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Abstract

This report presents the results from the 2019 friendly competition in the ARCH work-
shop for the falsification of temporal logic specifications over Cyber-Physical Systems. We
describe the organization of the competition and how it differs from previous years. We
give background on the participating teams and tools and discuss the selected benchmarks
and results. The benchmarks are available on the ARCH website1, as well as in the com-
petition’s gitlab repository2. The main outcome of the 2019 competition is a common
benchmark repository, and an initial base-line for falsification, with results from multiple
tools, which will facilitate comparisons and tracking of the state-of-the-art in falsification
in the future.

1 Introduction
The friendly competition of the ARCH workshop is running yearly since 2014. The goal is
to compare the state-of-the-art of tools for testing and verification of hybrid systems. The
competition is organized in several categories, with different specifications (computing reachable
regions, checking temporal properties) and varying dynamics in the system models (such as
linear/non-linear and hybrid).

In the falsification category, benchmarks typically consist of executable Matlab code or
Simulink/Stateflow models, each associated with a set of requirements in temporal logic with
time bounds, encoded in MTL [13] or STL [14]. The task is to find initial conditions and time-
varying inputs subject to given constraints that steer the system into a violation of the respective
requirement. This search is typically guided using well-established robustness metrics [8] that
give a quantitative account of how close a given input is to violating a requirement. Using
such metrics as score functions permits one to employ standard optimization techniques to find
falsifying inputs. Recent results in falsification have produced a variety of techniques, mature
tools, and practical applications, see [3] for an overview. Due to the complexity and unclear

∗The falsification category was coordinated by the first author. The remaining authors represent all partici-
pants and they are listed alphabetically.

1https://cps-vo.org/group/ARCH/FriendlyCompetition
2https://gitlab.com/goranf/ARCH-COMP
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semantics of Matlab and Simulink models, many previous techniques are entirely black-box and
just observe the input/output behavior of the system via simulations, but grey-box approaches
have been developed recently [18, 1] to take some knowledge on the internals of the system into
deliberation. This year’s falsification competition featured more tools and participating teams
in comparison to previous years, prompting a few changes to the organization with respect to
benchmark solicitation and specification, as well as the validation of the results (Sec 2).

The participating tools 2019 were S-TaLiRo [2], Breach [6], FalStar [19, 7], and falsify [1]
in different configurations (Sec 3).

There were 6 benchmark models overall with individual requirements, taken from previous
competitions and from the literature (Sec 4): Automatic Transmission (AT), Fuel Control
of an Automotive Powertrain (AFC), Neural-network Controller (NN), Wind Turbine (WT),
Chasing cars (CC), Aircraft Ground Collision Avoidance system (F16), and Steam Condenser
with Recurrent Neural Network Controller (SC).

As expected, the results (Sec 5) show that tools perform better on some benchmarks and
worse on others, and that different tools have different strengths. Notable success is achieved
by the tool falsify [1] , which often performs best by far, sometimes requiring just a single
simulation to find a falsifying input thanks to its incremental strategy.

2 Organization
Several major changes to the format of the competitions were made in 2019.

Benchmark Solicitation. For a more comprehensive assessment of the capabilities of tools,
the benchmark pool was extended to cover several models with multiple requirements. Source
of these benchmarks were known models from the literature that had served in evaluations of
new methods and at previous years of the competition.

Two changes and the presence of more teams than in the years before (see section 3)
prompted a more systematic organization. To this end, benchmarks were collected in a fork
of the gitlab repository in which the reproducibility packages are maintained. Participating
teams had access to that repository to contribute and download benchmarks models.

Similarly, descriptions on the use of the models and a precise, informal characterization of
the respective settings was communicated in this way, too.

Input Specifications. There was some discussion on the format and strictness of the input
characterizations (for time varying inputs). Two options were proposed and it was agreed to
run separate evaluations for each of the two options (called instance 1 and instance 2 in the
following).

Arbitrary piece-wise continuous input signals (Instance 1). This option leaves the input
specification up to the participants. The search space is, in principle, the entire set of piece-
wise continuous input signals (i.e., which permit discontinuities), where the values for each
individual dimensions are from a given range. Additional constraints that were suggested are
finite-number of discontinuity and finite variability for all continuous parts of inputs. Further,
each benchmark may impose further constraints. Participants may instruct their tools to search
a subset of the entire search space, notably to achieve finite parametrization, and then to apply
an interpolation scheme to synthesize the input signal.

However, the participants agreed that such a choice must be “reasonable” and should be
justified from the problem’s specification without introducing external knowledge about poten-
tial solutions. Moreover, more general parametrizations that are shared across requirements
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and benchmark models were preferable. Due to the diversity of benchmarks, it was decided to
evaluate the proposed solutions using common sense.

Constrained input signals (Instance 2). This option precisely fixes the format of the in-
put signal, potentially allowing discontinuities. An example input signal would be piecewise
constant with k equally spaced control points, with ranges for each dimension of the input, dis-
abling interpolation at Simulink input ports so that tools don’t need to up-sample their inputs.
The arguments in favor of that are increased comparability of results. As possible downside
was mentioned that optimization-based tools (S-TaLiRo and Breach) are just compared with
respect to their optimization algorithm. Nevertheless such a comparison is still meaningful, in
particular, as as FalStar and falsify implement other approaches to falsification.

Validation and Repeatability. To prevent implementation bugs and specification errors
and to check for differences in implementations of robustness evaluations, it was planned early
on to validate all results. The group’s organizer provided a Matlab-based interface for validation,
implemented by FalStar. Moreover, the organizers of the ARCH workshop decided that all
groups in the competition should submit Docker-based packages for repeatability evaluation,
but in the end it was infeasible to package an entire Matlab installation including the necessary
toolboxes.

3 Participants
S-TaLiRo. S-TaLiRo [2] is a Matlab toolbox for monitoring and test case generation against
system specifications presented in STL. The test cases are automatically generated using opti-
mization techniques guided by formal requirements in STL in order to find falsifying systems
behaviors. The tool has different optimization algorithms. Specifically, in this competition,
the stochastic optimization with adaptive restarts (SOAR) [15] framework is used for all the
benchmarks except for choosing instance 1 type inputs in Steam Condenser model. In that
benchmark Simulated annealing global search was combined by a local optimal control based
search [18]. S-TaLiRo is publicly available on-line under General Public License (GPL) 3.

Breach. Breach [6] is a Matlab toolbox for test case generation, formal specification mon-
itoring and optimization-based falsification and mining of requirements for hybrid dynamical
systems. A particular emphasis is put on modularity and flexibility of inputs generation, re-
quirement evaluation and optimization strategy. For this work, the approach has been to ensure
that each benchmark was properly implemented and a default, relatively basic falsification strat-
egy has been applied. The idea was to perform a first systematic investigation of the proposed
problems, and then to provide a base to work on for future editions of the competition to test a
larger variety on approaches on the most challenging instances. Breach is available under BSD
license4.

FalStar. FalStar is an experimental prototype of a falsification tool that explores the
idea to construct falsifying inputs incrementally in time, thereby exploiting potential time-
causal dependencies in the problem. It implements several algorithms, of which two were used
in the competition: A two layered framework combining Monte-Carlo tree search (MCTS) with
stochastic optimization [19], and a probabilistic algorithm [7] that adapts to the difficulty of

3https://sites.google.com/a/asu.edu/s-taliro
4https://github.com/decyphir/breach
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the problem dubbed adaptive Las-Vegas tree search (aLVTS). The code is publicly available
under the BSD license.5

falsify. falsify is an experimental program which solves falsification problems of safety prop-
erties by reinforcement learning [1]. falsify uses a grey-box method, that is, it learns system
behavior by observing system outputs during simulation. falsify is currently implemented by a
deep reinforcement learning algorithm Asynchronous Advantage Actor-Critic (A3C) [16].

4 Benchmarks
Automatic Transmission (AT). This model of an automatic transmission encompasses a
controller that selects a gear 1 to 4 depending on two inputs (throttle, brake) and the current
engine load, rotations per minute ω, and car speed v. It is a standard falsification benchmark
derived from a model by Mathworks and has been proposed for falsification in [10].

Input specification: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325 (both can be active at the same
time). Constrained input signals (instance 2) permit discontinuities at most every 5 time units.

Requirements (where ◦ φ ≡ 3[0.001,0.1] φ) are specific versions of those in [10] where the
parameters have been chose to be somewhat difficult.

Benchmark STL formula

AT1 2[0,20]v < 120
AT2 2[0,10]ω < 4750
AT51 2[0,30]((¬g1 ∧ ◦ g1)→ ◦ 2[0,2.5]g1)
AT52 2[0,30]((¬g2 ∧ ◦ g2)→ ◦ 2[0,2.5]g2)
AT53 2[0,30]((¬g3 ∧ ◦ g3)→ ◦ 2[0,2.5]g3)
AT54 2[0,30]((¬g4 ∧ ◦ g4)→ ◦ 2[0,2.5]g4)
AT6a (2[0,30]ω < 3000)→ (2[0,4]v < 35)
AT6b (2[0,30]ω < 3000)→ (2[0,8]v < 50)
AT6c (2[0,30]ω < 3000)→ (2[0,20]v < 65)

Fuel Control of an Automotive Powertrain (AFC). The model is described in [12] and
has been used in two previous instalments of this competition [4, 5]. The specific limits used in
the requirements are chosen such that falsification is possible but reasonably hard.

The constrained input signal (instance 2) fixes the throttle θ to be piecewise constant with 10
uniform segments over a time horizon of 0 with two modes (normal and power corresponding to
feedback and feedforward control), and the engine speed ω to be constant with 900 ≤ ω < 1100
to capture the input profile outlined in [12] and to match the previous competitions. For
this reason, we do not consider the unconstrained (instance 1) input specification. Faults are
disabled (e.g. by setting fault_time > 50).

Benchmark STL formula Input Constraint

AFC27 2[11,50]((rise ∨ fall)→ (2[1,5]|µ| < β)) 0 ≤ θ < 61.2 (normal)
AFC29 2[11,50]|µ| < γ 0 ≤ θ < 61.2 (normal)
AFC33 2[11,50]|µ| < γ 61.2 ≤ θ ≥ 81.2 (power)

5https://github.com/ERATOMMSD/falstar
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where

β = 0.008 γ = 0.007

rise = (θ < 8.8) ∧ (3[0,0.05](θ > 40.0))

fall = (θ > 40.0) ∧ (3[0,0.05](θ < 8.8))

Note that the time interval starts at 11, which is one time unit after the feedback mode is
enabled at time 10.

Neural-network Controller (NN). This benchmark is based on MathWork’s neural net-
work controller for a system that levitates a magnet above an electromagnet at a reference
position.6 It has been used previously as a falsification demonstration in the distribution of
Breach. The model has one input, a reference value Ref for the position, where 1 ≤ Ref and
Ref ≤ 3. It outputs the current position of the levitating magnet Pos. The input specification
for instance 1 requires discontinuities to be at least 3 time units apart, whereas instance 2
specifies an input signal with exactly three constant segments. The time horizon for the prob-
lem is 40. The requirement ensures that after changes to the reference, the actual position
eventually stabilizes around that value with small error.
Benchmark STL formula

NN 2[1,37]

(
|Pos−Ref | > α+ β|Ref | → 3[0,2]2[0,1]¬(α+ β|Ref | ≤ |Pos−Ref |)

)
where α = 0.005 and β = 0.03.

Wind Turbine (WT). The model is a simplified wind turbine model proposed in [17]. The
input of the system is wind speed v and the outputs are blade pitch angle θ, generator torque
Mg,d, rotor speed Ω and demanded blade pitch angle θd. The wind speed is constrained by
8.0 ≤ v ≤ 16.0. Instance 1 allows any piece-wise continuous inputs, while instance 2 constrains
inputs to piece-wise constant signals whose control points which are evenly spaced each 5
seconds. The model is relatively large. Further, the time horizon is long (630) compared to
other benchmarks.

Benchmark STL formula

WT1 2[30,630]θ ≤ 14.2
WT2 2[30,630]21000 ≤Mg,d ≤ 47500
WT3 2[30,630]Ω ≤ 14.3
WT4 2[30,630]3[0,5]|θ − θd| ≤ 1.6

Chasing cars (CC). The model is derived from Hu et al. [11] which presents a simple model
of an automatic chasing car. Chasing cars (CC) model consists of five cars, in which the first
car is driven by inputs (throttle and brake), and other four are driven by Hu et al.’s algorithm.
The output of the system is the location of five cars y1, y2, y3, y4, y5. The properties to be
falsified are constructed artificially, to investigate the impact of complexity of the formulas to
falsification. The input specifications for instance 1 allows any piecewise continuous signals
while the input specification for instance 2 constraints inputs to piecewise constant signals with
control points for each 5 seconds, i.e., 20 segments

6https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html
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Benchmark STL formula

CC1 2[0,100]y5 − y4 ≤ 40
CC2 2[0,70]3[0,30]y5 − y4 ≥ 15
CC3 2[0,80]((2[0,20]y2 − y1 ≤ 20) ∨ (3[0,20]y5 − y4 ≥ 40))
CC4 2[0,65]3[0,30]2[0,20]y5 − y4 ≥ 8
CC5 2[0,72]3[0,8]((2[0,5]y2 − y1 ≥ 9)→ (2[5,20]y5 − y4 ≥ 9))

Aircraft Ground Collision Avoidance system (F16). The model has been derived from [9].
The F16 aircraft and its inner-loop controller for Ground Collision avoidance have been modeled
using 16 continuous variables with piece-wise nonlinear differential equations. Autonomous ma-
neuvers are performed in an outer-loop controller that uses a finite-state machine with guards
involving the continuous variables. The system is required to always avoid hitting the ground
during its maneuver starting from all the initial conditions for roll, pitch, and yaw in the range
[0.2π, 0.2833π] × [−0.5π,−0.54π] × [0.25π, 0.375π]. Since the benchmark has no time-varying
input, there is no distinction between instance 1 and instance 2. The requirement is checked
for a time horizon equal to 15. This requirement can be captured using the following formula

Benchmark STL formula

F16 2[0,15]altitude > 0

Steam condenser with Recurrent Neural Network Controller (SC). The model is
presented in [18]. It is a dynamic model of an steam condenser based on energy balance and
cooling water mass balance controlled with a Recurrent Neural network in feedback. The time
horizon for the problem is 35 seconds. The input to the system can vary in the range [3.99, 4.01].
For instance 2, the input signal should be piecewise constant with 20 evenly spaced segments.
The pressure output should satisfy the following requirement:

Benchmark STL formula

SC 2[30,35](87 ≤ pressure ∧ pressure ≤ 87.5)

5 Evaluation

Falsification tools were instructed to run each individual requirement 50 times, to account for
the stochastic nature of most algorithms. We report the falsification rate, i.e., the number of
trials where a falsifying input was found, as well as the median and mean of the number of
simulations required to find such input (not including the unsuccessful runs in the aggregate).
The cut-off for the number of simulations per trial was 300.

The results for unconstrained piecewise-continuous input signals (instance 1) are shown in
Table 1. They depend on the choices for the search space, which we briefly discuss for each
participating tool:

Breach. For most benchmarks (exceptions detailed below), a piecewise constant signal gen-
eration was used with fixed step size. For all instances, the optimization strategy used is the
default global Nelder Mead (GNM) approach with a custom configuration for the competition,
resulting in the following three phases behavior:
• Phase 1.: at most ncorners = 64 corner samples are tested, i.e., inputs for which control

points take only extreme values;

6



ARCH-COMP 2019: Falsification Ernst et al.

• Phase 2.: nquasi-rand = 100 − ncorners quasi-random samples from the Halton sequence
with varying start points determined by a random seed are tested;

• Phase 3.: the robustness results from phase 1 and 2 are sorted and Nelder Mead opti-
mization is run from the most promising samples.

Note that as a result of this approach, whenever a falsifying input is consistently found with
less than 100 simulations, it indicates that the problem is likely trivially falsifiable with extreme
inputs or a quick stochastic exploration of the search space. The following settings were chosen
for input generation for each benchmark:
• AT: throttle input and brake inputs were configured with respectively 3 and 2 control

points at variable times;
• NN: input was piecewise constant with 3 control points regularly spaced;
• WT: spline interpolation with control points regurlary spaced by 5s and saturation to

domain [8;16] (same for instance 2);
• CC: same as instance 2, i.e., piecewise constant input with control points regurlary spaced

by 5s;
• SC: same as instance 2, i.e., piecewise constant input with control points regurlary spaced

by 1.75s;

S-TaLiRo. In S-TaLiRo, input signals are parameterized in two ways: the number of control
points for the input signal, and the time location of those control points during simulation.
The number of control points for each input signal is given by the user forming an optimization
problem with search space dimension the same as the number of control points. An option is
provided to the user to add to the search space the timing of the control points, but this option
is not used in the competition. For this competition, the control point time locations are evenly
spaced over the duration of the simulation for all the benchmarks except for the SC problem
instance 1.

For the transmission model the [throttle, brake] control points are interpolated with the
pchip function, with [7, 3] as the number of control points in specifications 1-6 and [4, 2] for
7-9 to reduce the dimensionality of the search space. For the Neural model, we use 13 control
points to yield piecewise constant signals of 3.33 seconds apart. The Wind Turbine used the
default model input of 126 control points interpolated linearly. For the SC model, Simulated
Annealing (SA) global search was utilized in combination with an optimal control based local
search on the infinite dimensional input space. The SA global search utilizes piecewise constant
inputs with 12 possibly uneven time durations.

FalStar (MCTS). The search space included piecewise constant inputs. For all the bench-
marks and for all the specifications, the number of control points was computed according to
the simulation time that was divided by a fixed interval of 5 time units (e.g., a simulation time
of 50 has 10 control points).

FalStar (aLVTS). The search space included piecewise constant inputs (the only param-
eterization currently supported), ranging from 2 upto 4 control points at which discontinuities
are allowed (resp. upto 3 for NN). In this configuration FalStar benefits from a low number
of control points and is more likely to try inputs with fewer control points first. For the AT
benchmarks it was clear beforehand that this choice suffices to falsify all benchmarks, and the
setting was then kept for the remaining experiments.

7
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Table 1: Results for piecewise continuous input signals (instance 1). FR: falsification rate
wrt. number of trials, S and S̃: mean resp. median number of simulations over successful trials
(“–” if FR is zero).
Tool: S-TaLiRo Breach FalStar falsify
Configuration: SOAR GNM MCTS aLVTS A3C

Benchmark FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃

AT1 50/50 118.84 116 50/50 11 11 0/50 – – 50/50 33.04 30 17/50 224.53 223.0
AT2 50/50 23.88 19.5 50/50 2 2 50/50 21.68 5 50/50 4.32 3 50/50 22.10 10.0
AT51 50/50 26.72 22 41/50 74.56 67 50/50 39.10 43 50/50 69.48 56 50/50 1.00 1.0
AT52 50/50 4.06 3 49/50 72 67 50/50 2.68 2 26/50 125.35 137 50/50 1.00 1.0
AT53 50/50 3.44 3 49/50 74.51 73 50/50 2.52 3 50/50 70.82 68 50/50 1.00 1.0
AT54 50/50 10.46 2 21/50 84.86 85 50/50 26.56 10 50/50 71.10 52 50/50 1.00 1.0
AT6a 49/50 78.41 40 50/50 97.92 97.5 49/50 93.65 80 50/50 76.06 70 (not a safety property)
AT6b 33/50 132.64 128 49/50 112.9 118 29/50 166.90 173 50/50 82.38 75 (not a safety property)
AT6c 47/50 61.34 38 50/50 94.1 89 6/50 105.92 125 0/50 – – (not a safety property)

NN 50/50 26.72 22 48/50 96.29 101.5 50/50 47.98 40 36/50 122.80 106 50/50 1.00 1.0
NN(β = 0.04) 4/50 193 222.5

WT1 50/50 91 91 50/50 3 3 50/50 4.00 4 (unsupported) 37/50 47.68 7.0
WT2 50/50 32.62 30 50/50 3 3 50/50 1.00 1 46/50 8.04 2.0
WT3 50/50 44.12 60 50/50 3 3 50/50 2.00 2 50/50 2.48 1.0
WT4 50/50 3.32 2 50/50 30 30 50/50 2.00 2 50/50 4.90 4.0

CC1 50/50 9.38 7 50/50 3 3 50/50 15.00 15 50/50 4.06 2 47/50 51.26 17.0
CC2 50/50 6 4 50/50 1 1 50/50 26.00 26 50/50 4.02 2 37/50 24.24 4.0
CC3 50/50 19.94 5 50/50 3 3 50/50 14.40 17 50/50 6.86 5 46/50 35.41 8.5
CC4 20/50 188 179.5 0/50 – – 0/50 – – 2/50 52.00 60 1/50 26.00 26.0
CC5 50/50 42.94 36.5 49/50 26.08 19 50/50 132.00 140 46/50 91.19 79 31/50 29.65 26.0

F16 7/50 127.57 94 1/50 297 297 (unsupported) 0/50† – – (unsupported)

SC 50/50 ? 62.26 55.5 0/50 – – 0/50 – – 0/50 – – 0/50 – –

F16 †: FalStar/aLVTS currently samples initial conditions uniformly at random
SC ?: The S-TaLiRo results for this benchmark are yielded by Simulated annealing assisted with
gradient based search (See [18]).

falsify. The input specification uses piecewise constant function with discontinuities spaced
in even intervals ∆T . ∆T = 1 for all models except for SC in which ∆T = 0.1 is used. The
choice for the SC model was ∆T = 0.1 model because Instance 2 uses ∆T = 1.75, which is near
to ∆T = 1.

Common Settings. For a better comparison of the performance of the tools, a common
ground is piecewise constant input signals (instance 2) with a concrete specification of the
number of discontinuities allowed. The corresponding results are shown in Table 2.

The implied intention was that the search space is actually large enough so that in principle
input signals are generated that exhibit that number of variability. For this reason, for example,
FalStar (aLVTS) was instructed not to generate input signals with fewer control points (even
though it would likely have improved the results). FalStar (MCTS) similarly takes the number
of control points as input.

Discussion. The most successful outcome can be attributed to falsify, which can find a falsi-
fying input signal with a single simulation only. This is remarkable as all sampling and tuning
of the input is done on the fly with respect to an established prefix. Notably, most results for
AT, AFC, NN, and WT models show this behavior. While the strategy works well enough and
applies generally, there are a few instances where other strategies work better, e.g., the tendency

8
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Table 2: Results for constrained input signals/instance 2. FR: falsification rate, S: mean
number of simulations, S̃: median number of simulations.
Tool: S-TaLiRo Breach FalStar falsify
Configuration: SOAR GNM MCTS aLVTS A3C

Benchmark FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃

AT1 50/50 170.32 171 0/50 – – 0/50 – – 50/50 33.04 30 39/50 125.79 110
AT2 50/50 16.82 9 50/50 2 2 50/50 21.68 5 50/50 4.32 3 48/50 18.96 7.5
AT51 50/50 12.64 11 50/50 7 7 50/50 39.10 43 50/50 69.48 56 50/50 1.00 1.0
AT52 49/50 17.57 4 50/50 3 3 50/50 2.68 2 26/50 125.35 137 50/50 1.00 1.0
AT53 50/50 3.38 3 50/50 3 3 50/50 2.52 3 50/50 70.82 68 50/50 1.00 1.0
AT54 50/50 24.15 16.5 50/50 3 3 50/50 26.56 10 50/50 71.10 52 50/50 1.00 1.0
AT6a 44/50 130.353 149.5 0/50 – – 49/50 93.65 80 50/50 76.06 70 (not safety)
AT6b 39/50 207.206 236 0/50 – – 29/50 166.90 173 50/50 82.38 75 (not safety)
AT6c 42/50 197.5 208.5 0/50 – – 36/50 105.92 125 0/50 – – (not safety)

AFC27 50/50 70.34 78.5 50/50 3 3 – – – 50/50 3.88 3 50/50 1.64 1.0
AFC29 50/50 13.54 10 50/50 3 3 – – – 50/50 1.18 1 50/50 1.00 1.0
AFC33 0/50 – – 0/50 – – – – – 0/50 – – 50/50 1.00 1.0

NN 49/50 67.96 48 50/50 6 6 50/50 177.44 183 26/50 176.96 197 50/50 1.00 1.0
NN(β=0.04) 3/50 127 74

WT1 50/50 7.1 5 50/50 3 3 50/50 4 4 (unsupported) 49/50 8.57 2.0
WT2 50/50 1.02 1 50/50 3 3 50/50 1 1 50/50 2.76 2.0
WT3 50/50 1.04 1 50/50 3 3 50/50 2 2 50/50 2.04 1.0
WT4 50/50 12.02 9 50/50 30 30 50/50 2 2 50/50 3.68 3.0

CC1 50/50 67.8 91 50/50 5 5 50/50 15.00 15 50/50 7.30 6 50/50 23.48 7.0
CC2 48/50 114.48 105 50/50 1 1 50/50 26.00 26 50/50 15.88 9 46/50 14.41 4.0
CC3 50/50 22.36 13 50/50 5 5 50/50 14.40 17 4/50 207.50 229 44/50 13.52 2.5
CC4 0/50 – – 0/50 – – 0/50 – – 0/50 – – 9/50 120.44 168.0
CC5 50/50 74.88 48 16/50 84.69 79 50/50 132.00 140 39/50 117.94 103 32/50 37.22 8.5

SC 0/50 – – 0/50 – – 0/50 – – 0/50 – – 0/50 – –

of GNM and aLVTS to prefer extreme values for AT1, as well as the S-TaLiRo’s algorithm used
to solve the SC benchmark.

Another observation is that many benchmarks can be solved quite easily, leading to perfect
falsification rates (FR) of 50/50. This suggests that the overall mass of falsifying inputs is
large enough so that those can be found reliably with significantly less than 300 simulations,
independently of whether sophisticated algorithms are used (S-TaLiRo, MCTS, falsify), or
whether sampling is random (but not necessarily uniform, GNM, aLVTS). This can be seen
as a confirmation of folklore knowledge that many falsification problems are actually not that
hard to solve, and that conceptually simple methods can indeed work well. A clear take-away
is that the set of benchmarks needs to be more challenging in the future.

There is not so much of a difference between the results for instance 1 and instance 2.
The latter typically require more time to solve, as the parameter space is larger (e.g., the CC
benchmark has many more control points in the second instance).

Due to the inhomogeneity of results we refrain from a further in-depth analysis of when and
why exactly certain algorithms fare better than others. This is left for future work (cf. also
the comment on benchmark classification below). Similarly, we do not attempt to derive an
aggregate score to determine a “winner”.

6 Conclusion and Outlook

Setting up the competition with the format described in Sec. 2 proved to be difficult and
time-consuming.
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The first issue is a general lack of a well-prepared benchmark suite for falsification of black-
box systems. In comparison to the other tracks (and similar competitions such as SMT-COMP
and SV-COMP), the ARCH group on falsification could previously not refer to an established
repository of benchmarks. By collecting existing benchmarks and soliciting new ones in a single
place now we have that for the first time.

Nevertheless, even though all participating tools interface with Matlab/Simulink, there are
differences in how this is done, e.g., how input parameters are passed to the simulation engine.
As an example, Breach and S-TaLiRo internally interpolate input signals to a high sample rate,
whereas FalStar relies on Simulink for this and provides compressed input signals with a low
sample rate. As a consequence, the result for FalStar differs depending on the interpolation
setting of the input ports in the model, whereas that is not the case for the other tools. An-
other issue that had to be clarified was the input signal specification, as discussed in Sec. 2.
Repeatability and cross-validation of results currently involves a lot of manual set-up due to
lack of common standards for reporting and processing these. For future competitions, it would
be much better, if such standards are established beforehand, so that the initial phase of the
competition can focus on benchmark selection. In the end, the envisioned cross-checking of
results happened not systematically, so the results cannot be trusted entirely, but at least a
partial success in this regard could be achieved.

Running the benchmarks is computationally expensive, which is aggravated by the need to
run many trials (50 here) to account for the stochastic nature of the algorithms. As a conse-
quence, running all benchmarks for a given tools takes several machine-days. In combination
with the discussions, this factor lead to a delayed availability of stable results, and a short time
frame for validating the results. It would be great to use existing computing infrastructure such
as StarExec7 to run the benchmarks, but it is currently unclear whether this is feasible with
respect to availability of sufficient Matlab licenses.

We hope that future competition installments will benefit from the now established set
up, and that furthermore this benchmark repository will eventually serve as a base-line for
experimental research in the falsification community. Moreover, with respect to such a base-
line it will be easier to track the state-of-the-art and progress of the effectiveness and efficiency
of falsification tools. Potential future work would be to include a classification of the difficulties
of the individual benchmarks (and the falsification rate of uniform random sampling), so that
it can be investigated which approach works well for which kind of problem.
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