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Abstract—We present TESTCOV, a tool for robust test-suite
execution and test-coverage measurement on C programs.
TESTCOV executes program tests in isolated containers to
ensure system integrity and reliable resource control. The
tool provides coverage statistics per test and for the whole
test suite. TESTCOV uses the simple, XML-based exchange
format for test-suite specifications that was established as
standard by Test-Comp. TESTCOV has been successfully
used in Test-Comp ’19 to execute almost 9 million tests on
1 720 different programs. The source code of TESTCOV is
released under the open-source license Apache 2.0 and avail-
able at https://gitlab.com/sosy-lab/software/test-suite-validator.
A full artifact, including a demonstration video, is available at
https://doi.org/10.5281/zenodo.3418726.

Index Terms—Test Execution, Coverage, Test-Suite Reduction

I. INTRODUCTION

Modern test-case generators are able to generate system
tests that reveal bugs in programs like never before, but
executing these tests may lead to system failures, modifications,
information leakage, or resource exhaustion. Because of this,
program tests are often executed in virtual machines or
containers (e.g., Docker). TESTCOV provides a lightweight
solution to this: it uses an overlay file system and Linux control
groups to protect the file system from modifications and to
prevent unexpected resource usage during test execution, based
on the existing benchmarking tool BENCHEXEC [4]. Compared
to other containerization technology, BENCHEXEC does not
require the installation of any additional software or superuser
privileges during usage because it solely relies on features built
into the Linux kernel. TESTCOV provides coverage statistics for
line, branch, and condition coverage per test and for the whole
test suite, and creates plots to visualize the measured data.

TESTCOV has been used in the First International Competition
on Software Testing (Test-Comp ’19) [1] to validate the test
suites created by all 9 participants. TESTCOV uses the simple,
XML-based exchange format for test-suite specification that
was established as a standard by Test-Comp. All 9 participants
support the exchange format. In the past, test-case generators
used proprietary formats to output their generated tests, which
led to two problems: Test suites can, depending on the format,
often only be executed using auxiliary programs or not at
all, and test suites generated by different test-case generators
can not be directly compared or combined. The XML-based
exchange format solves these issues.
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Fig. 1: Inputs and outputs of TESTCOV

Availability. TESTCOV is publicly available via GitLab 1 and
as an archived package [5].

Related Work. TESTCOV aims at unifying and executing test
suites that are created by test-case generators [7], [13], [6], [2],
[9], [10], [8] for C programs. KLEE [7] provides a replay library
that can be used to create a test harness from the program
under test with which it is possible to execute individual tests
in the proprietary test-case format of KLEE. The test cases
created by AFL-FUZZ2 can be directly fed to a program. None
of the existing test executors supports tests that are created by
other test-case generators, nor the execution of a full test suite.

TESTCOV is based on BENCHEXEC; other tools for container-
ization are Docker 3, LXC 4, and Snap 5. Other projects related
to the isolation and robust execution of software bugs are
BugZoo 6 and the ManyBugs and IntroClass benchmarks [12].

II. ARCHITECTURE OF TESTCOV

Figure 1 shows the inputs and outputs of TESTCOV. TESTCOV

gets as input the C program under test, the coverage criterion
to check against, and the test suite, and creates an executable
program that can be used to feed tests to the program under
test, coverage statistics about the test suite, and a reduced
test suite that achieves the same coverage (with respect to the
coverage criterion) as the original test suite.

1https://gitlab.com/sosy-lab/software/test-suite-validator
2http://lcamtuf.coredump.cx/afl/
3https://www.docker.com/
4https://linuxcontainers.org/
5https://snapcraft.io/
6https://github.com/squaresLab/BugZoo
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1 <?xml version="1.0"?>
2 <!DOCTYPE test-metadata PUBLIC [...]>
3 <test-metadata>
4 <sourcecodelang>C</sourcecodelang>
5 <producer>testcov v3.0</producer>
6 <specification>CHECK( FQL(cover EDGES(@CONDITIONEDGE)) )</specification>
7 <programfile>example.c</programfile>
8 <programhash>eeecda9cbf27c43c9017fa00dd900c19a5ec18d46303f59a6e0357db78c33849</programhash>
9 <entryfunction>main</entryfunction>

10 <architecture>32bit</architecture>
11 <inputtestsuitefile>original-suite.zip</inputtestsuitefile>
12 <inputtestsuitehash>11911d658dcfbf8501390bf0faa96eb193b11bb1</inputtestsuitehash>
13 <creationtime>2019-06-19T14:17:34Z</creationtime>
14 </test-metadata>

Fig. 2: Example metadata file of a test suite

1 <?xml version="1.0"?>
2 <!DOCTYPE testcase PUBLIC [...]>
3 <testcase>
4 <input>’b’</input>
5 <input>10</input>
6 <input>0x0f</input>
7 </testcase>

Fig. 3: Example test case of a test suite

1 #include <stdio.h>
2 #include <unistd.h>
3 extern char __VERIFIER_nondet_char();
4

5 int main() {
6 char x = __VERIFIER_nondet_char();
7 if (x == ’a’) {
8 while (1)
9 fork();

10 } else {
11 remove("important.txt");
12 if (access("important.txt", F_OK) != -1) {
13 return 1;
14 }
15 }
16 }

Fig. 4: An example program with side effects

A. Test-Suite Exchange Format

TESTCOV reads and writes test suites in the XML-based
exchange format for test suites, which consists of two parts: a
metadata file and a set of test-case files, each defining a single
test case. The metadata file is an XML file that describes
the test suite and is always named metadata.xml. Figure 2
shows an example metadata file with all available fields.
Some noteworthy fields are: the programming language of the
program under test (<sourcecodelang>), the coverage criterion
the test suite was created for (<specification>), the SHA-256
hash of the program under test (<programhash>), the program
function that is tested by the test suite (<entryfunction>),
and the system architecture the program tests were created
for (<architecture>). If the test suite is the result of another
test suite, e.g., because of test-suite reduction, the file name
of this input test suite (<inputtestsuitefile>) and its SHA-
256 hash (<inputtestsuitehash>) can also be recorded. A
test-case file (Fig. 3) contains a sequence of tags <input>

that describe the sequence of input values. The directory
structure of test suites is arbitrary, and they are given to
and created by TESTCOV as zip files for efficient storage
and convenient handling. Since the exchange format is used
in Test-Comp, many test-case generators support the format:
COVERITEST [2], CPA-TIGER7, ESBMC [10], FAIRFUZZ [13],
KLEE [7], PRTEST [3], SYMBIOTIC [8], and VERIFUZZ [9].

B. Test Execution

For test execution, the program under test is compiled against
a test harness that consists of two parts: (1) a method get_input

7https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp19/

for receiving test values, and (2) a new definition for each input
method in the program under test that delegates to get_input.

Method get_input reads test inputs from the standard input
as C-format strings and parses them into a C type. It supports
hexadecimal (e.g., 0x4a), integer (e.g., 74), floating point (e.g.,
74.5) and character representation (e.g., ’J’) for all primitive
types (up to long double), as well as single-line string inputs.
Methods from the C standard library are used for parsing.

For each input method, a new definition is introduced that
calls get_input with the corresponding format type of the
return type of the input method. For example:

int inputMethod() {
int inputVar;
get_input("%d", &inputVar);
return inputVar;

}

Given a test suite, TESTCOV first parses the metadata file to
check consistency with the input file and coverage criterion.
If one of them is not consistent, the user is informed. Then,
TESTCOV iterates over all test-case files, reads the test inputs
for each test, executes the compiled program and sequentially
passes the test inputs to the execution via standard input.

To ensure that test execution does not get stuck because of
a non-terminating test, a time limit is applied for each test
execution. In addition, if a test case contains less input values
than necessary, TESTCOV will terminate the execution once all
input values are consumed and a new one is requested.

To ensure that test executions do not alter the system of
the user, perform malicious actions, or influence each other,
TESTCOV isolates each test execution in a separate container
and control group using RUNEXEC8, a tool provided as part of

8https://github.com/sosy-lab/benchexec/blob/2.0/doc/runexec.md
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Fig. 5: Plot of individual and accumulated test coverage

BENCHEXEC [4]. We configure it such that test executions in
the container have no network access, can not see or modify
other system processes, and work on an overlay file system that
prevents file modifications in the original system. Files written
inside the container are kept in memory and not written to
disk. Keeping all file modifications in memory also speeds up
test execution in the presence of file operations. Cgroups are
a Linux kernel feature that allows to restrict and measure the
resource consumption of a process and all its child processes.
TESTCOV uses this to restrict memory usage to a user-specified
maximum, to restrict computations to a specified number of
CPU cores, and to enforce the time limit on test executions.

Figure 4 shows a program with side effects. The program
takes a single character as input, here via Test-Comp-specific
method __VERIFIER_nondet_char. If the input is ’a’, a fork
bomb is started that spawns an unbounded number of processes
that will eventually fill the process table of the user’s system
and make it unusable. Otherwise, the program will delete some
file, and check whether the deletion was successful. If TESTCOV

is given a test suite that defines test cases for both branches, it
executes both branches properly, but the number of processes
is limited (by default to 5000 processes), and the file deletion
only happens in the execution’s container, not on the original
file system, and thus, no harm is done to the user’s system,
while the coverage measurement is still accurate.

C. Coverage Statistics

TESTCOV provides coverage information per test and for
the whole test suite, and creates plots for the coverage
criterion. TESTCOV reads coverage criteria in the query language
FQL [11]. Currently, it supports block, branch, and condition
coverage, as well as covering calls to an error-function. To
compute coverage, TESTCOV uses GCC instrumentation and
LCOV. LCOV stores coverage for each line and program condition
in a tracefile. LCOV claims to store branch coverage, but con-
siders each condition of a short-circuit boolean operation as a
separate branch. For example, the code in Fig. 6 consists of two
branches: the if-branch is entered if condition x > 0 || x < 0

is true, and the (implicit) else branch is entered otherwise.
LCOV considers each evaluation of the two conditions x > 0

1 int x = 1;
2 if (x > 0 || x < 0) {
3 // ...
4 }

Fig. 6: Code with short-
circuit condition ||

1 int x = 1;
2 if (x > 0 || x < 0) {
3 BRANCH_1:;
4 // ...
5 } else {
6 BRANCH_2:;
7 }

Fig. 7: Code instrumented to
compute branch coverage

and x < 0 as a separate branch and thus reports that the
program has four branches. The evaluation of the first condition
(x > 0) is always true for that program, so every program
execution takes the if-branch. Since condition x < 0 is never
evaluated, LCOV reports a branch coverage of only 25 % instead
of the expected 50 %. To circumvent this and implement a
proper branch-coverage measurement, TESTCOV adds program
labels BRANCH_i at the beginning of each program branch of a
program (Fig. 7) and uses the line-coverage measurement of
LCOV to check which of the added program labels are covered.
This way, TESTCOV can accurately measure branch coverage.

By default, LCOV stores only the accumulated coverage of
all program executions in a single tracefile. To get both the
accumulated coverage and the individual coverage of each
separate test case, TESTCOV manages two separate tracefiles
with LCOV: a default one that is newly created for each test
execution and only stores the coverage of that execution,
and one that contains the accumulated coverage over all test
executions. While coverage information per test is usually not
interesting for mere test execution, it can provide useful insights
for test-suite optimization and reduction. TESTCOV provides
coverage statistics as plots and as CSV files that can be easily
processed further. It provides a plot (Fig. 5) that shows: (a) the
accumulated test coverage (y-axis) after execution of the n-th
test (x-axis) of the test suite (step plot, continuous line in
Fig. 5), and (b) the test coverage of each test case (bars in
Fig. 5). The order of tests in the plot is always the same as
the order of execution. It is visible that, for the example, the
five tests that reach 75.0% coverage subsume the three tests
that reach 12.5% coverage, because the accumulated coverage
does not increase beyond 75.0% and 87.5%, resp., after any
of their executions. In addition, it is visible that only the 6th
test executed is necessary to achieve the same branch coverage
as achieved by all 9 tests of the test suite together, because it
provides, on its own, the same coverage as the accumulated
coverage of the full test suite.

D. Test-Suite Reduction

TESTCOV provides test-suite reduction through the strategy
design pattern, so different algorithms can be added in the
existing infrastructure to reduce a given test suite. By default,
TESTCOV provides the following test-suite reduction technique:
If the coverage criterion is to cover calls to an error-function,
TESTCOV creates a new test suite that consists of one test case
from the original test suite that covers that error function. If
the coverage criterion is to cover lines, branches, or conditions,
TESTCOV creates a new test suite that is potentially smaller
than the original test suite and that achieves the same coverage.



To do so, it reads the recorded accumulated coverage after each
test execution, and a test is only added to the reduced test suite
if its corresponding test execution increased the accumulated
coverage. TESTCOV executes tests in arbitrary order, so this
approach does not necessarily produce a minimal test suite,
but no additional test executions or computations are necessary
for this simple but effective reduction technique.

III. USAGE

Installation. TESTCOV requires Python 3.6 or newer. The
following command line installs TESTCOV and its dependencies
(executed from the base directory of the TESTCOV source code):

> python3 setup.py install

Execution. TESTCOV is started via command line, with three
required arguments: (1) –test-suite to specify the test suite to
execute, (2) –goal to specify the coverage criterion, and (3) the
program file. A test suite is provided as zip file, and a coverage
criterion is provided as text file in FQL syntax. The following
example command line runs TESTCOV on test suite suite.zip,
coverage criterion criterion.prp, and program prog.c:

> testcov –test-suite suite.zip –goal criterion.prp prog.c

Directory output will contain all output files, i.e., the exe-
cutable test harness, the reduced test suite, coverage statistics,
and plots (in SVG format).

Creation of a separate container for each test execution and
coverage measurement increases execution overhead because
of the additional file system operations. TESTCOV provides
optional arguments to turn these features off if they are
not required. The following command-line prints all such
arguments:

> testcov –help

Adaption of test format. To make adaption of the XML-
based test format easy for test-case generators, we provide
a small Python library called tsbuilder 9. It can be used to
programmatically create test-suite metadata and test cases in
the established exchange format for test suites.

IV. APPLICATIONS

TESTCOV has been used for Test-Comp ’19, where
it ran almost 9 million tests created by 9 different
test-case generators on 1 720 different programs and
2 different coverage criteria. TESTCOV was used for
both execution and coverage measurement during the
competition. All results of the competition are available
online.10 The tables that show results for several test-case
generators or meta categories (e.g., Cover-Branches)
only list the coverage computed by TESTCOV. The
tables for single test generators and sub-categories (e.g.,
coverage-branches.ReachSafety-Arrays-VERIFUZZ11)

9https://gitlab.com/sosy-lab/software/test-format/tree/v2.0/python_
modules/tsbuilder

10https://test-comp.sosy-lab.org/2019/results/
11https://test-comp.sosy-lab.org/2019/results/results-verified/verifuzz.

2019-02-06_0717.results.test-comp19_prop-coverage-branches.
ReachSafety-Arrays.xml.bz2.merged.xml.bz2.table.html

provide the full data, including a stripped-down version of
plots for accumulated test coverage.

V. CONCLUSION

TESTCOV is a tool for test-suite execution on C programs that
reads test suites in the simple and standard exchange format of
Test-Comp, and performs a robust and reliable test execution.
TESTCOV uses BENCHEXEC, which in turn uses as foundation the
containers for isolated execution and control groups for resource
control that the operating-system kernel provides. The current
version provides both individual and accumulated coverage
statistics for four important coverage criteria. TESTCOV has
been successfully used for the execution of Test-Comp ’19.
While TESTCOV is implemented for C programs, the used
concepts can be easily transferred to other languages.
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