
in bounded model checking. In Proc. HVC, LNCS 7261, pages 160–175. Springer,
2012.

27. D. Wonisch and H. Wehrheim. Predicate analysis with block-abstraction memoiza-
tion. In Proc. ICFEM, LNCS 7635, pages 332–347. Springer, 2012.

28. Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using boolean
satisfiability. TOPLAS, 29(3):16, 2007.

	 white.black -28mm grayProc. ISoLA 2018, ©Springer-5mm 16mm In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization with Caching

