
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

SecCSL: Security Concurrent Separation Logic

Gidon Ernst1 and Toby Murray2

1 LMU Munich, Germany, gidon.ernst@lmu.de
2 University of Melbourne, Australia, toby.murray@unimelb.edu.au

Abstract. We present SecCSL, a concurrent separation logic for prov-
ing expressive, data-dependent information flow security properties of
low-level programs. SecCSL is considerably more expressive, while being
simpler, than recent compositional information flow logics that cannot
reason about pointers, arrays etc. To capture security concerns, SecCSL
adopts a relational semantics for its assertions. At the same time it inher-
its the structure of traditional concurrent separation logics; thus SecCSL
reasoning can be automated via symbolic execution. We demonstrate this
by implementing SecC, an automatic verifier for a subset of the C pro-
gramming language, which we apply to a range of benchmarks.

1 Introduction

Software verification successes abound, whether via interactive proof or via auto-
matic program verifiers. While the former has yielded individual, deeply verified
software artifacts [24,21,25] primarily by researchers, the latter appears to be
having a growing impact on industrial software engineering [36,11,39].

At the same time, recent work has heralded major advancements in program
logics for reasoning about secure information flow [34,23,33]—i.e. whether pro-
grams properly protect their secrets—yielding the first general program logics
and proofs of information flow security for non-trivial concurrent programs [34].
Yet so far, such logics have remained confined to interactive proof assistants,
making them practically inaccessible to industrial developers.

This is not especially surprising. The Covern logic [34], for example, pays for
its generality with regard to expressive security policies, in terms of complexity.
Worse, these logics reason only over very simple toy programming languages,
which even lack support for pointers, arrays, and structures. Their complexity, we
argue, hinders proof automation and makes scaling up these logics to real-world
languages impractical. How, therefore, can we leverage the power of existing
automatic deductive verification approaches for security proofs?

In this paper we present Security Concurrent Separation Logic (SecCSL),
which achieves an unprecedented combination of simplicity, power, and ease of
automation by capturing core concepts such as data-dependent variable sensi-
tivity [50,27,31], and shared invariants on sensitive memory [34] in the familiar
style of Concurrent Separation Logic (CSL) [38], as exemplified in Section 2.

Prior work [14,20] has noted the promise of separation logic for reasoning
about information flow yet, to date, that promise remains unrealised. Indeed,

the only two prior encodings of information flow concepts into separation logics
which we are aware of have overlooked crucial features like concurrency [14],
and lack the ability to separately specify the sensitivity of values and memory
locations as we explain in Section 2. The logic in [20] lacks soundness arguments
altogether while [14] fail to satisfy basic properties needed for automation (see
the discussion following Proposition 1).

Designing a logic with the right combination of features, with the right se-
mantics, is therefore non-trivial. To manage this, SecCSL assertions have a
relational interpretation [6,49] over a standard heap model (Section 3). This al-
lows one to canonically encode information flow concepts while maintaining the
approach and structure of traditional CSL proofs. To do so we adapt existing
proof techniques for the soundness of CSL [46] into a compositional informa-
tion flow security property (Section 4) that, like SecCSL itself, is simple and
powerful. We have mechanized the soundness of SecCSL in Isabelle/HOL [37].

To demonstrate SecCSL’s ease of use and capacity for automation, we imple-
mented the prototype tool SecC (Section 5). We target C because it dominates
low-level security-critical code. SecC automates SecCSL reasoning via sym-
bolic execution, in the style of contemporary Separation Logic program verifiers
like VeriFast [22], Viper [30], and Infer [10]. SecC correctly analyzes well-known
benchmark problems (collected in [17]) within a few milliseconds; and we verify
a variant of the CDDC case study [5] from the Covern project. Our Isabelle
theories, the open source prototype tool SecC, and examples are available online
at https://covern.org/secc [18].

2 An Overview of SecCSL

2.1 Specifying Information Flow Control in SecCSL

Consider the program in Fig. 1. It maintains a global pointer rec to a shared
record, protected by the lock mutex. The is_classified field of the record iden-
tifies the confidentiality of the record’s data: when is_classified is true, the
value stored in the data field is confidential, and otherwise it is safe to release
publicly. The left thread outputs the data in the record whenever it is public
by writing to the (memory mapped) output device register pointer OUTPUT_REG

(here also protected by mutex). The right thread updates the record, ensuring
its content is not confidential, here by clearing its data.

Suppose assigning a value d to the OUTPUT_REG register causes d to be out-
putted to a publicly-visible location. Reasoning, then, that the example is secure
requires capturing that (1) the data field of the record pointed to by rec is con-
fidential precisely when the record’s is_classified field says it is, and (2) data
sink OUTPUT_REG should never have confidential data written to it. Therefore the
example only ever writes non-confidential data into OUTPUT_REG.

Condition (1) specifies the sensitivity of a data value in memory, whereas
condition (2) specifies the sensitivity of the data that a memory location (i.e. data
sink) is permitted to hold. Prior security separation logics [14,20] reason only

2

https://covern.org/secc

/* globals shared between the two threads */

struct record { bool is_classified; int data; };

struct record * rec = /* ... initialisation omitted ... */;

volatile int * const OUTPUT_REG = /* memory-mapped IO device register */;

/* thread 1: output the record */

while(true) {

lock(mutex);

if (!rec->is_classified)

*OUTPUT_REG = rec->data;

unlock(mutex); }

/* thread 2: edit the record */

lock(mutex);

/* clear the record */

rec->is_classified = FALSE;

rec->data = 0;

unlock(mutex);

Fig. 1. Example of Concurrent Information Flow.

about value-sensitivity condition (1) but, as we explain below, both are needed.
Like those prior logics, in SecCSL one specifies the sensitivity of the value
denoted by an expression e via a security label `: the assertion e :: ` means that
the sensitivity of the value denoted by expression e is at most `. Security labels
are drawn from a lattice with top element high (denoting the most confidential
information), bottom element low (denoting public information), and ordered
via v: ` v `′ means that information labelled with `′ is at least as sensitive as
that labelled by `. Using this style of assertion, in conjunction with standard
separation logic connectives (explained below), condition (1) can be specified as:

∃c d. rec 7−→ (c, d) ∧ c :: low ∧ d :: (c ? high : low) (1)

Separation logic’s points-to predicate e 7−→ e′ means the memory location de-
noted by expression e holds the value denoted by e′. Thus (1) can be read as
saying that the rec pointer points to a pair of values (c, d). The first c (the value
of the is_classified field) is public. The sensitivity of the second d (the value
of the data field) is given by the value of the first c: it is high when c is true and
is low otherwise. SecCSL integrates such reasoning about value-dependent sen-
sitivity [50,27,31] neatly with functional properties of low-level data structures,
which we think is more natural and straightforward than the approach of [35,34]
that keeps the two concerns separate.

Value-sensitivity assertion e :: ` is a judgement on the maximum sensitivity
of the data source(s) from which e has been derived. Location-sensitivity asser-
tions, on the other hand, are used to specify security policies on data sinks like
OUTPUT_REG. These assertions augment the separation logic points-to predicate
with a security label `, and are used to specify which parts of the memory are
observable to the attacker (and so must never contain sensitive information):
e
`7−→ e′ means that the value denoted by the expression e′ is present in memory

at the location denoted by e, and additionally that at all times the sensitivity of
the value stored in that locations is never allowed to exceed `. Thus in SecCSL,
e 7−→ e′ abbreviates e high7−−→ e′. In Fig. 1, that OUTPUT_REG is publicly-observable
can be specified as: ∃v. OUTPUT_REG low7−−→ v (2)

3

2.2 Reasoning in SecCSL

SecCSL judgements have the form: `A ` {P} c {Q} (3)
Here `A is the attacker security level, c is the (concurrent) program com-

mand being executed, and P and Q are the program’s pre- resp. postcondition.
Judgement (3) means that if the program c begins in a state satisfying its precon-
dition P then, when it terminates, the final state will satisfy its postcondition Q.
Analogously to [44] the program is guaranteed to be memory safe. We defer a
description of `A and the implied security property to Section 2.3.

As with traditional CSLs, SecCSL is geared towards reasoning over shared-
memory programs that use lock-based synchronisation. Each lock l has an as-
sociated invariant inv(l), which is simply a predicate, like P or Q in (3), that
describes the shared memory that the lock protects. In Fig. 1, where the lock
mutex protects the shared pointer rec and OUTPUT_REG, the associated invariant
inv(mutex) is simply the conjunction of (1) and (2).

(∃c d. rec 7−→ (c, d) ∧ c :: low ∧ d :: (c ? high : low)) ? (∃v. OUTPUT_REG low7−−→ v) (4)

Separating conjunction P ?Q asserts that the assertions P and Q both hold and,
additionally, that the memory locations referenced by P and Q respectively do
not overlap. Thus SecCSL invariants, like SecCSL assertions, describe together
both functional properties (e.g. rec is a valid pointer) and security concerns (e.g.
the OUTPUT_REG location is publicly visible) of the shared state.

When acquiring a lock one gets to assume that the lock’s invariant holds [38].
Subsequently, when releasing the lock one must prove that the invariant has been
re-established. For example, when reasoning about the code of the left-thread in
Fig. 1, upon acquiring the mutex, SecCSL adds formula (4) to the intermediate
assertion, which allows proving that the loop body is secure. When reasoning
about the right thread, one must prove that the invariant has been re-established
when it releases the mutex. This is the reason e.g. that the right thread must
clear the data field after setting is_classified to false.

Reasoning in SecCSL proceeds forward over the program text according to
the rules in Fig. 4 on page 10. When execution forks, as in Fig. 1, one reasons over
each thread individually. For Fig. 1, SecCSL requires proving that the guard
of the if-condition is low, i.e. that the program is not branching on a secret
(rule If in Fig. 4), which would correspond to a timing channel, see Section 2.3
below. This follows from the part c :: low of invariant (4). Secondly, after the
write to OUTPUT_REG, SecCSL requires that the expression that is being written
to the location OUTPUT_REG has sensitivity low (rule Store in Fig. 4). This follows
from d :: (c ? high : low) in the invariant, which simplifies to d :: high given the
guard c ≡ true of the if-statement. Finally, when the right thread releases mutex,
invariant (4) holds for the updated contents of rec (rule Unlock in Fig. 4).

2.3 Security Intuition and Informal Security Property

But what does security mean in SecCSL? Indeed, the SecCSL a judgement
`A ` {P} c {Q} additionally implies that the program c does not leak any
sensitive information during its execution to potential attackers.

4

The attacker security level `A in (3) represents an upper bound on the parts of
the program’s memory that a potential, passive attacker is assumed to be able
to observe before, during, and after the program’s execution. Intuitively this
encompasses all memory locations whose sensitivity is v `A. Which memory
locations have sensitivity v `A is defined by the location-sensitivity assertions
in the precondition P and the lock invariants: A memory location loc is visible
to the `A attacker iff P or a lock invariant contains some e el7−→ e′ and in the
program’s initial state e evaluates to loc and el evaluates to some label ` such
that ` v `A (see Fig. 3 on page 7).

Which data is sensitive and should not be leaked to the `A attacker is defined
by the value-sensitivity assertions in P and the lock invariants: an expression e
is sensitive when P or a lock invariant contains some e :: el and in the program’s
initial state el evaluates to some ` with ` 6v `A. Security, then, requires that in all
intermediate states of the program’s execution no sensitive data (as defined by
value-sensitivity assertions) can be inferred via the attacker-observable memory
(as defined by location-sensitivity assertions).

SecCSL proves a compositional security property that formalises this intu-
ition (see Definition 3 on page 12). Since the property needs to be compositional
with regards to concurrent execution, the resulting security property is tim-
ing sensitive, meaning that not only must the program never reveal sensitive
data into attacker-observable memory locations but the times at which it up-
dates these memory locations cannot depend on sensitive data. It is well-known
that timing-insensitive security properties are not compositional under stan-
dard scheduling models [48,34]. For this reason SecCSL forbids programs from
branching on sensitive values. We believe that this restriction could in principle
be relaxed in the future via established techniques [29,28].

SecCSL’s top-level soundness (Section 4) formalises the above intuitive def-
inition of security in the style of traditional noninterference [19] that compares
two program executions with respect to the observations that can be made by
an attacker. SecCSL adopts a relational interpretation for the assertions P
and Q, and the lock invariants, in which they are evaluated against pairs of exe-
cution states. This relational semantics directly expresses the comparison needed
for noninterference. As a result, most of the complexities related to SecCSL’s
soundness are confined to the semantic level, whereas the calculus retains its
similarity to standard separation logic and hence its simplicity.

Under this relational semantics (see Fig. 2 in Section 3), when a pair of
states satisfies an assertion P , it implies that the two states agree on the values
of all non-sensitive expressions as defined by P (Lemma 1). Noninterference is
then stated as Theorem 2 on page 13: Program c with precondition P is secure
against the `A-attacker if, whenever executed twice from two initial states jointly
satisfying P and the lock invariants (and so agreeing on the values of all data
assumed to be initially observable to the `A attacker), in all intermediate pairs of
states arrived at after running each execution for the same number of steps, the
resulting states again agree at that initially `A-visible memory. This definition is
timing sensitive as it compares executions that have the same number of steps.

5

3 The Logic SecCSL

3.1 Assertions

Pure expressions e that do not depend on the heap are composed of variables x,
function applications, equations, and conditional expressions. Pure relational
formulas ρ comprise boolean expressions φ, value sensitivity e ::el, and relational
implication ⇒ (wlog. covering relational ¬, ∧, ∨). We assume a standard first-
order many sorted typing discipline (not elaborated).

e ::= x | f(e1, . . . , en) | e1 = e2 | φ ? e1 : e2 ρ ::= φ | e :: el | ρ1 ⇒ ρ2

We postulate that the logical signature contains a sort Label, corresponding to
the security lattice, with constants low, high : Label and a binary predicate sym-
bol v : Label× Label→ Bool, whose interpretation satisfies the lattice axioms.

SecCSL’s assertions P,Qmay additionally refer to the heap and thus include
the empty heap description, labelled points-to predicates (heap location sensitiv-
ity assertions), assertions guarded by (pure) conditionals, ordinary overlapping
conjunction as well as separating conjunction, and existential quantification.

P ::= ρ | emp | ep
el7−−→ ev | (φ ? P : Q) | P ∧Q | P ? Q | ∃ x. P

Disjunction, negation, and implication are excluded because they cause issues
for describing the set of `-visible heap location to the `-attacker, similarly to the
problem of defining heap footprints for non-precise assertions [40,41,26]. These
connectives can still occur between pure and relational expressions.

The standard expression semantics JeKs evaluates e over a store s, which
assigns values to variables x as s(x). The interpretation fA of a function symbol f
is a function, given statically by a logical structure A. Specifically, vA is the
semantic ordering of the security lattice. We write s |= φ if JφKs = true.

The relational semantics of assertions, written (s, h), (s′, h′) |=` P , is de-
fined in Fig. 2 over two states (s, h) and (s′, h′) each consisting of a store and
a heap. The semantics is defined against the attacker security level ` (called `A
in Section 2.3). Stores s and s′ are related via e :: el. We require the expres-
sion el denoting the sensitivity to coincide on s and s′ and whenever JelKs vA `
holds, e must evaluate to the same value both states, (7). Heaps are related by
(s, h), (s′, h′) |=` ep

el7−→ ev, which similarly ensures that the two heap fragments
are identical h = h′ when el says so, (9). Conditional assertions φ ? P : Q
evaluate to P when φ holds (relationally), and to Q otherwise. The separat-
ing conjunction splits both heaps independently, (12). Similarly, the existential
quantifier picks two values v and v′, (13). Whether parts of the split resp. these
two values actually agree will depend on other assertions made.

To capture strong security properties, we require a declarative specification
of which heap locations are considered visible to the `-attacker, when assertion P
holds in some (initial) state (see Section 2.3). We define this set in Fig. 3, denoted
lows`(P, s) for initial store s. Note that, by design, the definition does not give a
useful result for an existential like ∃p v. p low7−−→ v. This mirrors the usual difficulty

6

Using the abbreviation s, h |= ep 7→ ev ⇐⇒ h = {JepKs 7→ JevKs}

(s, h), (s′, h′) |=` emp ⇐⇒ h = h′ = ∅ (5)

(s, h), (s′, h′) |=` φ ⇐⇒ s |= φ and s′ |= φ (6)

(s, h), (s′, h′) |=` e :: el (7)

⇐⇒ JelKs = JelKs′ and
(
JelKs vA ` =⇒ JeKs = JeKs′

)
(s, h), (s′, h′) |=` ρ1 ⇒ ρ2 (8)
⇐⇒ (s, h), (s′, h′) |=` ρ1 implies (s, h), (s′, h′) |=` ρ2

(s, h), (s′, h′) |=` ep
el7−→ ev (9)

⇐⇒ s, h |= ep 7→ ev and s′, h′ |= ep 7→ ev and (s, h), (s′, h′) |= ep :: el ∧ ev :: el

(s, h), (s′, h′) |=` (φ ? P : Q) (10)

⇐⇒

{
(s, h), (s′, h′) |=` P, if s |= φ and s′ |= φ

(s, h), (s′, h′) |=` Q, otherwise

(s, h), (s′, h′) |=` P ∧Q (11)
⇐⇒ (s, h), (s′, h′) |=` P and (s, h), (s′, h′) |=` Q

(s, h), (s′, h′) |=` P ? Q (12)
⇐⇒ there are disjoint sub-heaps h1, h2 and h′

1, h
′
2

with h = h1] h2 and h′ = h′
1] h′

2

such that (s, h1), (s
′, h′

1) |=` P1 and (s, h2), (s
′, h′

2) |=` P2

(s, h), (s′, h′) |=` ∃ x. P (13)
⇐⇒ there are values v, v′such that (s(x := v), h), (s′(x := v′), h′) |= P

Fig. 2. Relational semantics of assertions.

lows`(ρ, s) = ∅, notably lows`(e :: el, s) = ∅
lows`(P ? Q, s) = lows`(P ∧Q, s) = lows`(P, s) ∪ lows`(Q, s)

lows`(ep
el7−→ ev, s) =

{
{JepKs}, JelKs vA `

∅, otherwise

lows`(φ ? P : Q, s) =

{
lows`(P, s), s |= φ

lows`(Q, s), otherwise

lows`(∃ x. P, s) =

{
lows`(P, s), ∀ v. lows`(P, s) = lows`(P, s(x 7→ v))

∅, otherwise

Fig. 3. Low locations of an assertion.

7

of defining footprints for non-precise separation logic assertions [40,41,26]. This
restriction is not an issue in practice, as location sensitivity assertions ep

el7−→ ev
are intended to describe the static regions of memory (data sinks) visible to the
attacker, for which existential quantification over variables free in ep or el is not
necessary. A generalization to all precise predicates should be possible.

3.2 Entailments

Although implications between spatial formulas is not part of the assertion lan-
guage, entailments P `

=⇒ Q between assertions still play a role in SecCSL’s
Hoare style consequence rule (Conseq in Fig. 4). We discuss entailment now as
it sheds useful light on some consequences of SecCSL’s relational semantics.

Definition 1 (Secure Entailment). P
`

=⇒ Q holds iff

– (s, h), (s′, h′) |=` P implies (s, h), (s′, h′) |=` Q for all s, h and s′, h′, and
– lows`(P, s) ⊆ lows`(Q, s) for all s

The security level ` is used not just in the evaluation of the assertions but also
to preserve the `-attacker visible locations of P in Q. This reflects the intuition
that P is stronger than Q, and so Q should make fewer assumptions than P on
the limitations of an attacker’s observational powers.

Proposition 1.

e = e′ ∧ el = el
′ ∧ e :: el

`
=⇒ e′ :: el

′ (14)

e :: el ∧ el v el′ ∧ el′ :: `
`

=⇒ e :: el
′ (15)

el :: `
`

=⇒ c :: el for a constant c (16)

e1 :: el ∧ · · · ∧ en :: el
`

=⇒ f(e1, . . . , en) :: el for n > 0 (17)

ep
el7−→ ev ∧ el v `

`
=⇒ ep

el7−→ ev ∧ ep :: el ∧ ev :: el (18)(
∀ s. lows`(P, s) = lows`(Q, s)

)
implies φ ∧ (φ ? P : Q)

`
=⇒ P (19)

P
`

=⇒ P ′ and Q `
=⇒ Q′ implies P ? Q

`
=⇒ P ′ ? Q′ (20)

Entailment (14) in Proposition 1 shows that sensitivity of values is compatible
with equality. This property fails in the security separation logic of [14], where
labels are part of the semantics of expressions but are not compared by equality.
The second property (15) captures the intuition that less-sensitive data can
always be used in contexts where more-sensitive data might be expected (but not
vice-versa). Recall that el′ here is an expression. The additional condition el′ :: `
guarantees that this expression denotes a meaningful security level, i.e. evaluates
identically in both states (cf. (7)). (abusing notation to let the semantic ` stand
for some expression that denotes it). Property (16) encodes that constants do not
depend on any state; again the security level expression el must be meaningful,

8

but trivially c :: ` when ` is constant, too. Value sensitivity is congruent with
function application (17). This is not surprising, as functions map arguments
equal in both states to equal results. Yet, as with (14) above, this property
fails in [14] where security labels are attached to values. Note that the reverse
entailment is false (e.g. for the constant function λx.c).

Via (18), when ep
el7−→ ev it follows that both the location ep and the value ev

adhere to the level el, cf. (9). Note that the antecedent ep
el7−→ ev is repeated in

the consequent to ensure that the set of `-attacker visible locations is preserved.
Conditional assertions can be resolved when the test is definite, provided that P
and Q describe the same set of public locations, (19) and symmetrically for ¬φ.
Finally, separating conjunction is monotone wrt. entailment (20).

3.3 Proof System

We consider a canonical concurrent programming language with shared heap lo-
cations protected by locks but without shared variables. Commands c comprise
assignments to local variables, heap access (load and store),3 sequential pro-
gramming constructs, as well as parallel composition and locking. We assume a
static collection of valid lock identifiers l, each of which has an assertion as its
associated invariant inv(l), characterizing the protected portion of the heap. We
describe the program semantics in Section 4 as part of the soundness proof.

c ::= x := e | x := [ev] | [ep] := ev | lock l | unlock l
c1; c2 | c1 ‖ c2 | if b then c1 else c2 | while b do c

The SecCSL proof rules are shown in Fig. 4. They extend the standard
rules of concurrent separation logic [38] (CSL) by additional side-conditions that
amount to information flow checks e ::_ as part of the respective preconditions.

Similarly to [46], without loss of generality we require that assignments (rules
Asg, Load) are always to distinct variables, to avoid renaming in the assertions.
In the postcondition of Load, x :: el can be derived by Conseq for (18). Stor-
ing to a heap location through an el-sensitive location ep

el7−→ ev (rule Store)
requires that the value ev written to that location admits the corresponding se-
curity level el of the location ep. Note that due to monotonicity (15) the security
level does not have to match exactly. The rules for locking are standard [12]. To
preclude information leaks through timing channels, the execution can branch
on non-secret values only. This manifests in side conditions b::` for the respective
branching condition b where, recall, ` is the attacker security level (If, While).
Logical Split picks those two cases where JφKs = JφKs′ , ruling out the other two
by φ :: `. The consequence rule (Conseq) uses entailment relative to ` (Defini-
tion 1). Rule Par has the usual proviso that the variables modified in one thread
cannot interfere with those relied on by the other and its pre-/postcondition.
3 Volatile memory locations can be treated analogously to locks by introducing an
additional assertion characterizing that part of the heap, that is implicitly available
to atomic commands. This feature is realized in the Isabelle theories [18] but omitted
here in the interests of brevity.

9

x 6∈ free(e)
` ` {emp} x := e {x = e} Asg

x 6∈ free(ep, ev, el)

` ` {ep
el7−→ ev} x := [ep] {x = ev ∧ ep

el7−→ ev}
Load

` ` {ev :: el ∧ ep
el7−→ _} [ep] := ev {ep

el7−→ ev}
Store

` ` {emp} lock l {inv(l)} Lock
` ` {inv(l)} unlock l {emp} Unlock

` ` {b ∧ P} c {Q}
` ` {¬b ∧ P} c {Q}

` ` {b :: ` ∧ P} if b then c1 else c2 {Q}
If

` ` {φ ∧ P} c {Q}
` ` {¬φ ∧ P} c {Q}
` ` {φ :: ` ∧ P} c {Q} Split

` ` {b ∧ b :: ` ∧ P} c {b :: ` ∧ P}
` ` {b :: ` ∧ P} while b do c {¬b ∧ P} While

` ` {P} c1 {R} ` ` {R} c2 {Q}
` ` {P} c1; c2 {Q}

Seq

modified(c) ∩ free(F) = ∅
` ` {P} c {Q}

` ` {P ? F} c {Q ? F} Frame

P
`

=⇒ P ′

Q′ `
=⇒ Q

` ` {P ′} c {Q′}
` ` {P} c {Q}

Conseq

modified(ci) ∩ free(cj , Pj , Qj) = ∅ for i 6= j
` ` {P1} c1 {P1} ` ` {P2} c2 {P2}
` ` {P1 ? P2} c1 ‖ c2 {Q1 ? Q2}

Par

Fig. 4. Proof Rules of SecCSL.

4 Security Definition & Soundness

The soundness theorem for SecCSL guarantees that if some triple ` ` {P} c {Q}
is derived using the rules of Fig. 4, then: all executions of c started in a state
satisfying precondition P are memory safe, partially correct with respect to
postcondition Q, and moreover secure with respect to the sensitivity of values
as denoted by P and Q and at all times respect the sensitivity of locations as
denoted by P (see Section 2.3). Proof outlines are relegated to Appendix B. All
results have been mechanised in Isabelle/HOL [37] and are available at [18].

The top-level security property of SecCSL is a noninterference condition [19].
Noninterference as a security property specifies, roughly, that for any pair of ex-
ecutions that start in states that agree on the values of all attacker-observable
inputs, then, from the attacker’s point of view the resulting executions will be in-
distinguishable, i.e. all of the attacker visible observations will agree. In SecCSL,
what is “attacker-observable” depends on the attacker level `. The “inputs” are
the expressions e, and the attacker-visible inputs are those expressions e whose
sensitivity is given by e :: `′ judgements in the precondition P for which `′ v `.
The attacker-visible observations are the contents of all memory locations in

10

lows`(P, s), for initial store s and precondition P . Thus we define when two
heaps are indistinguishable to the `-attacker.

Definition 2 (` Equivalence). Two heaps coincide on a set of locations A,
written h ≡A h′, iff for all a ∈ A. a ∈ dom (h) ∩ dom (h′) and h(a) = h′(a).
Two heaps h and h′ are `-equivalent wrt. store s and assertion P , if h ≡A h′ for
A = lows`(P, s).

Then, the `-validity of an assertion P in the relational semantics witnesses `-
equivalence between the corresponding heaps.

Lemma 1. If (s, h), (s′, h′) |=` P , then h ≡A h′ for A = lows`(P, s).

Furthermore, if (s, h), (s′, h′) |=` P , then lows`(P, s) = lows`(P, s
′) since the

security levels in labeled points-to predicates must coincide on s and s′, cf. (9).

Semantics. Semantic configurations, denoted by k in the following, are one of
three kinds: (run c, L, s, h) denotes a command c in a state s, h where L is a
set of locks that are currently not held by any thread and can be acquired by c;
(stop L, s, h) similarly denotes a final state s, h with residual locks L, and abort
results from invalid heap access.

The single-step relation (run c, L, s, h)
σ−→ k takes running configurations

to successors k with respect to a schedule σ that resolves the non-determinism
of parallel composition. The schedule σ is a list of actions: the action 〈τ〉 rep-
resents the execution of atomic commands and the evaluation of conditionals;
the actions 〈1〉 and 〈2〉 respectively denote the execution of the left- and right-
hand sides of a parallel composition for a single step, and so define a deter-
ministic scheduling discipline reminiscent of separation kernels [32]. For exam-

ple, (run c1 ‖ c2, L, s, h)
〈1〉·σ−→ (run c′1 ‖ c2, L′, s′, h′) if (run c1, L, s, h)

σ−→
(run c′1, L

′, s′, h′). Configurations (run lock l, L, s, h) can only be scheduled if
l ∈ L (symmetrically for unlock)) and otherwise block without a possible step.

Executions k1
σ1···σn−−−−−−→∗ kn+1 chain several steps ki

σi−→ ki+1 by accumulating
the schedule. We are considering partial correctness only, thus the schedule is
always finite and so are all executions. The rules for program steps are otherwise
standard and can be found in Appendix A.

Compositional Security. To prove that SecCSL establishes its top-level non-
interference condition, we first define a compositional security condition that
provides the central characterization of security for a command c with respect
to precondition P and postcondition Q. That central, compositional property we
denote securen` (P, c,Q) and formalize below in Definition 3. It ensures that the
first n steps (or fewer if the program terminates before that) are safe and preserve
`-equivalence of the heap locations specified initially in P , but in a way that is
compositional across multiple execution steps, across multiple threads of execu-
tion and across different parts of the heap. It is somewhat akin, although more
precise than, prior characterizations based on strong low bisimulation [45,16].

Disregarding the case when c terminates before the n-th step for a moment,
for a pair of initial states (s1, h1) and (s′1, h

′
1) and initial set of locks L1, and

11

a fixed schedule σ = σ1 · · ·σn, securen+1
` (P1, c1, Q) requires that c performs a

sequence of lockstep execution steps from each initial state

(run ci, Li, si, hi)
σi−→ (run ci+1, Li+1, si+1, hi+1) for 1 ≤ i ≤ n (21)

(run ci, Li, s
′
i, h
′
i)

σi−→ (run ci+1, Li+1, s
′
i+1, h

′
i+1)

These executions must agree on the intermediate commands ci and locks Li and
the ith pair of states must satisfy an intermediate assertion of the following form:

(si, hi), (s
′
i, h
′
i) |=` Pi ? F ? invs(Li) where invs(Li) = Fli∈Li

inv(li) (22)

Here Pi describes the part of the heap that command ci is currently accessing.
invs(Li) is the set of lock invariants for the locks li ∈ Li not currently acquired.
Its presence ensures that whenever a lock is acquired that the associated invariant
can be assumed to hold. Finally F is an arbitrary frame, an assertion that does
not mention variables updated by ci. Its inclusion allows the security property
to compose with respect to different parts of the heap.

Moreover, each Pi+1 ? invs(Li+1) is required to preserve the sensitivity of all
`-visible heap locations of Pi ? invs(Li), i.e. so that lows`(Pi ? invs(Li), si) ⊆
lows`(Pi+1 ? invs(Li+1), si+1). If some intermediate stepm ≤ n terminates, then
Pm+1 = Q, ensuring the postcondition holds when the executions terminate.
Lastly, neither execution is allowed to reach an abort configuration.

If the initial state satisfies P1 ? F ? invs(L1) then (22) holds throughout the
entire execution, and establishes the end-to-end property that any final state
indeed satisfies the postcondition and that lows`(P1 ? invs(L1), s1) ⊆ lows`(Pi ?
invs(Li), si) with respect to the initially specified low locations.

The property securen` (P, c,Q) is defined recursively to match the steps of the
lockstep execution of the program.

Definition 3 (Security).

– secure0`(P1, c1, Q) holds always.
– securen+1

` (P1, c1, Q) holds, iff for all pairs of states (s1, h1), (s′1, h′1), frames F ,
and sets of locks L1, such that (s1, h1), (s′1, h′1) |=` P1 ? F ? invs(L1), and
given two steps (run c1, L1, s1, h1)

σ−→ k and (run c1, L1, s
′
1, h
′
1)

σ−→ k′

there exists an assertion P2 and a pair of successor states with either of
• k = (stop L2, s2, h2) and k′ = (stop L2, s

′
2, h
′
2) and P2 = Q

• k = (run c2, L2, s2, h2) and k′ = (run c2, L2, s
′
2, h
′
2) with securen` (P2, c2, Q)

such that (s2, h2), (s′2, h′2) |=` P2 ? F ? invs(L2) and lows`(P1 ? invs(L1), s1) ⊆
lows`(P2 ? invs(L2), s2) in both cases.

Two further side condition are imposed, ensuring all mutable shared state lies
in the heap (cf. Section 3): c1 doesn’t modify variables occurring in invs(L1)
and F (which guarantees that both remain intact), and the free variables in P2

can only mention those already present in P1, c1, or in any lock invariant (which
guarantees that P2 remains stable against concurrent assignments). Note that
each step can pick a different frame F , as required for the soundness of rule Par.

Lemma 2. ` ` {P} c {Q} implies securen` (P, c,Q) for every n ≥ 0.

12

Safety, Correctness and Noninterference. Execution safety and correctness with
respect to pre- and postcondition follow straightforwardly from Lemma 2.

Corollary 1 (Safety). Given initial states (s1, h1), (s
′
1, h
′
1) |=` P ? invs(L1)

and two executions of a command c under the same schedule to resulting configu-
rations k and k′ respectively, then ` ` {P} c {Q} implies k 6= abort∧k′ 6= abort.

Theorem 1 (Correctness). For initial states (s1, h1), (s′1, h′1) |=` P ? invs(L1),
given two complete executions of a command c under the same schedule σ

(run c, L1, s1, h1)
σ−→∗ (stop L2, s2, h2)

(run ci, Li, s
′
i, h
′
i)

σ−→∗ (stop L2, s
′
2, h
′
2)

then ` ` {P} c {Q} implies (s2, h2), (s
′
2, h
′
2) |=` Q ? invs(L2).

The top-level noninterference property also follows from Lemma 2 via Lemma 1.
For brevity, we state the noninterference property directly in the theorem:

Theorem 2 (Noninterference). Given a command c, and initial states
(s1, h1), (s

′
1, h
′
1) |=` P ? invs(L1) then ` ` {P} c {Q} implies hi ≡A h′i, where

A = lows`(P ? invs(L1), s1), for all pairs of heaps hi and h′i arising from exe-
cuting the same schedule from each initial state.

5 SecC: Automating SecCSL

To demonstrate the ease by which SecCSL can be automated, we develop the
prototype tool SecC, available at [18]. It implements the logic from Section 3
for a subset of C. SecC is currently used to explore reasoning about example
programs with interesting security policies. Thus its engineering has focused on
features related to security reasoning (e.g. deciding when conditions e :: el are
entailed) rather than reasoning about complex data structures.

Symbolic Execution. SecC automates SecCSL through symbolic execution, as
pioneered for SL in [7]. Similarly to VeriFast’s algorithm in [22], the verifier com-
putes the strongest postcondition of a command c when executed in a symbolic
state, yielding a set of possible final symbolic states. Each such state σ = (ρ, s, P)
maintains a path condition ρ of relational formulas (from procedure contracts,
invariants, and the evaluation of conditionals) and a symbolic heap described
by a list P = (P1 ? · · · ? Pn) of atomic spatial assertions (points-to and in-
stances of defined predicates). The symbolic store s maps program variables to
pure expressions, where s(e) denotes substituting s into e. As an example, when
Pi = s(ep) 7→ v is part of the symbolic heap, a load x := ep in σ can be executed
to yield the updated state (ρ, s(x := v), P) where x is mapped to v.

To find the Pi we match the left-hand sides of points-to predicates. Simi-
larly, matching is used during checking of entailments ρ1 ∧ P

`
=⇒ ∃ x. ρ2 ∧Q,

where the conclusion is normalized to prenex form. The entailment is reduced

13

to a non-spatial problem by incrementally computing a substitution τ for the
existentials x, removing pairs Pi = τ(Qj) in the process, as justified by (20) (see
also “subtraction rules” in [7, Sec. 4]).

Finally, the remaining relational problem ρ1 ⇒ ρ2 without spatial connectives
can be encoded into first-order [17], by duplicating the pure formulas in terms
of fresh variables to represent the second state, and by the syntactic equivalent
of (7). The resulting verification condition is discharged with Z3 [15]. This trans-
lation is semantically complete. For example, consider Fig. 4 from Prabawa et
al. [43]. It has a conditional if(b == b) ..., whose check (b = b)::low, translated
to (b = b) = (b′ = b′) by SecC, holds independently of b’s sensitivity.

Features. In addition to the logic from Section 3, SecC supports procedure mod-
ular verification with pre-/postconditions as usual; and it supports user-defined
spatial predicates. While some issues of the C source language are not addressed
(yet), such as integer overflow, those that impact directly on information flow
security are taken into account. Specifically, the shortcut semantics of boolean
operators &&, ||, and ternary _ ? _ : _ count as branching points and as such
the left hand side resp. the test must not depend on sensitive data, similarly to
the conditions of if statements and while loops.

A direct benefit of the integration of security levels into the assertion lan-
guage is that it becomes possible to specify the sensitivity of data passed to
library and operating system functions. For example, the execution time of
malloc(len) would depend on the value of len, which can thus be required
to satisfy len :: low by annotating its function header with an appropriate pre-
condition, using SecC’s requires annotation. Likewise, SecC can reason about
limited forms of declassification, in which external functions are trusted to safely
release otherwise sensitive data, by giving them appropriate pre-/postconditions.
For example, a password hashing library function prototype might be annotated
with a postcondition asserting its result is low, via SecC’s ensures annotation.

Examples and Case Study. SecC proves Fig. 1 secure, and correctly flags buggy
variants as insecure, e.g., where the test in thread 1 is reversed, or when thread 2
does not clear the data field upon setting the is_classified to FALSE. SecC also
correctly analyzes those 7 examples from [17] that are supported by the logic
and tool (each in ∼10 milliseconds). All examples are available at [18].

To compare SecC and SecCSL against the recent Covern logic [34], we
took a non-trivial example program that Murray et al. verified in Covern, man-
ually translated it to C, and verified it automatically using SecC. The original
program4, written in Covern’s tiny While language embedded in Isabelle/HOL,
models the software functionality of a simplified implementation of the Cross Do-
main Desktop Compositor (CDDC) [5]. The CDDC is a device that facilitates
interactions with multiple PCs, each of which runs applications at differing sen-
sitivity, from a single keyboard, mouse and display. Its multi-threaded software

4 https://bitbucket.org/covern/covern/src/master/examples/cddc/Example_CDDC_

WhileLockLanguage.thy

14

https://bitbucket.org/covern/covern/src/master/examples/cddc/Example_CDDC_WhileLockLanguage.thy
https://bitbucket.org/covern/covern/src/master/examples/cddc/Example_CDDC_WhileLockLanguage.thy

handles routing of keyboard input to the appropriate PC and switching be-
tween the PCs via mouse gestures. Verifying the C translation required adding
SecCSL annotations for procedure pre-/postconditions and loop invariants. The
C translation including those annotations is ∼250 lines in length. The present,
unoptimised, implementation of SecC verifies the resulting artifact in ∼5 sec-
onds. In contrast, the Covern proof of this example requires ∼600 lines of
Isabelle/HOL definitions/specification, plus ∼550 lines of Isabelle proof script.

6 Related Work

There has been much work targeting type systems and program logics for con-
current information flow. Karbyshev et al. [23] provide an excellent overview.
Here we concentrate on work whose ideas are most closely related to SecCSL.

Costanzo and Shao [14] propose a sequential separation logic for reasoning
about information flow. Unlike SecCSL, theirs does not distinguish value and
location sensitivity. Their separation logic assertions have a fairly standard (non-
relational) semantics, at the price of having a security-aware language semantics
that propagates security labels attached to values in the store and heap. As
mentioned in Section 3.2, this has the unfortunate side-effect of breaking intuitive
properties about sensitivity assertions. We conjecture that the absence of such
properties would make their logic harder to automate than SecCSL, which
SecC demonstrates is feasible. SecCSL avoids the aforementioned drawbacks
by adopting a relational assertion semantics.

Gruetter and Murray [20] propose a security separation logic in Coq [8] for
Verifiable C, the C subset of the Verified Software Toolchain [3,2]. However they
provide no soundness proof for its rules and its feasibility to automate is unclear.

Two recent compositional logics for concurrent information flow are the Cov-
ern logic [34] and the type and effect system of Karbyshev et al. [23]. Both
borrow ideas from separation logic. However, unlike SecCSL, neither is defined
for languages with pointers, arrays etc.

Like SecCSL, Covern proves a timing-sensitive security property. Location
sensitivity is defined statically by value-dependent predicates, and value sensi-
tivity is tracked by a dependent security typing context Γ [35], relative to a
Hoare logic predicate P over the entire shared memory. In Covern locks carry
non-relational invariants. In contrast, SecCSL unifies these elements together
into separation logic assertions with a relational semantics. Doing so leads to a
much simpler logic, amenable to automation, while supporting pointers, etc.

On the other hand, Karbyshev et al. [23] prove a timing-insensitive security
property, but rely on primitives to interact with the scheduler to prevent leaks via
scheduling decisions. Unlike SecCSL, which assumes a deterministic scheduling
discipline, Karbyshev et al. support a wider class of scheduling policies. Their sys-
tem tracks resource ownership and transfer between threads at synchronisation
points, similar to CSLs. Their resources include labelled scheduler resources that
account for scheduler interaction, including when scheduling decisions become

15

tainted by secret data—something that cannot occur in SecCSL’s deterministic
scheduling model.

Prior logics for sequential languages, e.g. [1,4], have also adopted separa-
tion logic ideas to reason locally about memory, combining them with relational
assertions similar to SecCSL’s e :: el assertions. For instance, the agreement
assertions A(e) of [4] coincide with SecCSL’s e :: low. Unlike SecCSL, some of
these logics support languages with explicit declassification actions [4].

Self-composition is another technique to exploit existing verification infras-
tructure for proofs of general hyperproperties [13], including but not limited to
non-interference. Eilers et al. [17] present such an approach for Viper, which
supports an assertion language similar to that of separation logic. It does not
support public heap locations (which are information sources and sinks at the
same time) albeit sinks can be modeled via preconditions of procedures. A similar
approach is implemented in Frama-C [9]. Both of [17,9] do not support concur-
rency, and it remains unclear how self-composition could avoid an exponential
blow-up from concurrent interleaving, which SecCSL avoids.

The soundness proof for SecCSL follows the general structure of Vafeiadis’ [46]
for CSL, which is also mechanised in Isabelle/HOL. There is, however, a technical
difference: His analog of Definition 3, a recursive predicate called safen(c, s, h,Q),
refers to a semantic initial state s, h whereas we propagate a syntactic asser-
tion (22) only. Our formulation has the benefit that some of the technical rea-
soning in the soundness proof is easier to automate. Its drawback is the need
to impose technical side-conditions on the free variables of the frame F and the
intermediate assertions Pi.

7 Conclusion

We presented SecCSL, a concurrent separation logic for proving expressive
data-dependent information flow properties of programs. SecCSL is consider-
ably simpler, yet handles features like pointers, arrays etc., which are out of
scope for contemporary logics. It inherits the structure of traditional concurrent
separation logics, and so like those logics can be automated via symbolic ex-
ecution [22,30,10]. To demonstrate this, we implemented SecC, an automatic
verifier for expressive information flow security for a subset of the C language.

Separation logic has proved to be a remarkably powerful vehicle for reason-
ing about programs, weak memory concurrency [47], program synthesis [42], and
many other domains. With SecCSL, we hope that in future the same possibili-
ties might be opened to verified information flow security.

Acknowledgement. We thank the anonymous reviewers for their careful and de-
tailed comments that helped significantly to clarify the discussion of finer points.

This research was sponsored by the Department of the Navy, Office of Naval
Research, under award #N62909-18-1-2049. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Office of Naval Research.

16

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: Proc. of Principles of Programming Languages (POPL). pp.
91–102. ACM (2006)

2. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,
S., Leroy, X.: Program Logics for Certified Compilers. Cambridge University Press,
New York, NY, USA (2014)

3. Appel, A.W., others: The Verified Software Toolchain. https://github.com/

PrincetonUniversity/VST (2017)
4. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies

and modular static enforcement. In: Proc. of Symposium on Security and Privacy
(S&P). pp. 339–353. IEEE (2008)

5. Beaumont, M., McCarthy, J., Murray, T.: The Cross Domain Desktop Compositor:
using hardware-based video compositing for a multi-level secure user interface. In:
Annual Computer Security Applications Conference (ACSAC). pp. 533–545. ACM
(2016)

6. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proc. of Principles of Programming Languages (POPL). pp.
14–25. ACM (2004)

7. Berdine, J., Calcagno, C., O’hearn, P.W.: Symbolic execution with Separation
Logic. In: Asian Symposium on Programming Languages and Systems (APLAS).
pp. 52–68. Springer (2005)

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

9. Blatter, L., Kosmatov, N., Le Gall, P., Prevosto, V., Petiot, G.: Static and dynamic
verification of relational properties on self-composed C code. In: International Con-
ference on Tests and Proofs. pp. 44–62. Springer (2018)

10. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety
of C programs. In: NASA Formal Methods Symposium. pp. 459–465. Springer
(2011)

11. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: NASA Formal Methods Symposium. pp. 3–11. Springer
(2015)

12. Chlipala, A.: Formal Reasoning About Programs (2016)
13. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proc. of Computer Security

Foundations Symposium (CSF). pp. 51–65 (2008)
14. Costanzo, D., Shao, Z.: A separation logic for enforcing declarative information

flow control policies. In: Proc. of Principles of Security and Trust (POST). LNCS,
vol. 8414, pp. 179–198. Springer (2014)

15. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). pp. 337–340.
Springer (2008)

16. Del Tedesco, F., Sands, D., Russo, A.: Fault-resilient non-interference. In: Proc. of
Computer Security Foundations Symposium (CSF). pp. 401–416. IEEE (2016)

17. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Proc. of European
Symposium on Programming (ESOP). pp. 502–529. Springer (2018)

17

https://github.com/PrincetonUniversity/VST
https://github.com/PrincetonUniversity/VST

18. Ernst, G., Murray, T.: SecC tool description and Isabelle theories for SecCSL.
https://covern.org/secc (2019)

19. Goguen, J., Meseguer, J.: Security policies and security models. In: Proc. of Sym-
posium on Security and Privacy (S&P). pp. 11–20. Oakland, California, USA (Apr
1982)

20. Gruetter, S., Murray, T.: Short paper: Towards information flow reasoning about
real-world C code. In: Proc. of Workshop on Programming Languages and Analysis
for Security (PLAS). pp. 43–48. ACM (2017)

21. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjöberg, V., Costanzo, D.: Cer-
tiKOS: An extensible architecture for building certified concurrent OS kernels. In:
Proc. of USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (Nov 2016)

22. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: NASA
Formal Methods Symposium. pp. 41–55. Springer (2011)

23. Karbyshev, A., Svendsen, K., Askarov, A., Birkedal, L.: Compositional non-
interference for concurrent programs via separation and framing. In: Proc. of Prin-
ciples of Security and Trust (POST) (2018)

24. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems 32(1), 2:1–2:70 (Feb 2014)

25. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7), 107–115 (2009)

26. Löding, C., Madhusudan, P., Murali, A., na, L.P.: A first order logic with frames,
under submission. Available at: http://madhu.cs.illinois.edu/FOFrameLogic.pdf

27. Lourenço, L., Caires, L.: Dependent information flow types. In: Proc. of Principles
of Programming Languages (POPL). pp. 317–328. Mumbai, India (Jan 2015)

28. Mantel, H., Sands, D.: Controlled declassification based on intransitive noninter-
ference. In: Asian Symposium on Programming Languages and Systems (APLAS).
pp. 129–145. Springer (2004)

29. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for composi-
tional noninterference. In: Proc. of Computer Security Foundations Symposium
(CSF). pp. 218–232. Cernay-la-Ville, France (Jun 2011)

30. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure
for permission-based reasoning. In: Proc. of Verification, Model Checking, and
Abstract Interpretation (VMCAI). pp. 41–62. Springer (2016)

31. Murray, T.: Short paper: On high-assurance information-flow-secure programming
languages. In: Proc. of Workshop on Programming Languages and Analysis for
Security (PLAS). pp. 43–48 (2015)

32. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow
enforcement. In: Proc. of Symposium on Security and Privacy (S&P). pp. 415–429.
San Francisco, CA (May 2013)

33. Murray, T., Sabelfeld, A., Bauer, L.: Special issue on verified information flow
security. Journal of Computer Security 25(4-5), 319–321 (2017)

34. Murray, T., Sison, R., Engelhardt, K.: COVERN: A logic for compositional verifi-
cation of information flow control. In: Proc. of European Symposium on Security
and Privacy (EuroS&P). London, United Kingdom (Apr 2018)

35. Murray, T., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: Proc. of Com-
puter Security Foundations Symposium (CSF). pp. 417–431 (Jun 2016)

18

https://covern.org/secc
http://madhu.cs.illinois.edu/FOFrameLogic.pdf

36. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Communications of the ACM
58(4), 66–73 (2015)

37. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283 (2002)

38. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: International Con-
ference on Concurrency Theory (CONCUR). pp. 49–67. Springer (2004)

39. O’Hearn, P.W.: Continuous reasoning: Scaling the impact of formal methods. In:
Proc. of Logic in Computer Science (LICS). pp. 13–25. ACM (2018)

40. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding.
ACM Transactions on Programming Languages and Systems (TOPLAS) 31(3),
11 (2009)

41. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Proc. of Computer Aided Verification (CAV). pp. 773–789. Springer (2013)

42. Polikarpova, N., Sergey, I.: Structuring the synthesis of heap-manipulating pro-
grams. Proceedings of the ACM on Programming Languages 3(POPL), 72 (2019)

43. Prabawa, A., Al Ameen, M.F., Lee, B., Chin, W.N.: A logical system for mod-
ular information flow verification. In: Proc. of Verification, Model Checking, and
Abstract Interpretation (VMCAI). pp. 430–451. Springer (2018)

44. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. of Logic in Computer Science (LICS). pp. 55–74. IEEE (2002)

45. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proc. of Computer Security Foundations Workshop (CSFW). pp. 200–214.
IEEE (2000)

46. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: Proc.
of Mathematical Foundations of Programming Semantics (MFPS). pp. 335–351
(2011)

47. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11
concurrency. In: Proc. of Object Oriented Programming Systems Languages &
Applications (OOPSLA). pp. 867–884. ACM (2013)

48. Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language.
Journal of Computer Security 7(2,3), 231–253 (1999)

49. Yang, H.: Relational separation logic. Theoretical Computer Science 375(1-3), 308–
334 (2007)

50. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow con-
trol. International Journal of Information Security 6(2–3) (Mar 2007)

19

A Command Semantics

Symmetric parallel rules in which c2 is scheduled under the action 〈2〉 omitted.

s′ = s(x 7→ JeKs)

(run x := e, L, s, h)
〈τ〉−→ (stop L, s′, h)

JeKs /∈ dom (h)

(run x := [e], L, s, h)
〈τ〉−→ abort

JeKs ∈ dom (h) s′ = s(x 7→ h(JeKs))

(run x := [e], L, s, h)
〈τ〉−→ (stop L, s′, h)

Je1Ks /∈ dom (h)

(run [e1] := e2, L, s, h)
〈τ〉−→ abort

Je1Ks ∈ dom (h) h′ = h(Je1Ks 7→ Je2Ks)

(run [e1] := e2, L, s, h)
〈τ〉−→ (stop L, s, h′)

l ∈ L L′ = L \ {l}

(run lock l, L, s, h)
〈τ〉−→ (stop L′, s, h)

l /∈ L L′ = L ∪ {l}

(run unlock l, L, s, h)
〈τ〉−→ (stop L′, s, h)

(run c1, L, s, h)
σ−→ abort

(run c1; c2, L, s, h)
σ−→ abort

(run c1, L, s, h)
σ−→ abort

(run c1 ‖ c2, L, s, h)
〈1〉·σ−−−→ abort

(run c1, L, s, h)
σ−→ (stop L′, s′, h′)

(run c1; c2, L, s, h)
σ−→ (run c2, L

′, s′, h′)

(run c1, L, s, h)
σ−→ (run c′1, L

′, s′, h′)

(run c1; c2, L, s, h)
σ−→ (run c′1; c2, L

′, s′, h′)

(run c1, L, s, h)
σ−→ (stop L′, s′, h′)

(run c1 ‖ c2, L, s, h)
〈1〉·σ−−−→ (run c2, L

′, s′, h′)

(run c1, L, s, h)
σ−→ (run c′1, L

′, s′, h′)

(run c1 ‖ c2, L, s, h)
〈1〉·σ−−−→ (run c′1 ‖ c2, L′, s′, h′)

if s |= b then c′ = c1 else c′ = c2

(run if b then c1 else c2, L, s, h)
〈τ〉−−→ (run c′, L, s, h)

s 6|= b

(run while b do c, L, s, h)
〈τ〉−−→ (stop L, s, h)

s |= b

(run while b do c︸ ︷︷ ︸
ω

, L, s, h)
〈τ〉−−→ (run (c;ω), L, s, h)

20

k
〈 〉−→∗ k

k
σ1−→ k′ k′

σ2−→∗ k′′

k
σ1·σ2−→ ∗ k′′

B Proofs

Proof of Lemma 1

If (s, h), (s′, h′) |=` P , then h
A≡ h′ for A = lows`(P, s).

Proof. By induction on the structure of P , noting that lows`(_, s) contains lo-
cations of the corresponding sub-heap only. ut

Proof of Lemma 2

` ` {P} c {Q} implies securen` (P, c,Q) for every n ≥ 0.

Proof (Outline). By induction on the derivation of the validity of the judgement.
Noting that n = 0 is trivial, we may unfold the recursion of the security definition
once to prove the base cases of assignment, load, store, and locking, which then
follow from the respective side conditions of the proof rules.

For rules If and While, the side condition b :: ` guarantees that the test
evaluates equivalently in the two states and thus execution proceeds with the
same remainder program.

Except for If, all remaining rules need a second induction on n to stepwise
match security of the premise to security of the conclusion (e.g. over the steps
of the first command in a sequential composition c1; c2).

The rule Frame instantiates the frame F with the same assertion in each
step, whereas Par uses the frame F to preserve the current precondition P2 of c2
over steps of c1 and vice-versa. ut

Proof of Corollary 1

Given a command c and initial states (s1, h1), (s
′
1, h
′
1) |=` P ? invs(L1) and

two executions under the same schedule to resulting configurations k and k′

respectively, then ` ` {P} c {Q} implies k 6= abort ∧ k′ 6= abort.

Proof. By induction on the number of steps n of the executions from securen` (P, c,Q)
via Lemma 2. ut

21

Proof of Theorem 1

Given a command c and initial states (s1, h1), (s′1, h′1) |=` P ? invs(L1) and two
complete executions under the same schedule σ

(run c, L1, s1, h1)
σ−→∗ (stop L2, s2, h2)

(run ci, Li, s
′
i, h
′
i)

σ−→∗ (stop L2, s
′
2, h
′
2)

then ` ` {P} c {Q} implies (s2, h2), (s′2, h′2) |=` Q ? invs(L2).

Proof. By induction on the number of steps n of the executions from securen` (P, c,Q)
via Lemma 2. ut

Proof of Theorem 2

Given a command c, and initial states (s1, h1), (s
′
1, h
′
1) |=` P ? invs(L1) then

` ` {P} c {Q} implies hi
A≡ h′i, where A = lows`(P, s1), for all pairs of heaps hi

and h′i arising from executing the same schedule from each initial state.

Proof. By induction on the number of steps i up to that state from securei`(P, c,Q)
via Lemma 2 we have lows`(P ? invs(L1), s1) ⊆ lows`(Pi ? invs(L1), si) transi-
tively over the prefix, where Pi and si are from the i-th state. The theorem then
follows from Lemma 1 in Section 3.1. ut

22

	SecCSL: Security Concurrent Separation Logic
	Introduction
	An Overview of SecCSL
	Specifying Information Flow Control in SecCSL
	Reasoning in SecCSL
	Security Intuition and Informal Security Property

	The Logic SecCSL
	Assertions
	Entailments
	Proof System

	Security Definition & Soundness
	SecC: Automating SecCSL
	Related Work
	Conclusion
	Command Semantics
	Proofs

