
Proc. ATVA 2019, c© Springer

Conditional Testing
Off-the-Shelf Combination of Test-Case Generators

Dirk Beyer and Thomas Lemberger

LMU Munich, Germany

Abstract. There are several powerful automatic testers available, each
with different strengths and weaknesses. To immediately benefit from
different strengths of different tools, we need to investigate ways for
quick and easy combination of techniques. Until now, research has mostly
investigated integrated combinations, which require extra implementation
effort. We propose the concept of conditional testing and a set of com-
bination techniques that do not require implementation effort: Different
testers can be taken ‘off the shelf’ and combined in a way that they
cooperatively solve the problem of test-case generation for a given input
program and coverage criterion. This way, the latest advances in test-case
generation can be combined without delay. Conditional testing passes
the test goals that a first tester has covered to the next tester, so that
the next tester does not need to repeat work (as in combinations without
information passing) but can focus on the remaining test goals. Our
combinations do not require changes to the implementation of a tester,
because we leverage a testability transformation (i.e., we reduce the input
program to those parts that are relevant to the remaining test goals). To
evaluate conditional testing and our proposed combination techniques,
we (1) implemented the generic conditional tester CondTest, including
the required transformations, and (2) ran experiments on a large amount
of benchmark tasks; the obtained results are promising.

Keywords: Software testing, Test-case generation, Conditional model checking,
Cooperative verification, Software verification, Program analysis, Test coverage

1 Introduction

Tool competitions in software verification and testing [1, 2, 27, 35] have shown
that there is no tool that is superior, but that different tools and approaches have
different strengths. Therefore, we need to combine different tools and approaches.
Integrated combination approaches [8, 15, 19, 23] have shown their potential, but
those combinations require additional implementation work.

The goal of this paper is to provide a generic framework that enables combi-
nations of tools for test-case generation without the need to change the tools:
We show how to take a set of testers ‘off the shelf’ and combine them on the

Supported in part by DFG grant BE1761/7-1.

Program

Ψ0

Covered
Test Goals

ϕ

Coverage
Criterion

Conditional
Tester

Ψ1

Covered
Test Goals

Test Suite

Fig. 1: Conditional testing

1 int main() {
2 int x = input();
3 if (x != 161) {
4 // ...
5 } else {
6 // ...
7 }
8 }

Fig. 2: Program under test

Ψ0:
∅

ϕ:
branch
cov.

Conditional
Tester 1

input():

0
input():

0

Ψ1:
@4

Conditional
Tester 2

Ψ2:
@4+@6

input():

161
Test Suite

Fig. 3: Example usage of conditional testers

binary level. In other words, any tester can be taken as a black box, wrapped
into a new meta tester (conditional tester) by a fully automated construction,
and the new tester uses interfaces that make it possible to combine it with others
(for an overview of combination techniques for software verification see [12]).
There are several successful testers for C programs already; nine of them par-
ticipated in the competition on software testing [2] and adhere to standard
exchange formats for their input and output.

Conditional testing applies the idea of conditional model checking [7] to
testing, as illustrated in Fig. 1. A conditional tester gets as input a program
under test, a coverage criterion ϕ (e.g., ‘branch coverage’), and a condition Ψ0

that describes a set of test goals that are already covered by existing tests. With
this information, a conditional tester creates (1) a test suite that tries to cover
as many test goals of [[ϕ]] \ Ψ0 as possible, and (2) a new condition Ψ1 of test
goals that have been covered. For a coverage criterion ϕ, we use [[ϕ]] to denote
the test goals that are needed to fulfill ϕ. The condition Ψ1 covers the test goals
described by condition Ψ0 and the test goals newly covered by the created test
suite. With this interface for information passing, conditional testers can be
combined to focus on different or remaining test goals.

Figure 2 shows a small program that we use to illustrate conditional testing.
The program gets an arbitrary integer as input and stores it in program variable x.
The program then checks whether x is un-equal to value 161. If it is, the if-
branch is entered and some more code (// ...) is executed. Otherwise, the
else-branch is entered. The coverage criterion of branch coverage defines two
test goals for this program: (1) cover line 4 (denoted by @4 in FQL [26]), and
(2) cover line 6 (@6). A test suite that covers both test goals would contain
at least two test cases: One with input 161, and one with any other input.
A randomized tester can quickly generate a test case with an input different
from 161, because the number of possible values is very high and thus very
probable to be fulfilled by a random test case. In contrast, it is difficult for a
randomized tester to create a test case with input 161.

Let us consider the combination of a fast, but shallow randomized tester
(Conditional Tester 1 in Fig. 3) with a tester that is slower, but uses an ex-
haustive reasoning technique (Conditional Tester 2), to obtain a test suite that
covers all branches: Given the program under test, the coverage criterion ϕ =
COVER EDGES(@DECISIONEDGE) (branch coverage in FQL syntax), and the
empty condition Ψ0 = ∅ (i.e., no test goal covered yet), we run the conditional,
random tester for a short amount of time. Assume it creates several differ-
ent test cases, including one with input value 0. The created test cases cover
line 4, but do not cover line 6. Thus, the conditional tester returns Ψ1 = @4
for the now covered test goal. A second conditional tester, for example based
on symbolic execution, then gets the same program and coverage criterion, but
condition Ψ1. The conditional tester focuses on the remaining test goal of covering
line 6 and creates a test case with input 161. Now, all test goals are covered
and Ψ2 = @4+@6 describes both test goals.

Conditional testing does not prescribe a certain format or language to be
used for specifying coverage criteria and conditions. The competition on software
testing [2] uses FQL [25, 26] as test-specification language, and we use FQL in
the example above to describe the condition, i.e., the already-covered test goals.
FQL is a versatile language for defining various test criteria, allows to define
explicit sets of test goals by enumerating single locations, but it also supports to
specify full program paths as test goals, as well as value constraints on variables
at certain program locations, and of course standard coverage criteria such as
branch coverage are provided. For the first version of our tool implementation
CondTest, we started with a simpler way to denote test goals.

Since existing testers do not accept conditions, we propose a testability
transformation called reducer that uses the coverage criterion and the condition
to transform the program under test into a residual program that is restricted to
those parts of the program that are needed to generate test cases for the remaining
test goals. This residual program is then given to an off-the-shelf tester (instead
of the original program under test), such that the tester is forced to generate
test cases for the remaining test goals. The resulting test suite is given to an
extractor that extracts the test goals that are covered in the original program,
and computes the new condition. This process of transforming off-the-shelf testers

into conditional testers can be split into three independent components: reducer,
tester, and extractor. All three components are defined through their type
and soundness-requirements, and many different implementations are possible.

To show the potential of our approach, we implemented examples for reducer
and extractor. We use the common formats and infrastructure of the Inter-
national Competition on Software Testing (Test-Comp) [2] to allow plug-and-
play transformation of existing software testers (for example, CoVeriTest,
CPA/Tiger, Klee) into conditional testers.

In addition, we contribute a construction based on conditional testing that
turns an existing, formal software verifier into a conditional tester, such that
existing verifiers and existing testers can be combined as well. Formal verifiers
can be specialized for finding a counterexample to a certain specification, e.g.,
an assertion violation or a program location of interest. Verifiers have been
able to create test cases from such counterexamples for over a decade [3, 40]
and can thus be used for directed generation of test cases for hard-to-reach
test goals. Our generic conditional tester can use all verifiers (31 tools in 2019)
of the International Competition on Software Verification (SV-COMP) [1]. It
uses the standard violation-witness exchange-format [4] and transforms created
witnesses into executable tests [5]. To feed test goals to verifiers, we provide a
tailored transformation that inserts function calls at test goals and defines the
specification such that the verifier shall prove unreachability of such a function
call. Since most verifiers stop their analysis after finding one counterexample
(i.e., creating a single test case), we repeatedly apply conditional testing with
the same verifier to obtain a full test suite.

Related Work. We base our work on conditional model checking [7], which
is a general concept for information exchange between different model checkers
through the use of conditions. The conditions are used to instruct the next
conditional model checker which parts of the state space it does not need to
verify because the previous model checker had successfully verified those parts
of the state space already. To transform any off-the-shelf model checker into
a conditional model checker, program reduction [9, 18] was proposed and suc-
cessfully applied. We apply this general idea to testing and call it conditional
testing. The conditions of conditional testing describe parts of the program
that do not need to be tested, in terms of test goals. Similar to the reducer for
conditional model checking [9] (which cuts off program paths that are already
verified), we developed a reducer that cuts off program paths whose test goals
are already covered. Further transformation techniques that reduce programs to
only contain program paths that may be relevant for analysis include program
slicing [18, 39] and program trimming [20].

Other works that allow combinations of different testing techniques exists; they
are either limited to specific test-case-generation techniques [8, 29, 31, 32, 37, 41]
or require changes of the existing implementations [8, 32]. In contrast, conditional
testing is completely technique-agnostic and works with existing testers ‘off the
shelf’, that is, without changing the existing testers. Some techniques of test-suite
augmentation [28, 38] can be used to iteratively generate test suites with one

arbitrary tester, and one specific second technique that reuses the test suite
generated by the first tester. These approaches are subsumed by conditional
testing as special cases. Further combination approaches of tools for verification
and testing include the Electronic Tools Integration platform (ETI) [30, 36], and
the Evidential Tool Bus (ETB) [17, 33]. Conditional model checking was also
applied to combine program analysis and testing [13, 16, 18].

Contributions. This article describes the following contributions:

1. We introduce the concept of conditional testing (Fig. 1), which enables quick
and simple combinations of conditional testers with information passing. This
provides the interface to combine existing testers.

2. We present a construction of conditional testers from off-the-shelf test-case
generators, based on program reduction and test-goal extraction (Sect. 3).

3. We present several possible combinations for conditional testers (Sect. 4).
4. Using some of these combinations, we present a construction of testers from

off-the-shelf software verifiers, based on conditional testing (Sect. 5).
5. We have implemented the generic conditional tester CondTest, which con-

tains all components that are necessary for the above-mentioned constructions
and combinations (https://doi.org/10.5281/zenodo.3352401).

6. We show the potential of conditional testing for software via a thorough
experimental evaluation on the large Test-Comp benchmark set, consisting
of 1 720 benchmark tasks (Sect. 6).

2 Background

In the following, we remind the reader of some notions that are necessary to instan-
tiate the concept of conditional testing to software. A test vector v̄ = 〈v0, . . . , vn〉
is a sequence of program inputs vi with 0 ≤ i ≤ n. A test vector describes a test
case over the program inputs, in the order that they are passed to the program
under test. A test suite {v̄0, . . . , v̄l} is a set of test vectors v̄i with 0 ≤ i ≤ l. We
store and exchange test suites in the Test-Comp test format [2]. All Test-Comp
participants can write a generated test suite in this format, which stores a test
suite in a test-suite directory with several files in XML format: (1) one metadata
file that contains metadata about the created test suite, and (2) one additional
file for each test vector. Each test-vector file lists the test values of that test case.

We represent programs as control-flow automata (CFA) [6]. A CFA is an
automaton P = (L, l0, E) with a set L of states, initial state l0, and a set
E = L×Ops× L of edges, with set Ops of all possible program operations. The
set L of states represents the program locations, the initial state l0 represents the
entry point of the program, and each control-flow edge (l, op, l′) ∈ E represents a
program transfer where the control flows from program location l to program
location l′ and program operation op is executed. An operation is either an
assignment, an assumption, or a nop. An assignment x := exp assigns the value
of expression exp to program variable x, where exp is a either a constant or an

https://doi.org/10.5281/zenodo.3352401

l0

l3

l4 l6

l7

x := input()

[x 6= 161] [!(x 6= 161)]

// ... // ...

Fig. 4: CFA representation of the program in Fig. 2

arithmetic expression over constants and program variables. An assumption [p]
only transfers control from l to l′ if p is true, where p is a boolean expression
over constants and program variables. A nop is a program operation with no
effect on the program’s data state. A nop may have an arbitrary text label.
Figure 4 shows a CFA representation of the program from our introductory
example (Fig. 2). A program path π = 〈l0

op0−−→ l1
op1−−→ . . . ln−1

opn−1−−−−→ ln〉 is a
sequence of program locations that are sequentially connected through CFA edges
(li, opi, li+1) ∈ E. We write π ∈ [[P]] if π is a program path of program P . The
execution of a test vector v̄ on a CFA P results in a single, deterministic program
path 〈l0

op0−−→ . . .
opn−1−−−−→ ln〉, beginning at the program entry l0. A test vector

covers a test goal g if its execution results in a program path that reaches g.
A violation witness [4] is a non-deterministic, finite-state automaton that

describes a set of program paths from which at least one reaches a specification
violation. From each violation witness, at least one test vector can be extracted [5]
that follows a program path described by the witness.

A testability transformation [24] is a transformation P × G → P × G over
the set P of programs and the set G of test-goal descriptions. A testability
transformation τ transforms a given program P and given test goals G such
that, for τ(P,G) = (P ′, G′), the following holds: if a test-suite S covers all test
goals G′ on P ′, test suite S covers all test goals G on P . The reducer presented
in the following section will be based on a testability transformation that only
transforms the program and keeps the test goals unchanged.

3 Construction of Conditional Testers from
Existing Testers

Figure 5 shows how a conditional tester can be created from an off-the-shelf
tester. A conditional software tester gets as input a program under test P , a
coverage criterion ϕ, and a condition Ψ0 (that describes already covered test
goals). First, the set G = [[ϕ]] \ Ψ0 of remaining test goals that shall be covered
is computed. Then, a program reducer reducer takes G and P , and creates a
residual program that contains the program behavior relevant for creating test
cases that cover test goals in G and that omits other program behavior. This
residual program and coverage criterion ϕ are then given to a (classic, existing)

Program

ϕ

Coverage
Criterion

Ψ0

Covered
Goals

\ G

Remaining
Goals

reducer

Residual
Program

Off-the-shelf
Tester

Test Suite extractor

Ψ ′

∪

Ψ1

Covered
Goals

Fig. 5: Conditional tester testercond

tester, which creates new test cases based on them. Once the tester stops, the
original program P , the coverage criterion ϕ, and the created test suite are given
to a test-goal extractor extractor, which computes all test goals Ψ ′ in P that are
described by ϕ and that the test suite covers. Then, the newly covered goals Ψ ′
are combined with Ψ0 to get the full set Ψ1 = Ψ0 ∪ Ψ ′ of now covered test goals.

In the following, we will show requirements on the components reducer
and extractor. We consider programs in their CFA representation. For ease
of presentation, we assume that all program variables and constants are inte-
gers, and we only consider intra-procedural analysis here, i.e., programs with
a single procedure. Our approach can be naturally extended to other data
types and inter-procedural analysis. We represent test goals as CFA edges and
describe conditions as sets of test goals.1

3.1 Program Reduction

A program reducer is a testability transformation reducerG : P → P ′ that
transforms, for a given set G of test goals, a program P to a program P ′ that is
G-coverage-equivalent to P . Two programs P and P ′ are G-coverage-equivalent
if the two executions of P and P ′ on a test vector v̄ cover the same subset
Gv̄ ⊆ G of test goals. Compared to traditional testability transformation [24], the
set G of test goals is not changed by reducer (we write reducerG : P → P ′ as
abbreviation for reducer : P ×G→ P ′ ×G). This allows us to run testers and
generated test cases on the same coverage criterion, and no mapping between
test goals is necessary. We require a program reducer to be sound and complete.
Soundness is the basic requirement for testability transformations [24]. We also
require completeness to ensure that test-case generation on the reduced program
does not miss any test goal that is reachable in the original program.
1 All coverage criteria that are based on code reachability can be reduced to reachability
of CFA edges through testability transformations [24, 34].

l0

l3

l6

l7

x := input()

[!(x 6= 161)]

// ...

1 int main() {
2 int x = input();
3 if (x != 161) {
4 exit(1);
5 // ...
6 } else {
7 // ...
8 }
9 }

Fig. 6: Residual program for
test goal (l6, // ..., l7)

l0

l3

l4 l6

l4′ l6′

l7

x := input()

[x 6= 161] [!(x 6= 161)]

GOAL_47 GOAL_67

// ... // ...

1 int main() {
2 int x = input();
3 if (x != 161) {
4 GOAL_47:;
5 // ...
6 } else {
7 GOAL_67:;
8 // ...
9 }

10 }

Fig. 7: Program instrumented by Alg. 1 for
test-goal extraction

Soundness. Given a program P and a set G of test goals, the reducer reducerG
is sound if the following holds: if a test vector v̄ on program P ′ = reducerG(P)
covers a test goal g ∈ G, then v̄ on program P covers g.

Completeness. Given a program P and a set G of test goals, the reducer reducerG
is complete if the following holds: if a test vector v̄ on program P covers a test
goal g ∈ G, then v̄ on program P ′ = reducerG(P) covers g.

Identity Reducer. The program reducer reducerid is the identity, i.e., it
returns a given program without any modification.

Pruning Reducer. The program reducer reducerprune is based on syntac-
tic reachability. Given a CFA P = (L, l0, E) and a set G ⊆ E of test goals,
reducerprune computes a new CFA P ′ = (L′, l0, E

′) that only contains program
locations and their corresponding edges from which a test goal is reachable.

Formally, L′ = {l ∈ L | ∃(lg, opg, l′g) ∈ G : 〈. . . op−→ l
op′−−→ . . . lg

opg−−→ l′g〉 ∈ [[P]]}
and E′ = {(l, op, l′) ∈ E | l, l′ ∈ L′}.

Figure 6 shows the result of reducerprune{(l6,// ...,l7)}(P) for our example program
(Fig. 4), as CFA and translated to C code. Because the left branch with condition
x 6= 161 can never reach test goal (l6, // ..., l7), it is removed from the CFA.
C code can not express single assumption edges, so we translate the CFA by
placing an exit-call after the first assumption that is not part of the CFA (line 4).

Proposition 1. Program reducer reducerprune is sound.

Proof. Given a program P = (L, l0, E) and a set G ⊆ E of test goals, if a
program path 〈l0

op−→ . . . lg
opg−−→ l′g〉 with (lg, opg, l

′
g) ∈ G exists in program

P ′ = reducerpruneG (P), then the same program path must exist in the original
program P , by construction. So if the execution of a test vector v̄ on P ′ results
in program path 〈l0

op−→ . . . lg
opg−−→ l′g . . .〉, then its execution on P will result in

the same program path, and thus also reach test goal (lg, opg, l
′
g).

Proposition 2. Program reducer reducerprune is complete.

Proof. Given a program P = (L, l0, E) and a set G ⊆ E of test goals, if a program
path 〈l0

op−→ . . . lg
opg−−→ l′g〉 with (lg, opg, l

′
g) ∈ G exists in program P , then the

same program path must exist in the reduced program P ′ = reducerpruneG (P),
by construction. So if the execution of a test vector v̄ on P results in program
path 〈l0

op−→ . . . lg
opg−−→ l′g . . .〉, then its execution on P ′ will result in the same

program path, and thus also reach test goal (lg, opg, l
′
g).

Annotating Reducer. Program reducer reducerannot is based on program an-
notations. Given a CFA P = (L, l0, E) and a set G ⊆ E of test goals, reducerannot
computes (analogous to adding labels, Alg. 1) a new CFA P ′ = (L′, l0, E

′) that
contains a call to custom method VERIFIER_error before each test goal. Method
VERIFIER_error is defined as an empty method, i.e., it has no effect on the
program state, but it can be used to guide supporting testers. Since reducerannot
does not change program behavior, it is a sound and complete program reducer.

3.2 Test-Goal Extraction

A test-goal extractor extractor takes as input a program P , a coverage crite-
rion ϕ, and a test suite, and returns as output a set Ψ of test goals that are covered
by the test suite. We require a test-goal extractor to be sound and complete.

Soundness. Given a program P , a coverage criterion ϕ, and a test suite S that
covers a set G ⊆ [[ϕ]] of test goals, then a test-goal extractor extractor is
sound, if the set Ψ = extractor(P,ϕ, S) only contains test goals that are
covered by S, i.e., Ψ ⊆ G.

Completeness. Given a program P , a coverage criterion ϕ, and a test suite S
that covers a set G ⊆ [[ϕ]] of test goals, then a test-goal extractor extractor is
complete, if the set Ψ = extractor(P,ϕ, S) contains all test goals that are
covered by S, i.e., Ψ ⊇ G.

Test-Goal Extraction Based on Test Execution. Test-goal extrac-
tor extractorexec computes covered test goals through execution. For a pro-
gram P , a coverage criterion ϕ, and a test suite S, it executes each test vec-
tor v̄i ∈ S on program P and records the CFA edges of the resulting program
path πi = 〈l0

op−→ . . .
opn−1−−−−→ ln〉. From these, it computes the set of test goals

covered by S, i.e., Ψ =
⋃
πi
{(l, op, l′) ∈ πi}.

To be able to easily identify test goals in real C code, we perform a testa-
bility transformation that adds, for each test goal g ∈ [[ϕ]], a nop with la-
bel GOAL_i_j. Test-goal extraction for branch coverage consists of four steps:
(1) Computing the set of test goals (test-goal computation), (2) adding, for
each test goal, a label to the original program that identifies that test goal
in the code (testability transformation), (3) executing the test suite on that
transformed program (test execution), and (4) checking which labels are covered
by the test suite (coverage measurement).

Algorithm 1 Testability Transformation: addLabels(P,G)

Input: CFA P = (L, l0, E), test goals G ⊆ E
Output: CFA (L′, l0, E

′) with test-goal labels
Variables: Sets waitlist, visited ⊆ L

L′, E′ = {}
waitlist, visited = {l0}
while waitlist 6= ∅ do

choose li from waitlist; remove li from waitlist
for (li, op, lj) ∈ E do

L′ = L′ ∪ {li, lj}
if (li, op, lj) ∈ G then

L′ = L′ ∪ {l′i}
E′ = E′ ∪ {(li,GOAL_i_j, l′i), (l′i, op, lj)}

else
E′ = E′ ∪ {(li, op, lj) ∈ E}

if lj 6∈ visited then
waitlist = waitlist ∪ {lj}
visited = visited ∪ {lj}

return (L′, l0, E
′)

(1) Test-Goal Computation. As an example, we use the coverage criterion of
branch coverage. For branch coverage and a CFA (L, l0, E), we use as test
goals the set of all edges that are preceded by assume edges, i.e., [[ϕ]] =
{(l, ·, ·) ∈ E | ∃(·, op, l) ∈ E : op is assume operation}.

(2) Testability Transformation. We first translate a given program in real C code
to a CFA P . Algorithm 1 takes this CFA P and creates a semantically equivalent
CFA with additional edges for program labels. For P = (L, l0, E), the new
CFA P ′ = (L′, l0, E

′) is computed as follows: Initially, the sets L′ and E′ are empty.
A waitlist is initialized with the initial program location l0. As long as the waitlist
is not empty, a program location li is selected and removed from the waitlist and
each outgoing edge (li, op, lj) ∈ E is considered. First, li and lj are added to L′.

Then, if (li, op, lj) is a test goal, a new program label GOAL_i_j is introduced
just before op as follows: A new program location l′i is added to L′, and the
two edges (li, GOAL_i_j, l

′
i) and (l′i, op, lj) are added to E′.

If the edge (li, op, lj) is not a test goal, it is added to E′ without modifications.
After this, if lj was not encountered before, it is added to the waitlist and the set
of visited nodes. As soon as the waitlist is empty, all locations of the original CFA
have been traversed and the new CFA (L′, l0, E

′) is returned. This transformation
traverses each program location only once and thus scales well. At the end, we
translate the transformed CFA back into C code.

Figure 7 shows the result of addLabels(P,G) for our example pro-
gram P (Fig. 4) and branch coverage, i.e., G = {(l4, // ..., l7), (l6, // ..., l7)}.
The figure shows the resulting CFA and the translation to C code.

Ψ0 Cond. Tester1

Cond. Tester2

Ψ1

Ψn

Test Suite

Fig. 8: testerseq

Ψ Cond. Tester

Test Suite

Fig. 9: testercyc

Ψ0

Cond. Tester1

Cond. Tester2

Ψ ′1

Ψ ′′1

∪ Ψ1

Test Suite

Fig. 10: testerpar

(3) Test Execution. We execute all test cases of the given test suite on the
transformed program as follows: We generate a test harness that reads test
values from the standard input and provides the test values to the C program.
We compile this test harness with the transformed program and feed each test
vector to the harness in individual executions.

(4) Coverage Measurement. We use GCov to obtain a coverage report that lists
for each line 2 of the transformed C program whether it was covered by the test
suite. From this report, extractorexec extracts the program labels of test goals
that are covered, and returns the corresponding test goals.

Since extractorexec is based on concrete execution of the test suite on a seman-
tically equivalent program, the method is assumed to be both sound and complete.

4 Combinations of Conditional Testers

Conditional testing enables versatile combinations of testers. We have already
seen a sequential combination in the introduction (Fig. 3), but it is also possible to
combine conditional testers in other ways, such as in cycles, in general portfolios
(i.e., also parallel), with strategy selection, or for compositional reasoning. In the
following, we will present different possible combinations of conditional testers
to show the potential of conditional software testing. Note that all of these
combinations are themselves conditional testers, so they can be combined with
each other in any way. From now on, we will omit the program under test and
the coverage criterion in figures, to have simpler diagrams.

Sequential Tester. A sequential tester testerseq(T1, T2) (Fig. 8) consists of
two component testers T1 and T2 that are executed sequentially to generate
test cases. Several sequential testers can be used to sequentially combine an
arbitrary number of testers. For simplicity, we write testerseq(T1, T2, T3) for
testerseq(T1, testerseq(T2, T3)). Each tester provides the covered test goals

2 Since the transformed program is generated such that each operation is written on
an own line in the output code, a line uniquely identifies a test-goal label.

Ψ0 Cond. Tester

TiT1 Tn.

Selector

Ψ1

Test Suite

Fig. 11: testerselect

Ψ0 split

Ψ ′0

Ψ ′′0

Cond. Tester1

Cond. Tester2

Ψ ′1

Ψ ′′1

∪ Ψ1

Test Suite

Fig. 12: testercomp

after its run, and the set of remaining test goals will decrease. This can be
used to combine strengths of different testers without further knowledge about
them; testers can either get a certain time limit each, or stop early if they
encounter a program feature they don’t support.

Cyclic Tester. A cyclic tester testercyc(T) (Fig. 9) iteratively calls a conditional
tester T with the increasing set Ψ of covered test goals. This can be used, for exam-
ple, to restart a tester after a certain limit is reached (e.g., memory consumption
or size of path constraints in symbolic execution). In combination with testerseq,
this can also be used to cycle through a sequence of testers (round-robin principle).

Parallel Tester. A parallel tester testerpar(T1, T2) (Fig. 10) runs testers T1

and T2 in parallel on the same inputs. Each tester produces its own set Ψ ′1, Ψ ′′1 of
covered test goals, and their union Ψ ′1 ∪ Ψ ′′1 = Ψ1 is the final set of covered test
goals. Several parallel testers can be used to combine an arbitrary number of
testers, similar to testerseq. In contrast to testerseq, there is no information
exchange between testers T1 and T2, so they may do redundant work.

Strategy-Selection Tester. A strategy-selection tester testerselect(T1, . . . ,
Tn) (Fig. 11) uses a selector function to select to which of testers T1, . . . , Tn
the task of test-case generation is delegated. The selector function can be an
arbitrary function that returns one of T1 to Tn, e.g., a random selection, or
based on a selection model that selects the most suited tester based on fea-
tures of the program under test.

Compositional Tester. A compositional tester testercomp(T1, T2) (Fig. 12)
first splits the condition Ψ0 into two sets Ψ ′0 and Ψ ′′0 , so that Ψ0 = Ψ ′0 ∪ Ψ ′′0 .
Then, tester T1 gets as input the first set Ψ ′0, and tester T2 gets as input the
second set Ψ ′′0 . Both testers work on the original program P and original coverage
criterion ϕ, but due to Ψ ′0 and Ψ ′′0 , the first tester only works on test goals
[[ϕ]] \ Ψ ′0, and the second tester only works on [[ϕ]] \ Ψ ′′0 . They produce individual
sets Ψ ′1 and Ψ ′′1 of covered test goals. These are then merged into the final set
Ψ1 = Ψ ′1 ∪ Ψ ′′1 of now covered test goals. More than two testers can be combined
compositionally through nested combinations. With testercomp, work can be
split (decomposition principle), for example for parallelization or to let each
tester solve the test goals it is most suited for.

ϕ

P

crit-to-spec φ

Formal
Verifier Wit.

Witness-
to-test

Test
Case

Fig. 13: testerveri

Ψ

testercond

reducerannot testerveri extractorexec

Test Suite

Fig. 14: testercycveri

5 Construction of Conditional Testers from
Existing Verifiers

It has long been possible to use formal verification of reachability properties
to generate tests [3]. Compared to testers, many formal verification techniques
specialize on finding single program paths to specific program states or program
locations of interest; this makes them suitable for hard-to-reach test goals [10].
Figure 13 shows the (non-conditional) tester testerveri(V) that is based on a
formal verifier V : First, function crit-to-spec transforms the coverage crite-
rion ϕ, based on program P , to a safety specification φ which is constructed
such that P violates φ if P covers a test goal from [[ϕ]]. Then, φ and P are given
to formal verifier V , which checks whether P satisfies φ. The verifier outputs
one or more violation witnesses if test goals are reachable. From these violation
witnesses, test cases are created by witness-to-test [5].

We use the established formats for input programs and specifications for
the reachability category of SV-COMP 3 to get access to a large catalog of
tools for formal verification. There are two adaptations necessary for using SV-
COMP verifiers: (1) they are only required to support the property “no call to
method __VERIFIER_error is reachable”, and may not support more general
reachability properties, and (2) they are only required to output a single violation
witness, and thus will always lead to a test suite that only consists of one test case.

We solve both issues in the following way: We let crit-to-spec always
return the specification that no call to __VERIFIER_error is reachable. We then
take testerveri and construct from it a conditional tester based on testercond

with program reducer reducerannot and test-goal extractor extractorexec. At
this point, we have a conditional tester that uses a formal verifier to always
produce a test suite with a single test case, and that returns the set of test goals
covered by that test case. To produce a full test suite for all test goals, we use a
cyclic tester testercyc(testercond(testerveri(V))) (Fig. 14). After each test-case
generation run, the newly created test case is used by extractorexec to update
the covered test goals. Then, reducerannot will insert calls to __VERIFIER_error
for the remaining test goals, and testerveri(V) will create a new test case that
covers at least one of the remaining test goals. We use testercycveri(V) to denote
a verifier-based tester that is constructed from formal verifier V .
3 https://sv-comp.sosy-lab.org/2019/rules.php

https://sv-comp.sosy-lab.org/2019/rules.php

Through the use of any of the previously mentioned combinations, a
tester testercycveri can be combined with other conditional testers.

6 Evaluation

We evaluate our tool implementation CondTest and some combinations of
testers using conditional testing along the following claims:

C1 Conditional software testing with extractorexec and reducerprune does not
significantly impact the performance of individual testers.

C2 Sequential combinations of different testers without information exchange
can improve the coverage of generated test suites, compared to single testers.

C3 Sequential combinations of different testers with conditional software testing
can improve the coverage of generated test suites, compared to sequential
combinations without information exchange.

C4 Sequential combinations of traditional testers and verifier-based testers can
improve the coverage of generated test suites.

6.1 Setup

Implementation. We implemented a generic conditional software
tester (CondTest) according to Fig. 5, including the operators reducerid,
reducerprune, reducerannot, and extractorexec. CondTest can be instantiated
as testercond, testerseq, and testercycveri, is able to create test suites for
C programs that adhere to the Test-Comp rules [2], and is available under the
open-source license Apache 2.0. We use CondTest in version 2.0 4. CondTest
uses the BenchExec tool-info modules 5 and benchmark definitions of Test-Comp 6

and SV-COMP 7 for plug-and-play integration of testers and formal verifiers.
Formal verifiers are turned into testers by wrapping them each in their own
instance of CondTest (configuration testercycveri).

Tools. We consider the best three testers of Test-Comp ’19 whose licenses al-
low evaluation and publication of results: Klee [14], CoVeriTest [8], and
CPA/Tiger8. We use all three tools in their respective versions of Test-Comp ’19.
In addition, we select the best formal verifier for reaching program locations
of interest in testable programs according to a previous study [10], i.e., Esbmc-
kind [21]. We use Esbmc-kind in its SV-COMP ’19 version. To measure the
coverage of test suites, we use GCov 7.3.0. To ensure reproducible results, we
use the benchmarking toolkit BenchExec 1.20 [11].
4 https://gitlab.com/sosy-lab/software/conditional-testing/tree/v2.0
5 https://github.com/sosy-lab/benchexec/tree/2.0/benchexec/tools
6 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp19/
benchmark-defs

7 https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs
8 https://www.es.tu-darmstadt.de/testcomp19/

https://gitlab.com/sosy-lab/software/conditional-testing/tree/v2.0
https://github.com/sosy-lab/benchexec/tree/2.0/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp19/benchmark-defs
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp19/benchmark-defs
https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs
https://www.es.tu-darmstadt.de/testcomp19/

Environment. We perform our experiments on a cluster of 168 machines, each
with 33GB of memory and an Intel Xeon E3-1230 v5 CPU, with 3.4GHz and
8 processing units (with hyper-threading). We use Ubuntu 18.04 with Linux
kernel 4.4 as operating system. We limit each benchmark run to 4 processing
units and a time limit of 900 s. Each run of CondTest is limited to 15.5GB.
Each individual test-case generation run (e.g., execution of CPA/Tiger) is
limited to 15GB, both for native execution and as part of CondTest. This way,
each test-case generation run has the same amount of memory for both native
execution and execution within CondTest. Extractor extractorexec uses a time
limit of 3 s for each test execution, to prevent hangups in case of incomplete or
non-terminating tests. To measure the achieved coverage of the complete final
test suites, we execute test cases with a memory limit of 7GB, 2 processing
units, and a time limit of 3 hours for each generated test suite. At this time
limit, no timeouts occurred during coverage measurement.

Reproducibility and Benchmark Tasks. We use all 1 720 test tasks of the
Cover-Branches category of the Test-Comp ’19 benchmark. All of our experimental
data are available online. 9 and through a replication package. 10

6.2 Results

C1: No Significant Overhead in CondTest. Figure 15 shows the branch
coverage per task achieved by the test suites created by CoVeriTest, CPA/Tiger,
and Klee, respectively, in their original Test-Comp configurations (x-axis), and as
conditional testers testercond (y-axis) inside CondTest with reducerprune and
extractorexec (reducerprune does not really prune anything because of the full set
of test goals, but parses the program, runs the pruning algorithm, and writes out
the transformed C program; the idea is to find out whether this process is efficient
and does not negatively impact the overall process). The CPU-time limit for each
test-case generation was set to 900 s (the CPU time consumed by reducerprune

is included in the measured CPU time, and thus, implicitly subtracted from
the CPU-time available for the tester). Since extractorexec only runs after the
tester, it has no influence on the time limit in a configuration with a single tester.
For points on the diagonal, the same coverage was achieved by the original tester
and its integration in testercond; points above the diagonal represent tasks for
which testercond achieved a higher coverage, and the points below the diagonal
represent tasks for which testercond achieved a lower coverage. For CoVeriTest,
the coverage for a few tasks are a bit worse when run with CondTest (just
below the diagonal). This is because CondTest uses a different, more strict
technique to enforce the memory limit than the benchmarking tool BenchExec,
due to technical reasons. For CPA/Tiger, outliers on the left (vertical stack
of points) are due to crashes from memory exhaustion. CPA/Tiger operates
close to the memory limit for many tasks. Because of this, small variations in
9 https://www.sosy-lab.org/research/conditional-testing/

10 https://doi.org/10.5281/zenodo.3352401

https://www.sosy-lab.org/research/conditional-testing/
https://doi.org/10.5281/zenodo.3352401

Fig. 15: Branch coverage of test suites created by original tools vs. their integration
in testercond (in percent)

Fig. 16: Branch coverage of test suites created by original tools vs. their sequential
combinations with reducerid, i.e., without information exchange (in percent)

memory usage can lead to crashes. In our experiments, for most of these tasks
it was random whether CPA/Tiger stayed closely below the memory limit, or
exceeded it and crashed. Thus, the issue is not related to CondTest, but results
from memory exhaustion of the native tester. Besides these issues, it is visible
that for all three testers, no significant differences in branch coverage exist. This
suggests that using testercond with the proposed operators reducerprune and
extractorexec does not lead to a significant negative impact on the performance
just by using the conditional-testing construction.

C2: Combinations Can Improve Coverage. Figure 16 shows the branch
coverage per task achieved by the test suites created by CoVeriTest,
CPA/Tiger, and Klee, respectively, in their original Test-Comp configura-
tions with 900 s CPU-time limit (x-axis), and the coverage per task achieved
by the test suites created by CondTest (y-axis) with the sequential com-
bination testerseq(testercond(CPA/Tiger)300, testercond(CoVeriTest)300,
testercond(Klee)300) and the reducer reducerid, i.e., without information ex-
change between the three testers. Each single conditional tester (i.e., testercond
based on CPA/Tiger, CoVeriTest, and Klee) was stopped after 300 s each,
and each full test-case generation testerseq run was stopped after a total of
900 s (the CPU time consumed by CondTest for, e.g., process management, is
included in the measured CPU time, and thus, implicitly subtracted from the
CPU-time available for the last tester, testercond(Klee)).

Table 1: Coverage of test suites
generated without information reuse
(reducerid) and with information
reuse through reducerprune

Task branch coverage
id → prune

mod3.c.v+sep-reducer 75.0 +5.00 80.0
Problem07_label35 52.0 +2.00 54.0
Problem07_label37 54.2 +1.97 56.2
Problem04_label35 79.5 +1.79 81.3
Problem06_label02 57.0 +1.70 58.7
Problem06_label27 57.5 +1.09 58.6
Problem04_label02 80.2 +1.06 81.3
Problem06_label18 57.5 +1.05 58.6
Problem04_label16 79.1 +1.01 80.1
Problem04_label34 80.2 +0.99 81.2

Table 2: Coverage of test suites gen-
erated without (prune) and with (vb)
support of Esbmc-kind

Task branch coverage
prune → vb

Problem08_label30 5.72 +56.2 62.0
Problem08_label32 5.72 +56.1 61.9
Problem08_label06 5.72 +56.1 61.8
Problem08_label35 5.72 +56.0 61.7
Problem08_label00 5.72 +55.9 61.6
Problem08_label11 5.72 +55.8 61.5
Problem08_label19 5.72 +55.7 61.5
Problem08_label29 5.67 +55.7 61.4
Problem08_label22 5.72 +55.7 61.5
Problem08_label56 5.72 +55.7 61.5

The scatter plots in Fig. 16 show that the branch coverage of the test suites cre-
ated by the sequential combination is significantly higher for a significant amount
of benchmark tasks. This shows that the used testers (with CPU time limit of
300 s) can complement each other well, and that combinations can perform better
than a single tester running for a longer time on its own (900 s CPU time limit).

C3: Condition Passing Can Further Improve Coverage. To show
that conditional software testing can lead to generated test suites
with improved coverage, we compare the branch coverage of the test
suites generated by CondTest with testerseq(testercond(CPA/Tiger)300,
testercond(CoVeriTest)300, testercond(Klee)300), and the two reduc-
ers reducerid, i.e., without information exchange, and reducerprune, i.e., with
program reduction based on syntactic reachability. Table 1 shows a comparison
of the branch coverage of test suites generated by both techniques on a selection
of benchmark tasks (programs with complicated branching), rounded to three
digits. It shows that information exchange can lead to generated test suites with
improved branch coverage, adding up to 5% branch coverage.

C4: Verifiers as Test-Generators Can Improve Coverage. To show that
verifier-based testers can generate test suites with improved coverage compared
to combinations of traditional testers, we compare the branch coverage of the
test suites generated by CondTest with testerseq(testercond(CPA/Tiger)300,
testercond(CoVeriTest)300, testercond(Klee)300) (called prune) and the test
suites generated by CondTest with testerseq(testercond(CPA/Tiger)200,
testercond(CoVeriTest)200, testercond(Klee)200, testercycveri(Esbmc)300)
(called vb). Both prune and vb use reducerprune and extractorexec. For prune,
each individual tester is stopped after 300 s. For vb, CPA/Tiger, CoVeriTest,
and Klee are each stopped after 200 s, and Esbmc runs for 300 s. The total time
of each run of CondTest is 900 s (i.e., the CPU time required by reducerprune

and extractorexec is implicitly subtracted from the CPU time available for
the last tester, i.e., Klee in prune and Esbmc in vb).

Table 2 shows a comparison of the branch coverage of test suites gener-
ated by prune and vb, respectively, on a selection of benchmark tasks (pro-
grams with complicated branching). It shows that for some tasks, the use of
Esbmc as directed tester can greatly improve branch coverage compared to
combinations of only traditional testers, creating test suites that achieve up
to 56% additional branch coverage.

7 Conclusion

We have presented the concept of conditional testing and the tool implementation
CondTest, a versatile and modular framework for constructing cooperative combi-
nations of testers based on conditional testing. First, we defined a construction of
a conditional tester from a given existing tester, based on the components reducer
and extractor. Second, we defined a set of generic combinations that are now all
possible using conditional testing. Third, we defined a construction of a conditional
tester from a given existing verifier, based on the outlined combination opportuni-
ties. All our concepts are implemented in an adjustable framework, and we showed
the potential of some new combinations through an experimental evaluation.

There are many powerful techniques for automatic test-case generation. Our
goal is to construct even more powerful combinations by leveraging cooperation,
and we hope that our construction techniques based on conditional testing help
also other researchers and engineers to construct powerful tool combinations,
without changing the implementation of the existing tools. This contributes to op-
timally use the techniques that we have to further improve the quality of software.

References

1. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

2. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS (3). pp.
167–175. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3_11

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

5. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

6. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-
flow analysis. In: Handbook on Model Checking, pp. 493–540. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_16

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/2393596.2393664

8. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/978-3-
030-16722-6_23

9. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based con-
struction of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018).
https://doi.org/10.1145/3180155.3180259

10. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017). https://doi.org/10.1007/978-
3-319-70389-3_7

11. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

12. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. arXiv/CoRR 1905(08505) (May 2019), https:
//arxiv.org/abs/1905.08505

13. Böhme, M., d. S. Oliveira, B.C., Roychoudhury, A.: Partition-based
regression verification. In: Proc. ICSE. pp. 302–311. IEEE (2013).
https://doi.org/10.1109/ICSE.2013.6606576

14. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

15. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS (3). pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

16. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: Proc. FM. pp. 132–146. LNCS 7436, Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9_13

17. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the Evi-
dential Tool Bus. In: Proc. VMCAI. pp. 275–294. LNCS 7737, Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9_18

18. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Proc.
FASE. pp. 100–114. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-3-
662-46675-9_7

19. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Proc.
VMCAI. pp. 328–347. LNCS 9583, Springer (2016). https://doi.org/10.1007/978-3-
662-49122-5_16

20. Ferles, K., Wüstholz, V., Christakis, M., Dillig, I.: Failure-directed
program trimming. In: Proc. ESEC/FSE. pp. 174–185. ACM (2017).
https://doi.org/10.1145/3106237.3106249

21. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: ESBMC v6.0:
Verifying C programs using k-induction and invariant inference (competition con-
tribution). In: Proc. TACAS (3). pp. 209–213. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_15

22. Gennari, J., Gurfinkel, A., Kahsai, T., Navas, J.A., Schwartz, E.J.: Executable coun-
terexamples in software model checking. In: Proc. VSTTE. pp. 17–37. LNCS 11294,
Springer (2018). https://doi.org/10.1007/978-3-030-03592-1_2

23. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Proc. FSE. pp. 117–127. ACM (2006).
https://doi.org/10.1145/1181775.1181790

https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/s10009-017-0469-y
https://arxiv.org/abs/1905.08505
https://arxiv.org/abs/1905.08505
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1145/3106237.3106249
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-03592-1_2
https://doi.org/10.1145/1181775.1181790

24. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

25. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven pro-
gram testing. In: Proc. VMCAI. pp. 151–166. LNCS 5403, Springer (2009).
https://doi.org/10.1007/978-3-540-93900-9_15

26. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

27. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu,
C.S.: Rigorous examination of reactive systems. The RERS challenges 2012
and 2013. Int. J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014).
https://doi.org/10.1007/s10009-014-0337-y

28. Kim, Y., Xu, Z., Kim, M., Cohen, M.B., Rothermel, G.: Hybrid directed test suite
augmentation: An interleaving framework. In: Proc. ICST. pp. 263–272. IEEE
(2014). https://doi.org/10.1109/ICST.2014.39

29. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proc. ICSE. pp. 416–426. IEEE
(2007). https://doi.org/10.1109/ICSE.2007.41

30. Margaria, T., Nagel, R., Steffen, B.: jETI: A tool for remote tool integration. In: Proc.
TACAS. pp. 557–562. LNCS 3440, Springer (2005). https://doi.org/10.1007/978-3-
540-31980-1_38

31. Noller, Y., Kersten, R., Pasareanu, C.S.: Badger: complexity analysis with
fuzzing and symbolic execution. In: Proc. ISSTA. pp. 322–332. ACM (2018).
https://doi.org/10.1145/3213846.3213868

32. Qiu, R., Khurshid, S., Pasareanu, C.S., Wen, J., Yang, G.: Using test ranges to
improve symbolic execution. In: Proc. NFM. pp. 416–434. LNCS 10811, Springer
(2018). https://doi.org/10.1007/978-3-319-77935-5_28

33. Rushby, J.M.: An Evidential Tool Bus. In: Proc. ICFEM. pp. 36–36. LNCS 3785,
Springer (2005). https://doi.org/10.1007/11576280_3

34. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

35. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

36. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration platform: Con-
cepts and design. STTT 1(1-2), 9–30 (1997). https://doi.org/10.1007/s100090050003

37. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing
through selective symbolic execution. In: Proc. NDSS. Internet Society (2016).
https://doi.org/10.14722/ndss.2016.23368

38. Taneja, K., Xie, T., Tillmann, N., de Halleux, J.: eXpress: Guided path exploration
for efficient regression test generation. In: Proc. ISSTA. pp. 1–11. ACM (2011).
https://doi.org/10.1145/2001420.2001422

39. Tip, F.: A survey of program slicing techniques. J. Programming Languages 3,
121–189 (1995)

40. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

41. Zhu, Z., Jiao, L., Xu, X.: Combining search-based testing and dynamic sym-
bolic execution by evolvability metric. In: Proc. ICSME. pp. 59–68. IEEE (2018).
https://doi.org/10.1109/ICSME.2018.00015

https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1109/ICST.2014.39
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1007/978-3-319-77935-5_28
https://doi.org/10.1007/11576280_3
https://doi.org/10.1145/353323.353382
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/s100090050003
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1145/2001420.2001422
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1109/ICSME.2018.00015

	Conditional Testing Off-the-Shelf Combination of Test-Case Generators

