
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Two-Layered Falsification of Hybrid Systems Guided by
Monte Carlo Tree Search

Anonymous Author(s)

ABSTRACT
Not many real-world hybrid systems are amenable to formal verifica-

tion, due to their complexity and black box components.Optimization-
based falsification—a methodology of search-based testing that em-

ploys stochastic optimization—is thus attracting attention as an

alternative quality assurance method. Inspired by the recent work

that advocates coverage and exploration in falsification, we intro-

duce a two-layered optimization framework that uses Monte Carlo
tree search (MCTS), a popular machine learning technique with solid

mathematical and empirical foundations (e.g. in computer Go).MCTS

is used in the upper layer of our framework; it guides the lower layer

of local hill-climbing optimization, thus balancing exploration and

exploitation in a disciplined manner. We demonstrate the proposed

framework through experiments with benchmarks from the auto-

motive domain.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Mathematics of computing → Stochastic
control and optimization; • Theory of computation → Ran-
dom search heuristics;

KEYWORDS
cyber-physical system, hybrid system, testing, falsification, stochas-

tic optimization, temporal logic

ACM Reference Format:
Anonymous Author(s). 2018. Two-Layered Falsification of Hybrid Systems

Guided by Monte Carlo Tree Search. In Proceedings of ACM International
Conference on Embedded Software (EMSOFT’18). ACM, New York, NY, USA,

10 pages.

1 INTRODUCTION
Hybrid Systems. Quality assurance of cyber-physical systems (CPS)

is a problem of great interest. Errors in CPS, such as cars and aircrafts,

can lead to economic and social damage, including loss of human

lives. Unique challenges in quality assurance are posed by the nature

of CPS: in the form of hybrid systems they comprise the discrete

dynamics of computers and the continuous dynamics of physical

components. Continuous dynamics combined with other features,

such as complexity (a modern car can contain 10
8
lines of code)

and black-box components (such as parts coming from external

suppliers), make it very hard to apply formal verification to CPS.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

EMSOFT’18, September 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s).

input
true

false

Boolean semantics

input

more robustly
true

less so
quantitative

robust semantics

?? This way to  
climb down :)

Figure 1: From Boolean to robust semantics

An increasing number of researchers and practitioners are there-

fore turning to optimization-based falsification as a quality assurance
measure for CPS. The problem is formalized as follows.

The falsification problem
• Given: a modelM (that takes an input signal u and yields

an output signalM(u)), and a specification φ (a temporal f-

ormula)

• Answer: error input, that is, an input signal u such that the

corresponding outputM(u) violates φ

u // M
M(u)
̸|= φ ?

//

In the optimization-based falsification approach, the above falsifica-

tion problem is turned into an optimization problem. This is possible

thanks to robust semantics of temporal formulas [18]. Instead of the

Boolean satisfaction relation v |= φ, robust semantics assigns a quan-

tity Jv,φK ∈ R∪ {∞,−∞} that tells us, not only whether φ is true or

not (by the sign), but also how robustly the formula is true or false.

This allows one to employ hill-climbing optimization (see Fig. 1):

we iteratively generate input signals, in the direction of decreasing

robustness, hoping that eventually we hit negative robustness.

Optimization-based falsification is a subclass of search-based test-
ing: it adaptively chooses test cases (input signals u) based on previ-

ous observations. One can use stochastic algorithms for optimization,

such as simulated annealing (SA), Global Nelder-Mead (GNM) and co-

variance matrix adaptation evolution strategy (CMA-ES [5]), which

turn out to be much more scalable than model checking algorithms

that rely on exhaustive search. Note also that the system modelM

can be black box: observing the correspondence between input u
and outputM(u) is enough. Observing an errorM(u′) for some

input u′ is sufficient evidence for a system designer to know that

the system needs improvement. Besides these practical advantages,

optimization-based falsification is an interesting topic from a scien-

tific point of view, combining formal and structural reasoning with

stochastic optimization.

The approach of optimization-based falsification was initiated

in [18] and has been actively pursued ever since [1, 3, 4, 11, 13–

15, 17, 30, 37, 38]. See [28] for a recent survey. There are now mature

tools, such as Breach [13] and S-Taliro [4], which work with industry-

standard Simulink models.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

EMSOFT’18, September 2018, Torino, Italy Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

MCTS  
Optimization

Hill-Climbing  
Optimization

Search  
region

(, 5.2)
Concrete input  

(red dot)
and reward

Figure 2: Our two-layered optimization framework

The Exploration-Exploitation Trade-off in Falsification. In optimiza-

tion-based falsification, the important role of coverage is advocated
by many authors [1, 11, 15, 30] (see also §5). One reason is that in

highly nonconvex optimization problems for falsification, eager hill

climbing can easily be trapped in local minima and thus fail to find

an error input (i.e. a global minimum) that exists elsewhere. Another

reason is that coverage gives a certain degree of confidence for

absence of error input, in case search for error input is unsuccessful.

This puts us in the exploration-exploitation trade-off,1 a typical
dilemma in stochastic optimization and machine learning (specifi-

cally in reinforcement/active learning). While exploitation guides us

to pursue the direction that seems promising based on the previous

observations, we have to occasionally explore in order to avoid get-

ting stuck local minima. Many common stochastic hill-climbing algo-

rithms, such as SA, GNM and CMA-ES, contain implicit exploration

mechanisms. At the same time, explicit methods for exploration in

falsification have been pursued e.g. in [1, 11, 15, 30] (see §5).

Contribution: Two-Layered Optimization for Falsification Guided by
Monte Carlo Tree Search. Our main contribution is, in the context of

hybrid system falsification, to balance exploration and exploitation in

a systematic and mathematically disciplined way using Monte Carlo
tree search (MCTS) [7, 29]. We integrate hill-climbing optimization

in MCTS, and obtain a two-layered optimization framework.

MCTS uses a search tree whose nodes are usually organized ac-

cording to causal relationships, and interleaves search (walking down
the already expanded tree, in a promising direction) with playout
(expanding a new node and estimating its reward). Typical applica-

tions allowing such a structured search space are decision problems
as games. In particular, MCTS is attracting a lot of attention thanks

to its success in computer Go [36]. One main cause for the success

of MCTS is search strategies
2
that nicely balance exploration and

exploitation. For example, the most common search strategy called

UCT (upper confidence tree [29]) is derived from a solid theoretical

background, namely the upper confidence bounds (UCB) strategy

for the multi-armed bandit problem. While MCTS is a relatively new

methodology, it has established its position in the rapidly growing

community of machine learning. See [7] for a survey.

Our framework uses robustness values as rewards in MCTS, and

employs hill-climbing optimization for playout in MCTS. This way

we integrate hill-climbing in Monte Carlo tree search in a systematic

way. In our two-layered framework (Fig. 2), the upper optimization

1
Also called the variance-bias compromise in the literature.

2
Often called tree policies in the MCTS literature.

time

throttle

u1

u2

u3

u4

time

vehicle speed

v

Figure 3: A piecewise constant input signal (one-dimensional,
throttle, left) for a simple automotive powertrain model, and
the corresponding output signal (one-dimensional, vehicle
speed, right).

layer picks (by MCTS) a region in the input space, from which a

concrete input value should be sampled. The lower layer then picks

(by hill-climbing) an optimal concrete input value within the pre-

scribed region. We also compute the robustness of the specification

under the chosen input. This value is fed back to the upper layer as

a reward, which is then used by the tree search strategy to balance

exploration and exploitation.

In our two-layered framework, hill-climbing optimization—whose

potential in falsification of hybrid systems has been established, see

e.g. [28]—is supervised by MCTS, with MCTS dictating which re-

gion to sample from. By expanding new children, MCTS can tell

hill-climbing optimization to try an input region that has not yet ex-

plored, or to exploit and dig deep in a direction that seems promising.

Such combination of MCTS and application-specific lower-layer op-

timization seems to be a useful approach that can apply to problems

other than hybrid system falsification. See §5 for further discussion.

Our use of MCTS depends on incrementally synthesizing K in-

put segments one after another. Those input segments are for the

time intervals [0, TK), [
T
K ,

2T
K), . . . , [

(K−1)T
K ,T], where T is the time

horizon. The Monte Carlo search tree will then be of depth K . See
Fig. 3. In this paper we restrict input signals to piecewise-constant

ones (this is a common assumption in falsification); an edge in the

MCTS search tree from depth i − 1 to i (see Fig. 2) determines the

input value ui for the interval [
(i−1)T
K , iTK).

We have implemented our two-layered falsification framework in

MATLAB, building on Breach [13].
3
Our experiments with bench-

marks from [12, 24, 27] demonstrate the possible performance im-

provements, especially in the ability of finding rare counterexamples.

Organization. In §2 we formulate the falsification problem. In §3

we present our main contribution, namely a two-layered optimiza-

tion framework for falsification that combinesMCTS and hill-climbing.

Our experimental results are in §4. In §5 we discuss related work,

locating the current work in the context of falsification and also of

other applications of MCTS and related machine learning methods.

In §6 we conclude with some directions of future research.

Notations. The set of (positive, nonnegative) real numbers is de-

noted by R (and R+,R≥0, respectively). Closed and open intervals

are denoted such as [0, 2] and (2, 3); [0, 2) = {x ∈ R | 0 ≤ x < 2} is a

half-closed half-open interval. For a setX , |X | denotes its cardinality.

3
Code obtained at https://github.com/decyphir/breach.

2

https://github.com/decyphir/breach

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Falsification of Hybrid Systems by Monte Carlo Tree Search EMSOFT’18, September 2018, Torino, Italy

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 PROBLEM: HYBRID SYSTEM
FALSIFICATION

We formulate the problem of hybrid system falsification. We also

introduce robust semantics of temporal logics [14, 18] that allows

us to reduce falsification to an optimization problem.

Definition 2.1 (time-bounded signal). Let T ∈ R+ be a positive

real. Anm-dimensional signal with a time horizon T is a function

w : [0,T] → Rm .

Let w : [0,T] → Rm and w′ : [0,T ′] → Rm be m-dimensional

signals. Their concatenation w · w′ : [0,T + T ′] → Rm is an m-

dimensional signal defined by (w · w′)(t) := w(t) if t ∈ [0,T], and
w′(t −T) if t ∈ (T ,T +T ′].

LetT1,T2 ∈ (0,T] such thatT1 < T2. The restrictionw|[T1,T2] : [0,T2−
T1] → R

m
of w : [0,T] → Rm to the interval [T1,T2] is defined by

(w|[T1,T2])(t) := w(T1 + t).

Definition 2.2 (system modelM). A system model, withm-dimen-

sional input and n-dimensional output, is a functionM that takes an

input signal u : [0,T] → Rm and returns a signalM(u) : [0,T] →
Rn . Here the common time horizon T ∈ R+ is arbitrary.

Some recent works including [25] use sequences of time-stamped

values as basic objects in their problem formulation, in place of

continuous-time signals (as we do in the above). This difference is

mostly presentational and not essential.

As a specification language we use signal temporal logic (STL) [32].
We do so for simplicity of presentation; we can also use more ex-

pressive logics such as the one in [2].

In what follows Var is the set of variables. Variables stand for

physical quantities, control modes, etc. ≡ denotes syntactic equality.

Definition 2.3 (syntax). In STL, atomic propositions and formulas
are defined as follows, respectively: α ::≡

(
f (x1, . . . ,xn) > 0

)
, and

φ ::≡ α | ⊥ | ¬φ | φ ∧ φ | φ UI φ. Here f is an n-ary function

f : Rn → R, x1, . . . ,xn ∈ Var, and I is a closed non-singular interval
in R≥0, i.e. I = [a,b] or [a,∞) where a,b ∈ R and a < b.

We omit subscripts I for temporal operators if I = [0,∞). Other
common connectives like ∨,→,⊤, □I (always) and ^I (eventually),
are introduced as abbreviations: ^Iφ ≡ ⊤UI φ and □Iφ ≡ ¬^I¬φ.
Atomic formulas like f (®x) ≤ c , where c ∈ R is a constant, are also

accommodated by using negation and the function f ′(®x) := f (®x)−c .

Definition 2.4 (robust semantics [14]). For an n-dimensional signal

w : R≥0 → R
n
and t ∈ R≥0, wt

denotes the t-shift of w, that is,

wt (t ′) := w(t + t ′).
Let w : R≥0 → R

|Var |
be a signal, and φ be an STL formula. We

define the robustness Jw,φK ∈ R∪ {∞,−∞} as follows, by induction.
Here

d
and

⊔
denote infimums and supremums of real numbers,

respectively. Their binary version ⊓ and ⊔ denote minimum and

maximum.

Jw, f (x1, · · · ,xn) > 0K := f
(
w(0)(x1), · · · ,w(0)(xn)

)
Jw,⊥K := −∞ Jw,¬φK := −Jw,φK
Jw,φ1 ∧ φ2K := Jw,φ1K ⊓ Jw,φ2K
Jw,φ1 UI φ2K :=

⊔
t ∈I

(
Jwt ,φ2K ⊓

d
t ′∈[0,t)Jw

t ′ ,φ1K
)

Here are some intuitions and consequences of the definition. The

robustness Jw, f (®x) > cK stands for the vertical margin f (®x) − c for
the signal w at time 0. A negative robustness value indicates how

A = { , , , }
where

…

time 0

time T/K

time 2T/K

time 3T/K

time T
throttle

brake

100500

325

162.5

Figure 4: Our MCTS search tree, for a system modelM with
two input values (throttle and brake) whose ranges are [0, 100]
and [0, 325], respectively.Wepartition each interval to two (i.e.
L1 = L2 = 2); thus the branching degree |A| is 2 × 2.

far the formula is from being true. The robustness for the eventually

modality is computed by Jw,^[a,b](x > 0)K =
⊔
t ∈[a,b]w(t)(x).

The original semantics of STL is Boolean, given by a binary re-

lation |= between signals and formulas. The robust semantics re-

fines the Boolean one as follows: Jw,φK > 0 implies w |= φ, and
Jw,φK < 0 impliesw ̸ |= φ, see [18, Prop. 16]. Optimization-based fal-

sification via robust semantics hinges on this refinement. Although

the definitions so far are for time-unbounded signals only, we note

that the robust semantics Jw,φK, as well as the Boolean satisfaction

w |= φ, can be easily adapted to time-bounded signals (Def. 2.1).

Finally, here is a formalization of the falsification problem. It

refines the description in §1. In particular, its use of real-valued

robust semantics enables use of hill-climbing optimization. See Fig. 1.

Definition 2.5 (falsifying input). LetM be a system model, and φ
be an STL formula. A signal u : [0,T] → Rm is a falsifying input if
JM(u),φK < 0 (that impliesM(u) ̸|= φ).

3 TWO-LAYERED OPTIMIZATION
FRAMEWORKWITH MCTS

In this section we present our main contribution, namely a two-

layered optimization framework for hybrid system falsification. It

combines: Monte Carlo tree search (MCTS) [7, 29] (the upper layer)
for high-level planning; and hill-climbing optimization (such as SA,

GNM and CMA-ES, the lower layer) for local input search (see Fig. 2

for a schematic overview). The upper layer steers the lower layer by

the UCT strategy [29], an established method in machine learning

for balancing exploration and exploitation.

We present two algorithms: the basic two-layered algorithm (Alg. 1),

and the one enhanced with progressive widening (Alg. 3). The auxil-

iary functions used therein are presented in Alg. 2. Our algorithms

work on an MCTS search tree; its example is shown in Fig. 4.

3.1 The Basic Two-Layered Algorithm (Alg. 1)
We start with Alg. 1, using the example in Fig. 4.

Time Staging. We search for a falsifying input signal, focusing on

piecewise-constant signals (Fig. 3, left). The interval [0,T] is divided
into K intervals of the same size (here K is a tunable parameter). The

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

EMSOFT’18, September 2018, Torino, Italy Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Newly
expanded

child

……

time (d-1)T/K

time dT/K

time (d+1)T/K

time T

…

 ud(1)

ud+1(1)

ud+2(1)

uK(1)

…

 ud(2)

ud+1(2)

ud+2(2)

uK(2)

…

ud

ud+1

ud+2

uK

…

Playout by hill-climbing optimization

… … … …

Reward
JM(u1 . . .uK), 'K

Figure 5: Playout by hill-climbing optimization

time points 0, TK ,
2T
K , . . . ,

(K−1)T
K —at which those intervals start—

are called control points. Our goal is therefore to find a sequence

u1, . . . , uK , where each ui = (ui1, . . . ,uiM) is an M-dimensional

real vector (M is the number of input for the modelM), so that the

corresponding piecewise-constant signal is a falsifying one (Def. 2.5).

We assume intervals Ii = [u
min

i ,umax

i] (i ∈ {1, . . . ,M}) for the
ranges of input u1, . . . ,uM of the modelM.

The Search Tree. A search tree inMCTS has a branching degree |A|,
where the set A is called an action set in the MCTS literature. In Go,

for example, an action set A consists of possible moves.

We use, as the action set A, a partitioning of the input space I1 ×
· · · × IM . We partition the input space into L1 × · · · ×LM hypercubes

of the equal size, according to predetermined parameters L1, . . . ,LM ,

whereM is the number of input signals of the system and Li indicates
how finely the i-th input should be partitioned. In Fig. 4 we present

an example where M = 2 and L1 = L2 = 2. There we have four

actions in the set A, corresponding to the four square regions.

An edge in our search tree represents a choice of an input region—

from which we choose the input value ui from—for a single control

point
(i−1)T
K . The depth of the tree is K (the number of control

points). We follow the usual convention and specify a node of a

|A|-branching tree by a word w = a1a2 . . . aj over the alphabet A
(here j ≤ K). That is: the root is ε (the empty word), its child in the

direction a1 ∈ A is a1, its children are a1a1,a1a2, . . . , and so on.

In general, a node in an MCTS search tree is decorated by two

values: reward R and visit count N . In our case, R stores the current

estimate of the smallest (i.e. the best) robustness value. Both values

are updated explicitly during back-propagation (see below).

Monte Carlo Tree Search Sampling. Much like usual MCTS, Alg. 1

iteratively expands the search tree T . Initially the tree T is root-

only (Line 3), and in each iteration—called MCTS sampling—the
invocation of MCTSSample on Line 10 adds one new node to T . (In

the MCTS literature, expanding a child means adding the child to T .)

We repeat MCTS sampling until a counterexample is found, or the

MCTS budget is used up after the max number of iterations (Line 9).

The exploration-exploitation trade-off in MCTS is in the choice

of the node to add. In each MCTS sampling, we start from the root

(Line 10), walk down in the tree T choosing already expanded nodes

(Lines 19–20), until we expand a child (Lines 23–24). Growing a wider

tree means exploration, while a deeper tree means exploitation.

We use the UCT strategy [29], the most commonly used strategy

in MCTS, to resolve the dilemma. UCT is based on the UCB strategy

for the multi-armed bandit problems; Line 2 of Alg. 2 follows UCB,

where the exploitation score 1 −
R(wa)

maxw′∈T R(w ′)
and the exploration

score

√
2 lnN (w)
N (wa) are superposed using a scaler c . Recall that our

rewards R(wa) for w’s children are given by robustness estimates

from previous simulations, and that falsification favors smaller R.
Note also that values of R can be greater than 1 in general. In the

exploitation score 1−
R(wa)

maxw′∈T R(w ′)
, therefore, we normalize rewards

to the interval [0, 1] and reverse their order.
4
The exploration score√

2 lnN (w)
N (wa) is taken from UCB: the visit count N (w) tells how many

times the nodew has been visited, that is, how many offsprings the

nodew currently has in T . The scaler, for the trade-off, is a tunable

parameter, as usual in MCTS.

Playout and Back-Propagation. In MCTS, the reward of a newly

expanded node a1a2 . . . ada (see e.g. Line 24) is computed by an oper-

ation called playout. The result is then back-propagated, in a suitable

manner, to the ancestors: a1 . . . ad , a1 . . . ad−1, . . . and finally ε .
In our MCTS algorithms for falsification we use hill-climbing

optimization (such as SA, GNMandCMA-ES) for playout. See Line 25,

where input values u1, u2, . . . , uK are sampled by stochastic hill-

climbing optimization, so that the resulting robustness value of the

specification φ becomes smaller. The regions to sample those values

from are dictated by theMCTS tree: u1 ∈ Reg(a1), . . . , ud ∈ Reg(ad)
follow the actions a1, . . . ,ad determined so far (here Reg is from

Alg. 2); ud+1 ∈ Reg(a) follows the newly chosen action a (Line 23);

and the remaining values ud+2, . . . , uK can be chosen from the

whole input range I1 × · · · × IM .

4
We can assume nonnegative values of R , otherwise we already have a falsifying input.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Falsification of Hybrid Systems by Monte Carlo Tree Search EMSOFT’18, September 2018, Torino, Italy

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 Basic Two-Layered Algorithm

Require: a system model M, an STL formula φ, intervals Ii =
[umin

i ,umax

i] (i ∈ {1, . . . ,M}) for the ranges of input u1, . . . ,uM
ofM, time horizon T ∈ R+, and the following tunable parame-

ters: the numberK of control points, the number Li of partitions
of the input range [umin

i ,umax

i] for each i ∈ {1, . . . ,M}, the
scaler c in Line 2 of Alg. 2, and an MCTS budget (the maximum

number of MCTS sampling, Line 9)

1: functionMCTSPreprocess

2: A← {1, . . . ,L1} × · · · × {1, . . . ,LM } ▷ the set of actions

3: T ← {ε} ▷ the MCTS search tree, initially root-only

4: N ← (ε 7→ 0) ▷ visit count N initialized, defined only for ε
5: R ← (ε 7→ ∞) ▷ reward function R initialized

6:
−→u ← null ▷ place holder for a falsifying input

7: Rmin ←∞ ▷ place holder for a minimum reward

8:
−→a min ← null ▷ the most promising action sequence

9: while R(ε) ≥ 0 and within the MCTS budget do
10: MCTSSample(ε)

11: if −→u , null then
▷ a falsifying input is found already in preprocessing

12: return −→u
13: else ▷ return the most promising action sequence

14: return −→a min

15: functionMCTSSample(w) ▷ letw = a1 . . . ad with ai ∈ A
16: N (w) ← N (w) + 1
17: if |w | < K then
18: if wa′ ∈ T for all a′ ∈ A then

▷ if all children have been expanded

19: a ← UCBSample(w) ▷ pick a childwa by UCB

20: MCTSSample(wa) ▷ recursive call

21: R(w) ← mina′∈A R(wa′) ▷ back-propagation

22: else
23: randomly sample a ∈ A from {a | wa < T }

▷ expand a random unexpanded childwa
24: T ← T ∪ {wa}
25: u1, . . . , uK ▷ playout by hill-climbing

← arg min
HillClimb

u1∈Reg(a1), ...,ud ∈Reg(ad),
ud+1∈Reg(a),

ud+2, ...,uK ∈I1×···×IM

JM(u1 . . . uK), φK

26: N (wa) ← 0; R(wa) ← JM(u1 . . . uK), φK
27: if R(wa) < 0 then
28:

−→u ← u1 . . . uK
▷ a falsifying input is found and stored in

−→u
29: if R(wa) < Rmin then
30: Rmin ← R(wa); −→a min ← a1 . . . ada

31: R(w) ← mina′∈A R(wa′) ▷ back-propagation

32: functionMain

33:
−→x ←MCTSPreprocess

34: if −→x = −→u , an input signal then ▷ Line 11

35: return −→u
36: else ▷ −→x = a1a2 . . . aK ′ ∈ A

∗
with some K ′ ≤ K , Line 13

37: return arg min
HillClimb

u1∈Reg(a1), ...,uK ′ ∈Reg(aK ′),
uK ′+1, ...,uK ∈I1×···×IM

JM(u1 . . . uK), φK

Algorithm 2 Auxiliary Functions for Algs. 1 & 3

1: function UCBSample(w)

2: return arg max

a∈A

((
1 −

R(wa)

maxw ′∈T R(w ′)

)
+ c

√
2 lnN (w)

N (wa)

)
3: function Reg(a) ▷ The input region for an action a

▷ a ∈ A is of the form (k1, . . . ,kM), see Line 2 of Alg. 1

4: return
∏M

i=1

[
umin

i +
ki−1
Li (u

max

i − umin

i) ,

umin

i +
ki
Li (u

max

i − umin

i)

)
Algorithm 3 Two-Layered Algorithm with Progressive Widening

Require: The same data as required in Alg. 1, and additionally,

constants C,α (used in Line 4)

The algorithm is the same as Alg. 1, except that the function

MCTSSample is replaced by the following one.

1: function MCTSSample(w) ▷ letw = a1 . . . ad with ai ∈ A
2: N (w) ← N (w) + 1
3: if |w | < K then

4: if
(��{a′ ∈ A | wa′ ∈ T }�� ≥ C · N (w)α

orwa′ ∈ T for all a′ ∈ A

)
then

▷ progressive widening: all or enough children expanded

5: a ← UCBSample(w) ▷ pick a childwa by UCB

6: MCTSSample(wa) ▷ recursive call

7: R(w) ← mina′∈A R(wa′) ▷ back-propagation

8: else
9: S ← (a maximal convex subset of

⋃
wa′<T Reg(a

′))

10: u1, . . . , uK ▷ playout by hill-climbing

← arg min
HillClimb

u1∈Reg(a1), ...,ud ∈Reg(ad),
ud+1∈S,

ud+2, ...,uK ∈I1×···×IM

JM(u1 . . . uK), φK

11: a ←
(
a ∈ A such that ud+1 ∈ Reg(a)

)
12: T ← T ∪ {wa}
13: N (wa) ← 0; R(wa) ← JM(u1 . . . uK), φK
14: if R(wa) < 0 then
15:

−→u ← u1 . . . uK
16: if R(wa) < Rmin then
17: Rmin ← R(wa); −→a min ← a1 . . . ada

18: R(w) ← mina′∈A R(wa′) ▷ back-propagation

See Fig. 5 for an example. Smaller gray squares represent actions,

and red dots represent input values (notice that they are chosen from

the gray regions). The values u1, . . . , uK are sampled repeatedly so

that the robustness value JM(u1 . . . uK), φK becomes smaller.

An intuition of this playout operation is that we sample the best

input signal u1 . . . uK , under the constraints imposed by the MCTS

search tree (namely, the input regions prescribed by the actions).

The least robustness value thus obtained is assigned to the newly

expanded node wa as its reward (Line 26). If R(wa) < 0 then this

means we have already succeeded in falsification (Line 28).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

EMSOFT’18, September 2018, Torino, Italy Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Back-propagation is an important operation in MCTS. Following

the intuition that the reward R(w) is the smallest robustness achiev-

able at the nodew , we define the reward of an internal nodew by the

minimum of its children’s rewards. See Lines 21 and 31. Note that,

via recursive calls of MCTSSample (Line 20), the result of playout is

propagated to all ancestors.

A Two-Layered Framework. In Alg. 1, hill-climbing optimization

occurs twice, in Lines 25 and 37. The first occurrence is in playout

of MCTS—this way we interleave MCTS optimization (by growing a

tree) and hill-climbing optimization. See Fig. 2. MCTS optimization

is considered to be a preprocessing phase in Alg. 1 (Line 33): its

principal role is to find an action sequence
−→a min, i.e. a sequence

of input regions, that is most promising. In the remainder of the

Main function, the second hill-climbing optimization is conducted

for falsification, where we sample according to
−→a min.

The two occurrences of hill-climbing optimization (Lines 25 and 37)

therefore have different roles. Given also the fact that the first occur-

rence is repeated every time we expand a new child, we choose to

spend less time for the former than the latter. In our implementation,

we set the timeout to be 5–15 seconds for the first hill-climbing

sampling in Line 25 (TOpo in §4), while for the second hill-climbing

sampling in Line 37 the timeout is 300 seconds.

A falsifying input
−→u is often found already in the preprocessing

phase. In this case the Main function simply returns
−→u (Line 35).

3.2 The Two-Layered Algorithm with
Progressive Widening (Alg. 3)

Our second algorithm (Alg. 3) differs from the basic one (Alg. 1) in

two points:

Progressive Widening. Alg. 3 uses progressive widening [10]; see

Line 4. Unlike in the basic algorithm (Line 18 of Alg. 1), we do not

always expand a new child even if there are unexpanded ones; the

threshold C · N (w)α is computed using the visit count N (w) and
tunable parameters C,α .

Progressive widening is a widely employed technique inMCTS for

coping with a large or infinite action setA—in such a case expanding

all children incurs a lot of computational cost. See e.g. [31]. In our

Alg. 3 the action set A can be quite large, depending on the numbers

L1, . . . ,Lm of input range partitions.

Hill-Climbing Optimization for Expanding Children. In progressive
widening, since wemay not expand all the children, it makes sense to

be selective about which child to expand. This is in contrast with ran-

dom sampling in Alg. 1 (Line 23). See Line 10 of Alg. 3, where we first

playout by hill-climbing optimization. The value ud+1 thus obtained
is then used to determine which childwa to expand, in Line 11. In or-

der to ensure that the new childwa is indeed previously unexpanded,
the value ud+1 is sampled from the set

⋃
wa′<T Reg(a

′); in fact we

Already
expanded

Which child
to expand?

is non-convex…

➜ sample from

 S = or S =

Figure 6: Lines 9–11 of Alg. 3

restrict to its con-

vex subset (Line 9)

because many hill-

climbing optimiza-

tion algorithmswork

best in a convex

domain. See Fig. 6

for illustration.

3.3 Discussion
Our algorithms interleave MCTS optimization and hill-climbing opti-

mization: the latter is used in the playout operation of the former, for

sampling and estimating the reward of a high-level input-synthesis

strategy. This high-level strategy is concretely given by a sequence

a1a2 . . . ad of input regions. Via the UCT tree search strategy, we

ensure that our search in a search tree is driven not only by depth

but also by width. This way we enhance exploration in search-based

falsification, in the sense that different regions of the input space are

sampled in a structured and disciplined manner. It is an interesting

topic for future work to quantify the coverage guarantees that can
potentially be achieved by our approach.

In falsification of hybrid systems, it is often the case that simula-
tion, i.e. running a modelM under a given input signal, is computa-

tionally the most expensive operation. In our algorithm it happens

in Lines 25 and 37, since a hill-climbing optimization algorithm tries

many samples of u1, . . . , uK . Simplifying Line 25, e.g. by decimating

the control points, can result in a useful variation of our algorithm.

Among the tunable parameters of the algorithm is the scaler c
used for the UCB sampling (Line 2 of Alg. 2). Having this parame-

ter is unique to our falsification framework in comparison to plain

robustness guided optimization (with hill-climbing only). Specifi-

cally, the parameter c endows our algorithm with flexibility in the

exploration-exploitation trade-off. Given the diversity of instances

of the hybrid system falsification problem, it is unlikely that there is

a single value of c that is optimal for all falsification examples. An

engineer can then use her/his expert domain knowledge about the

example to tune the parameter c .

4 EXPERIMENTAL EVALUATION
We have implemented our algorithms—the basic algorithm (Alg. 1,

henceforth called “basic”) and the variation with progressive widening
(Alg. 3, henceforth called “P.W.”). The implementation is in MATLAB,

using Breach [13] as a front-end for hill-climbing optimization and

for its implementation of the robust semantics.

The experiments have two goals. Firstly, in §4.2, we evaluate

the falsification performance of our proposal in comparison to the

state-of-the-art. Since our MCTS enhancement emphasizes coverage,

our interest is in the success rate in hard problem instances rather

than in execution time. Secondly, in §4.3, we evaluate the impact of

different choices of parameters for our algorithms (such as the UCB

scaler c in the Alg. 2).

4.1 Experiment Setup
The experiments are based on the following benchmarks.

The automatic transmission (AT) model is a Simulink model that

was proposed as a benchmark for falsification in [24]. It has input

signals throttle ∈ [0, 100] and brake ∈ [0, 325], and computes the

car’s speed speed, the engine rotation rpm, and the selected gear gear .
We consider the following specifications, taken in part from [24].

S1 ≡ □[0,30] (speed < 120) can be falsified easily by hill-climbing

with an input throttle = 100 and brake = 0 throughout.

S2 ≡ □[0,30] (gear = 3 → speed ≥ 20) states that in gear three,

the speed should not get too low. The difficulty arises from the lack

of guidance by robustness as long as gear , 3: we follow [24] and

take gear = 1, . . . , gear = 4 as Boolean propositions, instead of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Falsification of Hybrid Systems by Monte Carlo Tree Search EMSOFT’18, September 2018, Torino, Italy

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

taking gear as a numeric variable. In contrast to [24] we use a more

difficult speed threshold of 20 instead of 30.

S3 ≡ ^[10,30] (speed < [53, 57]) states that it is not possible to
maintain a constant speed after 10s. A falsifying trace needs precise

inputs to hit and maintain the narrow speed range.

S4 ≡ □[0,29](speed < 100) ∨□[29,30](speed > 65) is a specification

designed to demonstrate the limitation of robustness-guided falsifica-

tion by hill-climbing optimization only. Here, a falsifying trajectory

has to reach high speed before braking down again. Similarly to S2,

the speed 100 has to be reached much earlier than the indicated time

bound of 29 to give sufficient time for deceleration. However, the

robustness computation shadows either of the disjuncts by using

the maximum as semantics for the ∨-connective.

S5 ≡ □[0,30](rpm < 4770 ∨ □[0,1](rpm > 600)) aims to prevent

systematic sudden drops from high to low rpm. It is falsified if an rpm
peak above 4770 is immediately followed by a drop to rpm ≤ 600.

The second benchmark is the Abstract Fuel Control (AFC) mod-

el [27]. It takes two input signals, pedal angle and engine speed, and
outputs the critical signal air-fuel ratio (AF), which influences fuel

efficiency and car performance. The value is expected to be close to

a reference value AFref . The pedal angle varies in the range [0, 61.1]

and the engine speed varies in the range [900, 1100]. According

to [27], this setting corresponds to normal mode, whereAFref = 14.7.

The basic requirement of the AFC is to keep the air-to-fuel ratio

AF close to the referenceAFref . However, changes to the pedal angle
cause brief spikes in the output signalAF before the controller is able

to regulate the engine. Falsification is used to discover amplitude

and periods of such spikes.

The formal specification Sbasic is □[11,30](¬(|AF − AFref | >
0.05∗14.7)). It is violated when AF deviates from its AFref too much.

Another specification is Sstable: ¬(^[6,26]□[0,4](|AF − AFref | >
0.01 ∗ 14.7)). The goal is to find spikes where ratio is off by a frac-

tion 0.01 of the reference value for at least t ′ seconds during the

interval [6, 26].

The third benchmark model is called Free Floating Robot (FFR)
that has been considered as a falsification benchmark in [12]. It

is a robot vehicle powered by four boosters and moving in a two-

dimensional plane. It is governed by the following second-order

differential equations:

Üx = 0.1 · (u1 + u3) cos(φ) − 0.1 · (u2 + u4) sin(φ)

Üy = 0.1 · (u1 + u3) sin(φ) + 0.1 · (u2 + u4) cos(φ)

Üφ = 5/12 · (u1 + u3) − 5/12 · (u2 + u4)

Goal of the robot is to steer from (x ,y,φ) = (0, 0, 0) to x = y = 4

with a tolearance of 0.1 such that Ûx and Ûy are within [−1, 1], given

a time horizon of T = 5. The four inputs ui ∈ [−10, 10] range over
the same domain. We run falsification on the negated requirement:

Strap ≡ ¬ ^[0,5] x ,y ∈ [3.9, 4.1] ∧ Ûx , Ûy ∈ [−1, 1].
The experiments ran Breach version 1.2.9 and MATLAB R2017b

on an Amazon EC2 c4.large instance (March 2018, 2.9 GHz Intel

Xeon E5-2666, 2 virtual CPU cores, 4 GB main memory).

4.2 Performance Evaluation
The results are shown in Table 1 and are grouped with respect to

the method: uniform random sampling (“Random”) as a baseline,

Breach our basic algorithm (“Basic,” Alg. 1) and its variation with

progressive widening (“P.W.,” Alg. 3), as well as the underlying hill-

climbing optimization solver (CMA-ES, GNM and SA). Run times

are shown in seconds. Since the algorithms are stochastic, we give

the success rate out of a number of trials.

For all the experiments, input signals are chosen to be piecewise

constant with K = 5 control points for AT and AFC, and K =
3 control points for FFR due to the shorter time horizon. These

numbers coincide with the depth of theMCTS search trees. In Breach,

this is achieved with the “UniStep” input generator with its .cp
attribute set to K . The timeout for Breach was set to 900 seconds

(which is well above all successful falsification trials) with no upper

limit on the number of simulations. For our P.W. algorithm, we used

the parameters C = 0.7 and α = 0.85 (Line 4 of Alg. 3).

The choice of parameters for our two MCTS-based algorithms is

as follows: for each combination with the hill-climbing optimization

solvers, we present a set of parameters that gave good results over

all the specifications. This is justified, because the performance is

quite dependent on these parameters, and one choice that works for

a given combination of a falsification algorithm and a hill-climbing

solver might just not work for another combination. However, note

that we do not change the settings across the specifications.
As we discussed at the end of §3.1, different timeouts are set for

hill-climbing in playout (Line 25 of Alg. 1) and to hill-climbing in

the end (Line 37 of Alg. 1). Specifically, the timeout for the former

is TOpo in Table 1 (5–15 seconds) while the timeout for the latter is

globally 300 seconds.

The results in Table 1 indicate, at a high-level, that for seemingly

hard problems, the benefit of the extra exploration done by the

MCTS layer significantly increases the falsification rate. This is most

evident in S4 and S5, where Breach (with any of CMA-ES, GNM or

SA) has at most 30–40% success rates. Our MCTS enhancements

succeed much more often.

For easy problems, the increased exploration typically increases

the falsification times somewhat, which is expected. One reason is

that falsification is in general a hard problem that can only be tackled

by heuristics. We note from Table 1 that the additional execution

time is not prohibitively large, such as S1 and Sbasic. Actually there

is generally no single algorithm that works on all instances equally

well. For example, for Sstable, both Breach and our algorithms are

even weaker than random testing. However, our algorithms still

increase the falsification rate compared to Breach.

The choice of a hill-climbing optimization solver has a great in-

fluence on the outcome. CMA-ES has built-in support for some

exploration before the search converges in the most promising di-

rection. Nevertheless, we see that the upper-layer optimization by

MCTS can improve success rates (S4, S5, Sstable). The Nelder-Mead

variant GNM has very little support for exploration and furthermore,

Breach’s implementation is not stochastic (it uses deterministic low-

discrepancy sequences as a source of quasi-randomness). For this

reason, the method quickly converges to non-falsifying minima that

are local and cannot be escaped without extra measures. Thus, using

MCTS pays off especially with GNM; see for example S3 and S4.

Conversely, SA heavily relies on exploration and keeps just a single

good trace found so far, limiting its exploitation. In combination

with MCTS, SA shows mixed performance. In some cases falsifica-

tion time becomes longer (S1, S3), whereas for S4, MCTS is able

to overcome this particular limitation, presumably as it maintains

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

EMSOFT’18, September 2018, Torino, Italy Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: Comparison of uniform random sampling and Breach against Algs. 1 (Basic) and 3 (P.W.). For each specification, we show

the success rate out of 10 trials, and the average run time (in seconds) of those trials which were successful. The respective parameters are

shown in the leftmost columns: M_b (MCTS budget) is the maximum visit count for the root of the MCTS search tree (i.e. the maximum

number of nodes of the tree); TOpo (in seconds) is the timeout (wall-clock) for each individual MCTS playout by hill-climbing optimization;

c is the scaler for the exploration-exploitation trade-off in UCB (Alg. 2). The number K of control points is 5 for AT and AFC, and 3 for

FFR. The partitioning L of the input space w.r.t. each dimension is 3 × 5 for AT (throttle, brake) and AFC (pedal, engine), and 2 × 2 × 2 × 2

for FFR (u1,u2,u3,u4). For progressive widening (Alg. 3) we use the parameters C = 0.7 and α = 0.85. Timeout for the hill-climbing in the

end (Line 37 of Alg. 1) is 300 seconds. For random testing, timeout is 900s . The cells with bold fonts are local best performers w.r.t. each

hill-climbing solver, and green backgrounded cells are the global performers w.r.t. each property. Here, the ranking criterion takes success

rate as first priority, and average time as second priority.

Parameters AT model AFC model FFR model

S1 S2 S3 S4 S5 Sbasic Sstable Strap

Algorithm M_b TOpo c succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

Random 10/10 108.9 10/10 289.1 1/10 301.1 0/10 - 0/10 - 6/10 278.7 10/10 242.6 4/10 409.3

C
M
A
-
E
S

Breach 10/10 21.9 6/10 30.3 10/10 193.9 4/10 208.8 3/10 75.5 10/10 111.7 3/10 256.3 10/10 119.8
Basic 40 15 0.20 10/10 15.8 10/10 108.5 10/10 697.1 7/10 786.8 9/10 384.4. 10/10 182.0 7/10 336.9 10/10 338.0

P.W. 40 15 0.20 10/10 10.8 10/10 65.7 10/10 728.6 7/10 767.8 10/10 648.1 10/10 177.1 8/10 272.9 10/10 473.9

G
N
M

Breach 10/10 5.4 10/10 151.4 0/10 - 0/10 - 0/10 - 10/10 171.4 0/10 - 0/10 -

Basic 20 5 0.20 10/10 12.4 10/10 162.3 10/10 185.6 7/10 261.9 7/10 163.7 10/10 227.1 2/10 378.5 10/10 162.2
P.W. 20 5 0.05 10/10 60.8 9/10 110.7 8/10 211.2 8/10 313.0 10/10 178.7 10/10 252.0 6/10 153.2 6/10 197.4

S
A

Breach 10/10 160.1 0/10 - 3/10 383.7 0/10 - 3/10 80.4 0/10 - 6/10 307.0 3/10 92.8

Basic 20 15 0.05 10/10 264.8 9/10 236.1 8/10 385.6 8/10 505.3 7/10 341.2 5/10 391.3 8/10 273.8 10/10 273.2
P.W. 40 15 0.20 10/10 208.7 10/10 377.6 8/10 666.0 7/10 795.4 10/10 624.2 8/10 665.7 6/10 293.7 10/10 390.9

several good prefixes. For the free floating robot, we observe that

our approach needs additional time in comparison to plain Breach

with CMA-ES (within an order of magnitude), which is reasonable

given the added exploration on the exponentially larger state space.

However, it does increase the falsification rate with GNM and SA,

and the reason is the same as we analyzed before.

The difference between the two variants, Algs. 1 and 3 (the latter

with progressive widening), is not significant on most of the exam-

ples. However, progressive widening has a positive effect on the

success rate and falsification time for S2 and S5.

In the experiments we set the MCTS budget (number of iterations

of the main loop) to be 20–40. Note that the number of all possible

nodes is way greater: it is (1 + |A| + |A|2 + · · · + |A|K). For AT and

AFC (2 input signals, L = 3 × 5 and K = 5), it is 813616; and for FFR

(4 input signals, L = 2 × 2 × 2 × 2 and K = 3), it is 4369. The overall

success rates seem to suggest that, not only in computer Go but also

in hybrid system falsification, MCTS is very effective in searching

in a vast space with limited resources.

4.3 Evaluation of Parameter Choices
We evaluate the effect of the parameters using the specification S4

for the AT model, where the success of falsification varies strongly.

For the experiments in this section we focus on Alg. 1 (Basic).

Table 2 contains 4 sub-tables, each showing the results for the

different optimization solvers when varying a hyperparameter.

The first concern is about the scaler c for exploration/exploitation.
We observe that there is a general trend that falsification rate im-

proves with increased focus on exploration. It is particularly evident

when comparing the results of c = 0.02 and c = 0.5. However, no

essential performance gap is observed between c = 0.5 and c = 1.0,

indicating that c = 0.5 is already sufficient for optimization solvers

to benefit from exploration.

Next, consider the results for different partitioning of the input

space, where L = n ×m means that the throttle range is partitioned

into n actions and the brake range intom actions (for the AT model;

pedal and engine for the AFC model). We note that the different

choices have by far less influence than the scaler c . However, there
are some differences, for example GNM seems to cope badly with

the coarse partitioning 2 × 2 in the first column, which could be

attributed to its reliance on guidance by the MCTS layer.

With respect to the timeout for individual playouts TOPO, we

observe that it is correlated with overall falsification time. This is

expected, as we spend more time in non-falsifying regions of the

input space as well.

Varying the number of control points K (and therefore the depth

of the MCTS tree), shows that for the respective requirement, K = 3

is insufficient but the results for more control points are not clear.

As more control points make the problem harder due to the larger

search space, the falsification rate drops (specifically for K = 10).

Note that purposely we kept the MCTS budget and playout time

consistent to expose this effect, whereas in practice one might want

to increase the limits when the problem is more complex.

5 RELATEDWORK
Formal verification approaches to correctness of hybrid systems

employ a wide range of techniques from model checking, theorem

proving, rigorous numerics, nonstandard analysis, and so on [8, 16,

19–21, 23, 35]. Currently these are not very successful in dealing

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Falsification of Hybrid Systems by Monte Carlo Tree Search EMSOFT’18, September 2018, Torino, Italy

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 2: Parameter Variation for Alg. 1 (Basic) Success rate and
average time (in seconds, only successful trials) for 4 parameter vari-

ations, respectively scaler c , input space partition L, playout timeout

TOpo and the number K of control points. The default parameter set-

tings are: maximum tree size (MCTS budget) is 60, and c = 0.2, L = 2,

TOpo = 10, K = 5 (gray headed columns). The green backgrounded

cells are the best performers w.r.t. each solver.

c = 0.02 c = 0.2 c = 0.5 c = 1.0

Solver succ. time succ. time succ. time succ. time

CMA-ES 6/10 826.1 7/10 728.7 8/10 725.7 9/10 744.3

GNM 0/10 - 4/10 807.3 3/10 779.4 3/10 791.4

SA 1/10 719.5 8/10 733.5 9/10 736.3 8/10 799.1

L = 2 × 2 L = 3 × 3 L = 3 × 5 L = 5 × 5

Solver succ. time succ. time succ. time succ. time

CMA-ES 7/10 728.7 9/10 674.4 9/10 740.2 8/10 743.4

GNM 4/10 807.3 3/10 712.3 9/10 721.6 10/10 724.2

SA 8/10 733.5 6/10 755.7 8/10 832.0 6/10 832.8

TOpo = 5 TOpo = 10 TOpo = 15 TOpo = 20

Solver succ. time succ. time succ. time succ. time

CMA-ES 8/10 431.8 7/10 728.7 9/10 776.2 7/10 1330.1

GNM 3/10 502.6 4/10 807.3 4/10 809.4 2/10 1397.1

SA 7/10 510.5 8/10 733.5 7/10 1108.0 8/10 1342.5

K = 3 K = 5 K = 7 K = 10

Solver succ. time succ. time succ. time succ. time

CMA-ES 0/10 - 7/10 728.7 6/10 711.5 5/10 777.9

GNM 0/10 - 4/10 807.3 1/10 664.3 6/10 892.8

SA 0/10 - 8/10 733.5 8/10 709.7 3/10 750.9

with complex real-world systems, due to issues like scalability and

black-box components.

Optimization-based falsification of hybrid systems therefore at-

tracts attention, as a testing technique that adaptively searches for

error input using algorithms from recent advances in machine learn-

ing. An overview is given in [28].

We now discuss the relationship between the current work and

existing works in the context of falsification.

Monte Carlo sampling is used in [33] for falsification. Our thesis is

thatMonte Carlo tree search—an extension ofMonte Carlomethods—

yields a powerful guiding method in optimization-based falsification.

The so-calledmultiple-shooting approach to falsification is studied
in [38]. It consists of: an upper layer that searches for an abstract
error trace given by a succession of cells; and a lower layer where an

abstract error trace is concretized to an actual error trace by picking

points from cells. This two-layered framework differs from ours: they

focus on safety specifications (avoiding an unsafe set); this restriction

allows search heuristics that relies on spacial metrics (such as A
∗

search). In our current work, we allow arbitrary STL specifications,

and we use robustness values as guidance. Our framework can be

seen as an integration of multiple-shooting (the upper layer) and

single-shooting (the lower layer); they are interleaved in the same

way as search and sampling are interleaved in MCTS.

Besides MCTS, Gaussian process learning (GP learning) attracts at-
tention in machine learning as a clean way of balancing exploitation

and exploration. The GP-UCB algorithm is a widely used strategy

there. Its use in hybrid system falsification is pursued e.g. in [3, 37].

The value of exploration/coverage has been recognized in the

falsification community [1, 11, 15, 30], not only for efficient search

for error inputs, but also for correctness guarantees in case no error

input is found. In this line, the closest to the current work is [1] in

which search is guided by a coverage metric on input spaces. The

biggest difference in the current work is that we structure the input

space by time, using time stages (see Fig. 3). We explore this staged

input space in the disciplined manner of MCTS. In [1] there is no

such staged structure in input spaces, and they use support vector

machines (SVM) for identifying promising regions. Underminer [6]

is a falsification tool that learns the (non-)convergence of a system to

direct falsification and parameter mining. It supports STL formulas,

SVMs, neural nets, and Lyapunov-like functions as classifiers.

Tree-based search is also used in [15] for falsification. They use

rapidly-exploring random trees (RRT), a technique widely used in

path planning in robotics. Their use of trees is geared largely to-

wards exploration, using the coverage metric called star discrepancy
as guidance. In their algorithm, robustness-guided hill-climbing op-

timization plays a supplementary role. This is in contrast to our

current framework, where we use MCTS and systematically inte-

grate it with hill-climbing optimization.

Many works in coverage-guided falsification [15, 30] use metrics

in the space of output or internal states, instead of the input space. A

challenge in suchmethods is that, in a complexmodel, the correlation

between input and output/state is hard to predict. It is hard to steer

the system’s output/state to a desired region.

There have been efforts to enhance expressiveness of MTL and

STL, so that engineers can express richer intentions—such as time

robustness and frequency—in specifications [2, 34]. This research

direction is orthogonal to ours; we shall investigate use of such

logics in the current framework. Other recent works with which

our current results could be combined include [25], which mines

parameter regions, and [17] that aims to exploit features of machine

learning components of system models for the sake of falsification.

We believe that the combination of MCTS and application-specific

lower-layer optimization—an instance of which is the proposed falsi-

fication framework—is a general methodology applicable to a variety

of applications. For example, for the MaxSAT problem, the work [22]

uses MCTS combined with hill-climbing local optimization.

Use ofMCTS for search-based testing of hybrid systems is pursued

in [31]. We differ from [31] in the target systems: ours are determin-

istic, while [31] searches for random seeds for stochastic systems.

We also combine robustness-guided hill-climbing optimization.

Our use of time-ordered MCTS search trees can be seen as a form

of importance sampling, where we iteratively narrow down a search

space to more promising subspaces. Importance sampling is used

in [26] for rare events in statistical model checking.

6 CONCLUSIONS AND FUTUREWORK
In this work we have presented a two-layered optimization frame-

work for hybrid system falsification. It combines Monte Carlo tree

search—a widely used method in machine learning for effective

stochastic search, balancing exploration and exploitation—and hill-

climbing optimization—a local search method whose use in hybrid

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

EMSOFT’18, September 2018, Torino, Italy Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

system falsification is established in the community. Our experi-

ments suggest its promising performance.

In §5 we already indicated some directions for future work. Fur-

ther future directions are as follows.

In this work we demonstrated by experiments how systematic

exploration can improve the chances of finding error input. Another

use of exploration, namely as the confidence measure about systems’

validity in case no error input is found (see [1, 15] and §5), should be

further investigated. Concretely, we are interested in computing a

quantitative coverage metric from the result of our MCTS algorithm.

Our choice of grid partitioning for actions in MCTS search trees,

although simple, achieves good performance. Other choices are pos-

sible, using the extension of MCTS to continuous action sets [9, 10].

The effect of taking those other choices shall be investigated.

An extension to stochastic hybrid systems does not seem hard,

following the MCTS approach in [31] that uses models with direct

access to randomness seeds (see §5).

REFERENCES
[1] Arvind Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski, and Xiaoqing

Jin. 2017. Classification and Coverage-Based Falsification for Embedded Control

Systems. In Computer Aided Verification. Springer International Publishing, Cham,

483–503.

[2] Takumi Akazaki and Ichiro Hasuo. 2015. Time Robustness in MTL and Expres-

sivity in Hybrid System Falsification. In Computer Aided Verification. Springer
International Publishing, Cham, 356–374.

[3] Takumi Akazaki, Yoshihiro Kumazawa, and Ichiro Hasuo. 2017. Causality-Aided

Falsification. In Proceedings First Workshop on Formal Verification of Autonomous
Vehicles, FVAV@iFM 2017, Turin, Italy, 19th September 2017. (EPTCS), Vol. 257. 3–18.

[4] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid
Systems. Springer, Berlin, Heidelberg, 254–257.

[5] Anne Auger and Nikolaus Hansen. 2005. A restart CMA evolution strategy with

increasing population size. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2005. IEEE, 1769–1776.

[6] Ayca Balkan, Paulo Tabuada, Jyotirmoy V. Deshmukh, Xiaoqing Jin, and James

Kapinski. 2018. Underminer: A Framework for Automatically Identifying Noncon-

verging Behaviors in Black-Box System Models. ACM Trans. Embedded Comput.
Syst. 17, 1 (2018), 20:1–20:28.

[7] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,

Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree

Search Methods. IEEE Trans. Comput. Intellig. and AI in Games 4, 1 (2012), 1–43.
[8] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An An-

alyzer for Non-linear Hybrid Systems. In Computer Aided Verification. Springer
Berlin Heidelberg, Berlin, Heidelberg, 258–263.

[9] Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and

Nicolas Bonnard. 2011. Continuous Upper Confidence Trees. In Learning and
Intelligent Optimization. Springer, Berlin, Heidelberg, 433–445.

[10] Rémi Coulom. 2007. Computing "Elo Ratings" of Move Patterns in the Game of

Go. ICGA Journal 30, 4 (2007), 198–208.
[11] Jyotirmoy Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. 2015. Sto-

chastic Local Search for Falsification of Hybrid Systems. In Automated Technology
for Verification and Analysis. Springer International Publishing, Cham, 500–517.

[12] Jyotirmoy V. Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and

Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems through Bayesian

Optimization. ACM Trans. Embedded Comput. Syst. 16, 5 (2017), 170:1–170:18.
[13] Alexandre Donzé. 2010. Breach, A Toolbox for Verification and Parameter Synthe-

sis of Hybrid Systems. In Computer Aided Verification, 22nd Int. Conf., CAV 2010
(LNCS), Vol. 6174. Springer, 167–170.

[14] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic

over Real-Valued Signals. In Formal Modeling and Analysis of Timed Systems - 8th
Int. Conf., FORMATS 2010 (LNCS), Vol. 6246. Springer, 92–106.

[15] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin, and

Jyotirmoy V. Deshmukh. 2015. Efficient Guiding Strategies for Testing of Temporal

Properties of Hybrid Systems. In NASA Formal Methods. Springer International
Publishing, Cham, 127–142.

[16] Tommaso Dreossi, Thao Dang, and Carla Piazza. 2016. Parallelotope Bundles for

Polynomial Reachability. In Proc. of the 19th International Conference on Hybrid
Systems: Computation and Control (HSCC ’16). ACM, New York, NY, USA, 297–306.

[17] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. 2017. Compositional

Falsification of Cyber-Physical Systems with Machine Learning Components. In

NASA Formal Methods. Springer International Publishing, Cham, 357–372.

[18] Georgios E. Fainekos and George J. Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theor. Comput. Sci. 410, 42 (2009),

4262–4291.

[19] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and Parasara Sridhar

Duggirala. 2016. Automatic Reachability Analysis for Nonlinear Hybrid Models

with C2E2. In Computer Aided Verification. Springer International Publishing,
Cham, 531–538.

[20] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and OdedMaler. 2011.

SpaceEx: Scalable Verification of Hybrid Systems. In Computer Aided Verification.
Springer, Berlin, Heidelberg, 379–395.

[21] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. 2012. δ -Complete Decision

Procedures for Satisfiability over the Reals. In Automated Reasoning. Springer,
Berlin, Heidelberg, 286–300.

[22] Jack Goffinet and Raghuram Ramanujan. 2016. Monte-Carlo Tree Search for the

Maximum Satisfiability Problem. In Principles and Practice of Constraint Program-
ming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016,
Proceedings (Lecture Notes in Computer Science), Vol. 9892. Springer, 251–267.

[23] Ichiro Hasuo and Kohei Suenaga. 2012. Exercises in Nonstandard Static Analysis

of Hybrid Systems. In Computer Aided Verification. Springer, Berlin, Heidelberg,
462–478.

[24] Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. 2014. Benchmarks

for Temporal Logic Requirements for Automotive Systems. In 1st and 2nd In-
ternational Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek 2015,
Seattle, USA, April 13, 2015. (EPiC Series in Computing), Vol. 34. EasyChair, 25–30.

[25] Bardh Hoxha, Adel Dokhanchi, and Georgios E. Fainekos. 2018. Mining parametric

temporal logic properties in model-based design for cyber-physical systems. STTT
20, 1 (2018), 79–93.

[26] Cyrille Jegourel, Axel Legay, and Sean Sedwards. 2012. Cross-EntropyOptimisation

of Importance Sampling Parameters for Statistical Model Checking. In Computer
Aided Verification. Springer, Berlin, Heidelberg, 327–342.

[27] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts.

2014. Powertrain Control Verification Benchmark. In Proc. of the 17th Int. Conf. on
Hybrid Systems: Computation and Control (HSCC ’14). ACM, NY, USA, 253–262.

[28] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts. 2016. Simulation-Based

Approaches for Verification of Embedded Control Systems: An Overview of Tradi-

tional and Advanced Modeling, Testing, and Verification Techniques. IEEE Control
Systems 36, 6 (Dec 2016), 45–64.

[29] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.

In Machine Learning: ECML 2006. Springer, Berlin, Heidelberg, 282–293.
[30] Jan Kuřátko and Stefan Ratschan. 2014. Combined Global and Local Search for the

Falsification of Hybrid Systems. In Formal Modeling and Analysis of Timed Systems.
Springer International Publishing, Cham, 146–160.

[31] Ritchie Lee, Mykel J Kochenderfer, Ole J Mengshoel, Guillaume P Brat, and

Michael P Owen. 2015. Adaptive stress testing of airborne collision avoidance

systems. In Digital Avionics Systems Conference, 2015 IEEE/AIAA 34th. IEEE, 6C2–1.
[32] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Con-

tinuous Signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. Springer, Berlin, Heidelberg, 152–166.

[33] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,

Aarti Gupta, and George J. Pappas. 2010. Monte-carlo Techniques for Falsification

of Temporal Properties of Non-linear Hybrid Systems. In Proc. of the 13th ACM
Int. Conf. on Hybrid Systems: Computation and Control (HSCC ’10). ACM, NY, USA,

211–220.

[34] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh, Ken

Butts, and Taylor T. Johnson. 2017. Abnormal Data Classification Using Time-

Frequency Temporal Logic. In Proc. of the 20th International Conference on Hybrid
Systems: Computation and Control (HSCC ’17). ACM, New York, NY, USA, 237–242.

[35] André Platzer. 2010. Logical Analysis of Hybrid Systems - Proving Theorems for
Complex Dynamics. Springer.

[36] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,

Thore Graepel, and Demis Hassabis. 2015. Mastering the game of Go with deep

neural networks and tree search. Nature 529 (2015), 484–489.
[37] Simone Silvetti, Alberto Policriti, and Luca Bortolussi. 2017. An Active Learning

Approach to the Falsification of Black Box Cyber-Physical Systems. In Integrated
Formal Methods. Springer International Publishing, Cham, 3–17.

[38] Aditya Zutshi, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and James

Kapinski. 2014. Multiple shooting, CEGAR-based falsification for hybrid systems.

In 2014 International Conference on Embedded Software, EMSOFT 2014, New Delhi,
India, October 12-17, 2014. ACM, 5:1–5:10.

10

	Abstract
	1 Introduction
	2 Problem: Hybrid System Falsification
	3 Two-Layered Optimization Framework with MCTS
	3.1 The Basic Two-Layered Algorithm (Alg. 1)
	3.2 The Two-Layered Algorithm with Progressive Widening (Alg. 3)
	3.3 Discussion

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Performance Evaluation
	4.3 Evaluation of Parameter Choices

	5 Related Work
	6 Conclusions and Future Work
	References

