
Proc. FASE 2019, c©Springer

CoVeriTest: Cooperative Verifier-Based Testing

Dirk Beyer and Marie-Christine Jakobs

LMU Munich, Germany

Abstract. Testing is a widely used method to assess software quality.
Coverage criteria and coverage measurements are used to ensure that
the constructed test suites adequately test the given software. Since
manually developing such test suites is too expensive in practice, various
automatic test-generation approaches were proposed. Since all approaches
come with different strengths, combinations are necessary in order to
achieve stronger tools. We study cooperative combinations of verification
approaches for test generation, with high-level information exchange.
We present CoVeriTest, a hybrid approach for test-case generation, which
iteratively applies different conditional model checkers. Thereby, it allows
to adjust the level of cooperation and to assign individual time budgets
per verifier. In our experiments, we combine explicit-state model checking
and predicate abstraction (from CPAchecker) to systematically study dif-
ferent CoVeriTest configurations. Moreover, CoVeriTest achieves higher
coverage than state-of-the-art test-generation tools for some programs.

Keywords: Test-case generation · Software testing · Test Coverage ·
Conditional model checking · Cooperative verification · Model checking

1 Introduction

Testing is a commonly used technique to measure the quality of software. Since
manually creating such test suites is laborious, automatic techniques are used: e.g.,
model-based techniques for black-box testing and techniques based on control-flow
coverage for white-box testing. Many automatic techniques have been proposed,
ranging from random testing [36,57] and fuzzing [26,52,53], over search-based
testing [55] to symbolic execution [23,24,58] and reachability analyses [5,12,45,46].
The latter are well-suited to find bugs and derive test suites that achieve high
coverage, and several verification tools support test generation (e.g., Blast [5],
PathFinder [61], CPAchecker [12]). The reachability checks for all test goals
seem too expensive, but in practice, those approaches can be made pretty efficient.

Encouraged by tremendous advances in software verification [3] and a recent
case study that compared model checkers with test tools w.r.t. bug finding [17],
we study a new kind of combination of reachability analyses for test generation.
Combinations are necessary because different analysis techniques have different
strength and weaknesses. For example, consider function foo in Listing 1. Explicit
state model checking [18, 33] tracks the values of variables i and s and easily
detects the reachability of the statements in the outermost if branch (lines 3-6),
while it has difficulties with the complex condition in the else-branch (line 8).

2 D. Beyer and M.-C. Jakobs

0 void f oo (int i , int n) {
1 int s=0;
2 i f (i==0)
3 while (i==0) {
4 i f (s==0) i n i t () ;
5 i f (s==1) i = exec () ;
6 s=(s+1)%2;
7 }
8 else i f (2∗ i<n && i >0) exec () ;
9 }

Fig. 1. Example program foo

In contrast, predicate abstrac-
tion [33, 39] can easily derive
test values for the complex con-
dition in line 8, but to han-
dle the if branch (lines 3-6)
it must spent effort on the de-
tection of the predicates s = 0,
s = 1, and i = 0. Independently
of each other, test approaches [1,
34, 47, 54] and verification ap-
proaches [9, 10, 29, 37] employ
combinations to tackle such
problems. However, there are no
approaches yet that combine different reachability analyses for test generation.

Inspired by abstraction-driven concolic testing [32], which interleaves concolic
execution and predicate abstraction, we propose CoVeriTest, which stands
for cooperative verifier-based testing. CoVeriTest iteratively executes a given
sequence of reachability analyses. In each iteration, the analyses are run in se-
quence and each analysis is limited by its individual, but configurable time limit.
Furthermore, CoVeriTest allows the analysis to share various types of analysis
information, e.g., which paths are infeasible, have already been explored, or which
abstraction level to use. To get access to a large set of reachability analyses,
we implemented CoVeriTest in the configurable software-analysis framework
CPAchecker [15]. We used our implementation to evaluate different CoVeriTest
configurations on a large set of well-established benchmark programs and to com-
pare CoVeriTest with existing state-of-the-art test-generation techniques. Our
experiments confirm that reachability analyses are valuable for test generation.
Contributions. In summary, we make the following contributions:

• We introduce CoVeriTest, a flexible approach for high-level interleaving of
reachability analyses with information exchange for test generation.

• We perform an extensive evaluation of CoVeriTest studying 54 different
configurations and two state-of-the-art test-generation tools1.

• CoVeriTest and all our experimental data are publically available2 [13].

2 Testing with Verifiers

The basic idea behind testing with verifiers is to derive test cases from counter-
examples [5, 61]. Thus, meeting a test goal during verification has to trigger a
specification violation. First, we remind the reader of some basic notations.
Programs. Following literature [9], we represent programs by control-flow auto-
mata (CFAs). A CFA P = (L, `0, G) consists of a set L of program locations
1 We choose the best two tools VeriFuzz and Klee from the international competition
on software testing (Test-Comp 2019) [4]. https://test-comp.sosy-lab.org/2019/

2 https://www.sosy-lab.org/research/coop-testgen/

https://test-comp.sosy-lab.org/2019/
https://www.sosy-lab.org/research/coop-testgen/

CoVeriTest: Cooperative Verifier-Based Testing 3

(the program-counter values), an initial program location `0 ∈ L, and a set of
control-flow edges G ⊆ L×Ops×L. The set Ops describes all possible operations,
e.g., assume statements (resulting from conditions in if or while statements)
and assignments. For the program semantics, we rely on an operational semantics,
which we do not further specify.
Abstract Reachability Graph (ARG). ARGs record the work done by reach-
ability analyses. An ARG is constructed for a program P = (L, `0, G) and stores
(a) the abstract state space that has been explored so far, (b) which abstract states
must still be explored, and (c) what abstraction level (tracked variables, considered
predicates, etc.) is used. Technically, an ARG is a five-tuple (N, succ, root , F, π)
that consists of a set N of abstract states, a special node root ∈ N that represents
the initial states of program P , a relation succ ⊆ N ×G×N that records already
explored successor relations, a set F ⊆ N of frontier nodes, which remembers
all nodes that have not been fully explored, and a precision π describing the
abstraction level. Every ARG must ensure that a node n is either contained in F
or completely explored, i.e., all abstract successors have been explored. We use
ARGs for information exchange between reachability analyses.

q0 qe
g ∈ goals

g /∈ goals

Fig. 2. Encoding test goals as spec-
ification violation

Test Goals. In this paper, we are interested
in structural coverage, e.g., branch coverage.
Transferred to our notion of programs, this
means that our test goals are a subset of the
program’s control-flow edges. For using a ver-
ifier to generate tests, we have to encode the
test goals as a specification violation. Figure 2 shows a possible encoding, which
uses a protocol automaton. Whenever a test goal is executed, the automaton
transits from the initial, safe state q0 to the accepting state qe, which marks a
property violation. Note that reachability analyses, which we consider for test
generation, can easily monitor such specifications during exploration.

Now, we have everything at hand to describe how reachability analyses
generate tests. Algorithm 1 shows the test-generation process. The algorithm gets
as input a program, a set of test goals, and a time limit for test generation. For
cooperative test generation, we need to guide state-space explorations. To this
end, we also provide an initial ARG and a condition. A condition is a concept
known from conditional model checking [10] and describes which parts of the state
space have already been explored by other verifiers. A verifier, e.g., a reachability
analysis, can use a condition to ignore the already explored parts of the state
space. Verifiers that do not understand conditions can safely ignore them.

At the beginning, Alg. 1 sets up the data structures for the test suite and the
set of covered goals. To set up the specification, it follows the idea of Fig. 2. As
long as not all test goals are covered, there exist abstract states that must be
explored, and the time limit has not elapsed, the algorithm tries to generate new
tests. Therefore, it resumes the exploration of the current ARG [5] taking into
account program prog, specification ϕ, and (if understood) the condition ψ. If
the exploration stops, then it returns an updated ARG. Exploration stops due to
one of three reasons: (1) the state space is explored completely (F = ∅), (2) the

4 D. Beyer and M.-C. Jakobs

Algorithm 1 Generating tests with a (conditional) reachability analysis
Input: prog = (L, `0, G), goals ⊆ G, limit ∈ N, arg =(N,succ, root, F, π),

condition ψ
Output: generated test_suite, covered goals, updated arg

1: test_suite=∅; covered=∅;
2: ϕ=generate_specification(goals);

3: while (goals 6= ∅ and arg.F 6= ∅ and elapsed_time<limit) do
4: arg = explore(prog, ϕ, arg, ψ, limit − elapsed_time);

5: if (arg.F 6= ∅ and elapsed_time<limit) then
6: τ = extract_counterexample_trace(arg);
7: test_suite = test_suite ∪ generate_test_from_trace(τ);

8: goals = goals\{last_edge(τ)}; covered = covered ∪ {last_edge(τ)}

9: ϕ=generate_specification(goals);
10: return (test_suite, covered, arg);

time limit is reached, or (3) a counterexample has been found.3 In the latter
case, a new test is generated. First, a counterexample trace is extracted from
the ARG. The trace describes a path through the ARG that starts at the root
and its last edge is a test goal (the reason for the specification violation). Next,
a test is constructed from the path and added to the test suite. Basically, the
path is converted into a formula and a satisfying assignment4 is used as the test
case. For the details, we refer the reader to the work that defined the method [5].
Additionally, the covered goal (last edge on the counterexample path) is removed
from the set of open test goals and added to the set of covered goals. Finally,
the specification is updated to no longer consider the covered goal. When the
algorithm finishes, it returns the generated test suite, the set of covered goals
and the last ARG considered. The ARG is returned to enable cooperation.

3 CoVeriTest

The previous section described how to use a single reachability analysis to produce
tests for covering a set of test goals. Due to different strengths and weaknesses,
some test goals are harder to cover for one analysis than for another. To maximize
the number of covered goals, different analyses should be combined. In CoVeri-
Test, we rotate analyses for test generation. Thus, we avoid that analyses try to
cover the same goal in parallel and we do not need to know in advance which

3 We assume that an exploration is only complete if no counterexample exists.
4 We assume that only feasible counterexamples are contained and infeasible coun-
terexamples were eliminated by the reachability analysis during exploration.

CoVeriTest: Cooperative Verifier-Based Testing 5

Algorithm 2 CoVeriTest: alternating reachability analyses to generate tests
Input: prog = (L, `0, G), goals ⊆ G, total_limit ∈ N, configs ∈ (analysis× N)+
Output: test_suite
1: test_suite=∅; args=〈〉; current=0;
2: while (goals 6= ∅ and elapsed_time<total_limit) do
3: analysis = configs[current].first; limit = configs[current].second;

4: (arg,ψ) = cooperateAndInit(prog, args, configs.length);
5: (tests, covered, arg) = analysis(prog, goals, limit, arg, ψ);

6: test_suite=test_suite ∪ tests; goals=goals\covered; args=args ◦〈arg〉;
7: if (arg.F=∅) then
8: return test_suite;
9: current = (current+1) % configs.length;
10: return test_suite;

analysis can cover which goals. Moreover, analyses that get stuck trying to cover
goals that other analyses handle later, get a chance to recover. Additionally,
CoVeriTest supports cooperation among analyses. More concrete: analyses may
extract and use information from ARGs constructed by previous analysis runs.

Algorithm 2 describes the CoVeriTest workflow. It gets four inputs. Program,
test goals, and time limit are already known from Alg. 1 (test generation with
a single analysis). Additionally, CoVeriTest gets a sequence of configurations,
namely pairs of reachability analysis and time limit. The time limit accompanied
with the analysis restricts the runtime of the respective analysis per call (see
line 5). In contrast to Alg. 1, CoVeriTest does not get an ARG or condition. To
enable cooperation between analyses, CoVeriTest constructs these two elements
individually for each analysis run. During construction, it may extract and use
information from results of previous analysis runs.

After initializing the test suite and the data structure to store analysis
results (args), CoVeriTest repeatedly iterates over the configurations. It starts
with the first pair in the sequence and finishes iterating when its time limit
exceeded or all goals are covered. In each iteration, CoVeriTest first extracts the
analysis to execute and its accompanied time limit (line 3). Then, it constructs
the remaining inputs of the analysis: ARG and condition. Details regarding the
construction are explained later in Alg. 3. Next, CoVeriTest executes the current
analysis with the given program, the remaining test goals, the accompanied time
limit, and the constructed ARG and condition. When the analysis has finished,
CoVeriTest adds the returned tests to its test suite, removes all test goals
covered by the analysis run from the set of goals, and stores the analysis result for
cooperation (concatenates arg to the sequence of ARGs). If the analysis finished
its exploration (arg.F=∅), any remaining test goal should be unreachable and
CoVeriTest returns its test suite. Otherwise, CoVeriTest determines how to
continue in the next iteration (i.e., which configuration to consider). At the end
of all iterations, CoVeriTest returns its generated test suite.

6 D. Beyer and M.-C. Jakobs

Algorithm 3 cooperateAndInit: set up start point for analysis exploration,
possibly transferring knowledge from previous analysis runs
Input: prog = (L, `0, G), args ∈ (arg)+, numAnalyses ∈ N
Output: ARG for program prog, condition describing explored state space
1: ψ=false; π = ∅; root = (`0,>);
2: if (length(args)≥numAnalyses) then
3: if (reuse-arg) then
4: return (last_arg_of_analysis(numAnalyses, args), ψ);
5: if (reuse-precision) then
6: π = last_arg_of_analysis(numAnalyses, args).π;
7: if (use-condition ∧ length(args)>0) then
8: ψ = extract_condition(args[length(args)-1]);
9: return (({root}, ∅, root, {root}, π), ψ);

Next, we explain how to construct the ARG and the condition input for
an analysis. The ARG describes the level of abstraction and where to continue
exploration while the condition describes which parts of the state space have
already been explored. Both guide the exploration of an analysis, which makes
them well-suited for cooperation. While there are plenty of possibilities for
cooperation, we currently only support three basic options: continue exploration
of the previous ARG of the analysis (reuse-arg), reuse the analysis’ abstraction
level (reuse-precision), and restrict the exploration to the state space left out
by the previous analysis (use-condition). The first two options only ensure that
an analysis does not loose too much information due to switching. The last option,
which is inspired by abstraction-driven concolic execution [32], indeed realizes
cooperation between different analyses. Note that the last two options can also
be combined.5If all options are turned off, no information will be exchanged.

Algorithm 3 shows the cooperative initialization of ARG and condition dis-
cussed above. It gets three inputs: the program, a sequence of args needed to
realize cooperation, and the number of analyses used. At the beginning, it ini-
tializes the ARG components and the condition assuming no cooperation should
be done. The condition states that nothing has been explored, the abstraction
level becomes the coarsest available and the ARG root considers the start of all
program executions (initial program location and arbitrary variable values). If no
cooperation is configured or the ARG required for cooperation is not available
(e.g., in the first round), the returned ARG and condition tell the analysis to
explore the complete state space from scratch. In all other cases, the analysis
will be guided by information obtained in previous iterations. Option reuse-arg
looks up the last ARG of the analysis stored in args. Reuse-precision consid-
ers the same ARG as reuse-arg, but only provides the ARG’s precision π. For

5 In contrast, the options reuse-arg and use-conditions cannot be combined because
they are incompatible. The existing ARG does not fit to the constructed condition.
Since reuse-arg subsumes reuse-precision, a combination makes no sense.

CoVeriTest: Cooperative Verifier-Based Testing 7

use-condition, a condition is constructed from the last ARG in args. For the
details of the condition construction, we refer to conditional model checking [10].

Next, we study the effectiveness of different CoVeriTest configurations and
compare CoVeriTest with existing test-generation tools.

4 Evaluation

We systematically evaluate CoVeriTest along the following claims:
Claim 1. For analyses that discard their own results from previous iterations
(i.e., reuse-arg and reuse-precision turned off), CoVeriTest achieves higher
coverage if switches between analyses happen rarely. Evaluation Plan: We look at
CoVeriTest configurations in which analyses discard their own, previous results
and compare the number of covered test goals reported by configurations that
only differ in the analyses’ time limits.
Claim 2. For analyses that reuse knowledge from their own, previous execution
(i.e., reuse-arg or reuse-precision turned on), CoVeriTest achieves higher
coverage if favoring more powerful analyses. Evaluation Plan: We look at CoVeri-
Test configurations in which analyses reuse their own, previous knowledge and
compare the number of covered test goals reported by configurations that only
differ in the analyses’ time limits.
Claim 3. CoVeriTest performs better if analyses reuse knowledge from their
own, previous execution (i.e., reuse-arg or reuse-precision turned on). Eval-
uation Plan: From all sets of CoVeriTest configurations that only differ in the
analyses’ time limits, we select the best and compare these.
Claim 4. Interleaving multiple analyses with CoVeriTest often achieves better
results than using only one of the analyses for test generation. Evaluation Plan:
We compare the number of covered goals reported by the best CoVeriTest
configuration with those numbers achieved when running only one analysis of
the CoVeriTest configuration for the total time limit.
Claim 5. Interleaving verifiers for test generation is often better than running
them in parallel. Evaluation Plan: We compare the number of covered goals
reported by the best CoVeriTest configuration with the number achieved when
running all analyses of the CoVeriTest configuration in parallel.
Claim 6. CoVeriTest complements existing test generation tools. Evaluation
Plan: We use the same infrastructure and resources as used by the International
Competition on Software Testing (Test-Comp’19)6 and let the best CoVeriTest
configuration construct test suites. These test suites are executed by the Test-
Comp’19 validator to measure the achieved branch coverage. Then, we compare
the coverage achieved by CoVeriTest with the coverage of the best two test
generation tools from Test-Comp’19.

6 https://test-comp.sosy-lab.org/2019/

https://test-comp.sosy-lab.org/2019/

8 D. Beyer and M.-C. Jakobs

4.1 Setup

CoVeriTest Configurations. We implemented CoVeriTest in the software
analysis framework CPAchecker [15]. Basically, we implemented Algs. 1, 2 and
integrated Alg. 3 into Algo. 2. For condition construction, we reuse the code from
conditional model checking [10]. For our experiments, we combine value [18] and
predicate analysis [16]. Both have been used in cooperative verification [10,11,21].

Value analysis. CPAchecker’s value analysis [18] tracks the values of variables
stored in its current precision explicitly while assuming that the remaining
variables may have any possible value. It iteratively increases its precision, i.e.,
the variables to track, combining counterexample-guided abstraction [28] with
path-prefix slicing [22], and refinement selection [21]. Value analysis is efficient if
few variable values need to be tracked, but it may get stuck in loops or suffers
from a large state space in case variables are assigned many different values.

Predicate analysis. CPAchecker’s predicate analysis uses predicate abstrac-
tion with adjustable-block encoding (ABE) [16]. ABE is configured to abstract
at loop heads and uses the strongest postcondition at all remaining locations. To
compute the set of predicates—its precision—, it uses counterexample-guided
abstraction refinement [28] combined with lazy refinement [43] and interpola-
tion [41]. While the predicate analysis is powerful and often summarizes loops
easily, successor computation may require expensive SMT solver calls.

For both analyses, a CoVeriTest configuration specifies how Alg. 3 reuses
the ARGs returned by previous analysis runs to set up the initial ARG and
condition. In our experiments, we consider the following types of reuses.

plain Ignores all ARGs returned by previous analysis runs, i.e., reuse-arg,
reuse-prec, and use-condition are turned off.

condv The value analysis does not obtain information from previous ARGs and
the predicate analysis is only steered by the condition extracted from the
ARG returned by the previous value analysis.

condp The value analysis is steered by the condition extracted from the ARG
returned by the previous run of the predicate analysis and the predicate
analysis ignores all previous ARGs.

condv,p Value and predicate analysis are steered by the condition extracted
from the last ARG returned, i.e., only use-condition turned on.

reuse-prec In each round, each analysis resumes its precision from the previous
round, but restarts exploration, i.e., only reuse-prec is turned on.

reuse-arg In each round, each analysis continues to explore the ARG it returned
in the previous round, i.e., only reuse-arg is turned on.

condv+r Similar to condv, but additionally the value analysis continues to
explore the ARG it returned in the previous round and the predicate analysis
restarts exploration with its precision from the previous round.

condp+r Similar to condp, but additionally the value analysis restarts explo-
ration with its precision from the previous round and the predicate analysis
continues to explore the ARG it returned in the previous round.

condv,p+r Like condv,p, but additionally the value and predicate analysis reuse
their previous precision, i.e., reuse-prec and use-condition are turned on.

CoVeriTest: Cooperative Verifier-Based Testing 9

Finally, we need to fix the time limit for each analysis. We want to find out
whether switches between analyses are important to the CoVeriTest approach.
Therefore, we chose four limits (10 s, 50 s, 100 s, 250 s) that are applied to both
analyses and trigger switches often, sometimes, or rarely. Additionally, we want
to study whether it is advantageous if the time CoVeriTest spends in a round
is not equally spread among the analyses. Thus, we come up with two additional
time limit pairs: (20 s, 80 s) and (80 s, 20 s).

We combine all nine reuse types with the six time limit pairs, which results
in 54 CoVeriTest configurations. All 54 configurations aim at generating tests
to cover the assume edges of a program.

Tools. For CoVeriTest, we used the implementation in CPAchecker ver-
sion 29 347. Moreover, we compare CoVeriTest against the two best tools
VeriFuzz [26] and Klee [23] from Test-Comp’19 (in the versions submitted to
Test-Comp’197). The tool VeriFuzz is based on the evolutionary fuzzer AFL
and uses verification techniques to compute initial input values and parameters
for AFL. Klee applies symbolic execution. To compare CoVeriTest against
Klee and VeriFuzz, we use the validator TBF Test-Suite Validator v1.28 to
measure branch coverage. TBF Test-Suite Validator is based on gcov9.

Programs. CoVeriTest, Klee, and VeriFuzz produce tests for C programs.
All three tools participated in TestComp’19. Thus, for comparison of the three
tools, we consider all 1 720 tasks of the TestComp’19 benchmark set10 that
support the branch-coverage property. Since we do not need to execute tests
for the comparison of the different CoVeriTest configurations, we evaluated
them on a larger benchmark set, which contains all 6 703 C programs from the
well-established SV-benchmark set11 in the version tagged svcomp18.

Computing Resources. We run our experiments on machines with 33GB
of memory and an Intel Xeon E3-1230 v5 CPU with 8 processing units and a
frequency of 3.4GHz. The underlying operating system is Ubuntu 18.04 with
Linux kernel 4.15. As in TestComp’19, for test generation we grant each run a
maximum of 8 processing units, 15min of CPU time, and 15GB of memory, and
for test-suite execution (required to compare against Klee and VeriFuzz), the
TBF Test-Suite Validator is granted 2 processing units, 3 h of CPU time, and
7GB of memory per run. We use BenchExec [20] to enforce the limits of a run.

Availability. Our experimental data are available online12 [13].

7 https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
8 https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/
tbf-testsuite-validator.zip

9 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
10 https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19
11 https://github.com/sosy-lab/sv-benchmarks
12 https://www.sosy-lab.org/research/coop-testgen/

https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/tbf-testsuite-validator.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/tbf-testsuite-validator.zip
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19
https://github.com/sosy-lab/sv-benchmarks
https://www.sosy-lab.org/research/coop-testgen/

10 D. Beyer and M.-C. Jakobs

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(a) Reuse type plain

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(b) Reuse type condv,p

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(c) Reuse type condv

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(d) Reuse type condp

Fig. 3. Comparing relative coverage (number of covered goals divided by maximal
number of covered goals) achieved by CoVeriTest configurations with different time
limits. All configurations let analyses discard their own knowledge gained in previous
executions.

4.2 Experiments

Claim 1 (Reduce switching when discarding own results). Four types of
reuse (namely, plain, condv, condp, and condv,p) let the analyses discard their own
knowledge from their previous executions. For each of these types, we compare
the coverage achieved by all six CoVeriTest configurations that use this type13.
More concrete, for all six CoVeriTest configurations applying the same reuse
type, we first compute for each program the maximum over the number of covered
goals achieved by each of these six configurations for that program. Then, for
each of the six CoVeriTest configurations that use that reuse type, we divide
the number of covered goals achieved for a program by the respective maximum
computed. We call this measure relative coverage because the value is relative
to the maximum and not the total number of goals. Figure 3 shows box plots
per reuse type. The box plots show the distribution of the relative coverage. The
closer the bottom border of a box is to value one, the higher coverage is achieved.
For all four reuse types, the fourth box plot has the bottom border closest to
value one. Since the fourth box plot is a configuration that grants each analysis
250 s per round (highest limit considered, only three switches), the claim holds.
Claim 2 (Favor powerful analysis when reusing own results). Five types
of reuse (namely, reuse-prec, reuse-arg, condv+r, condp+r, and condv,p+r) let
analyses reuse knowledge from their own, previous execution. Similar to the
previous claim, we compute for each of these types the relative coverage of all
six configurations using this particular type of reuse. For each reuse type, Fig. 4

13 Note that those six configurations only differ in the analyses’ time limits.

CoVeriTest: Cooperative Verifier-Based Testing 11

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(a) Reuse type reuse-prec

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(b) Reuse type reuse-arg

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(c) Reuse type condv+r

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(d) Reuse type condp+r

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

R
el

at
iv

e
co

ve
ra

ge

Time limits

(e) Reuse type condv,p+r
Fig. 4. Comparing relative coverage (number of covered goals divided by maximal
number of covered goals) achieved by CoVeriTest configurations when using different
time limits and a fixed reuse type. All considered configurations let analyses reuse
knowledge from their own, previous execution.

shows box plots of the distributions of the relative coverage. As before, a bottom
border closer to value one reflects higher coverage. In all five cases, the last box
plot has the bottom border closest to value one. The last box plots represent
CoVeriTest configurations that grant the value analysis 20 s and the predicate
analysis 80 s in each round. Since the predicate analysis, which gets more time
per round, is more powerful than the value analysis, our claim is valid. 14

Claim 3 (Better reuse own results). So far, we know how to configure
time limits. Now, we want to find out how to reuse information from previous
analysis runs. For each reuse type, we select from the six available configurations
the configuration that performed best. Again, we use the relative coverage to
compare the resulting nine configurations. Figure 5 shows box plots of the
distributions of the relative coverage. The first four box plots show configurations
in which analyses discard their own results, while the last five box plots refer
to configurations in which analyses reuse knowledge from their own, previous
executions. Since the last five boxes are smaller than the first four and their
bottom borders are closer to one, the last five configurations achieve higher
coverage. Hence, our claim holds. Moreover, from Fig. 5 we conclude that it is
best to reuse the ARG (although condv+r and condp+r are close by).
Claim 4 (Interleave multiple analyses rather than use one of them).
To evaluate whether CoVeriTest benefits from interleaving, we compare CoVeri-
Test against the analyses used by it. CoVeriTest interleaves value and predicate
analysis. Figure 6(a) and 6(b) show scatter plots that compare for each program
the coverage, i.e., number of covered goals divided by number of total goals,
achieved by the best CoVeriTest configuration (x-axis) with the coverage
achieved when only using either value or predicate analysis for test generation.

14 This insight is independently partially backed by a sequential combination of explicit-
value analysis and predicate analysis that performed well in SV-COMP 2013 [62].

12 D. Beyer and M.-C. Jakobs

0.5

0.6

0.7

0.8

0.9

1

1.1

plain condv condp condv,p reuse-prec reuse-arg condv+r condp+r condv,p+r

R
el

at
iv

e
co

ve
ra

ge

Best CoVeriTest configuration per reuse type

Fig. 5. Comparing relative coverage achieved by CoVeriTest configurations applying
different strategies to reuse information gained by previous verifier runs.

0

20

40

60

80

100

0 20 40 60 80 100

C
ov

er
a

ge
 o

f V
al

ue
 [%

]

Coverage of CoVeriTest [%]

(a) CoVeriTest (x-axis) vs.
value analysis

0

20

40

60

80

100

0 20 40 60 80 100

C
ov

er
a

ge
 o

f P
re

d
ic

at
e

[%
]

Coverage of CoVeriTest [%]

(b) CoVeriTest (x-axis) vs.
predicate analysis

0

20

40

60

80

100

0 20 40 60 80 100C
ov

er
a

ge
 o

f V
al

.|
| P

re
d.

 [%
]

Coverage of CoVeriTest [%]

(c) CoVeriTest (x-axis)
vs. value and predicate
analysis in parallel

Fig. 6. Compares the coverage achieved by CoVeriTest (best configuration) with the
coverage achieved when running CoVeriTest’s analyses alone or in parallel

Note that we excluded those programs from the scatter plots, for which we miss
the number of covered goals for at least one test generator, e.g., due to timeout of
the analysis. Figure 6(a) compares CoVeriTest and value analysis; we see that
almost all points are in the lower right half. Thus, CoVeriTest typically achieves
higher coverage than value analysis alone. Figure 6(b), comparing CoVeriTest
with predicate analysis, is more diverse. About 54% of the points are on the
diagonal, i.e., CoVeriTest and predicate analysis cover the same number of
goals. The upper left half contains 19% of the points, i.e., predicate analysis
alone achieves higher coverage. These points for example reflect float programs
and ECA programs without arithmetic computations. In contrast, CoVeriTest
achieves higher coverage in 27% of the programs. CoVeriTest is beneficial for
programs that only need few variable values to trigger the branches, like ssh
programs or programs from the product-lines subcategory. CoVeriTest also
profits from the value analysis when considering ECA programs with arithmetic
computations, since the variables have a fixed value in each loop iteration. All in
all, CoVeriTest performs slightly better than predicate analysis alone.
Claim 5 (Interleave rather than parallelize). Figure 6(c) shows a scatter
plot that compares for each program the coverage achieved by CoVeriTest
(x-axis) and a test generator that runs the value analysis and the predicate
analysis in parallel15. As before, we exclude programs for which we could not
15 The test generator uses CPAchecker’s parallel algorithm and lets the two analyses

share information about covered test goals.

CoVeriTest: Cooperative Verifier-Based Testing 13

0

20

40

60

80

100

0 20 40 60 80 100

C
ov

er
a

ge
 o

f V
er

iF
uz

z
[%

]

Coverage of CoVeriTest [%]

(a) CoVeriTest vs. VeriFuzz

0

20

40

60

80

100

0 20 40 60 80 100

C
ov

er
a

ge
 o

f K
LE

E
 [%

]

Coverage of CoVeriTest [%]

(b) CoVeriTest vs. Klee

Fig. 7. Compares the branch coverage achieved by CoVeriTest (best configuration)
with the branch coverage achieved by existing state-of-the-art test generation tools

get the number of covered goals for at least one of the analyses. Looking at
Fig. 6(c), we observe that many points (60%) are on the diagonal, i.e., the
achieved coverage is identical. Moreover, CoVeriTest performs better for 30%
(lower right half), while approximately 10% of the points are in the upper left
half. Since CoVeriTest achieves the same or better coverage results in about
90% of the cases, it should be preferred over parallelization. This is no surprise
since we showed that a test generator should favor the more powerful analysis
(which CoVeriTest does, but parallelization evenly distributes CPU time).
Claim 6 (CoVeriTest complementary). Our goal is to compare CoVeri-
Test and the two best tools of Test-Comp’19 [4]: VeriFuzz and Klee. All three
tools aim at constructing test suites with high branch coverage. Thus, we use
branch coverage as comparison criterion. We measure branch coverage with TBF
Test-Suite Validator. Figure 7 shows two scatter plots. Each plot compares
branch coverage achieved by CoVeriTest and by one of the other techniques.16
Points in the lower right half indicate that CoVeriTest achieved higher coverage.
Looking at the two scatter plots, we observe that there exist programs for
which CoVeriTest performs better and vice versa. Generally, we observed that
CoVeriTest has problems with array tasks and ECA tasks. We already know
from verification that CPAchecker sometimes lacks refinement support for array
tasks. Moreover, the problem with the ECA tasks is that CPAchecker splits
conditions with conjunctions or disjunctions —which ECA tasks contain a lot—
into multiple assume edges. Thus, the number of test goals is much larger than
the actual branches to be covered. However, CoVeriTest seems to benefit from
splitting for some of the float tasks. Additionally, CoVeriTest is often better
on tasks of the sequentialized subcategory. We think that CoVeriTest benefits
from the value analysis since the tasks of the sequentialized subcategory contain
lots of branch conditions checking for a specific value or interpreting variable
values as booleans. All in all, CoVeriTest is not always best, but is also not
dominated. Thus, CoVeriTest complements the existing approaches.

16 Note that the scatter plots only contain points that have a positive x and y value
because there exist different reasons (timeout, out of memory, tool failure, etc.) why
we might get no or a zero coverage value from the test validator. The plots contain
points for about 98% of the 1 720 programs.

14 D. Beyer and M.-C. Jakobs

4.3 Threats to Validity

All our CoVeriTest configurations consider the same two analyses. Our results
might not apply if using CoVeriTest with a different set of analyses. In our
experiments, we used benchmark programs instead of real-world applications.
Although the benchmark set is diverse and well-established, our results may not
carry over into practice.

The validator TBF Test-Suite Validator might contain bugs that result
in wrong coverage numbers. However, the validator was used in Test-Comp’19
already, and is based on the well-established coverage-measurement tool gcov.

For the comparison of the CoVeriTest configurations as well as the compari-
son of CoVeriTest with the single analyses and the parallel approach, we relied
on the number of covered goals reported by CoVeriTest. Invalid counterexamples
could be used to cover test goals. The analyses used by CoVeriTest apply CE-
GAR approaches and should detect spurious counterexamples. Moreover, these
analyses run in the SV-COMP configuration of CPAchecker and are tuned to
not report false results. Another problem is that whenever CPAchecker does not
output statistics (due to timeout, out of memory, etc.), we use the last number of
covered goals reported in the log. However, this might be an underapproximation
of the number of covered goals. All these problems do not occur in the comparison
of CoVeriTest with Klee and VeriFuzz, in which the coverage is measured by
the validator. Thus, this comparison still supports the value of CoVeriTest.

5 Related Work

CoVeriTest interleaves reachability analyses to construct tests for C programs.
To enable cooperation, CoVeriTest extracts information from ARGs constructed
by previous analysis runs.

A few tools use reachability analyses for test generation. Blast [5] considers
a target predicate p and generates a test for each program location that can be
reached with a state fulfilling the predicate p. For test generation, Blast uses
predicate abstraction. FShell [44, 45, 46] and CPA/Tiger [12] generate tests for
a coverage criterion specified in the FShell query language (FQL) [46]. Both
transform the FQL specification into a set of test-goal automata and check for
each automaton whether its final state can be reached. FShell uses CBMC to
answer those reachability queries and CPA/Tiger uses predicate abstraction.

Various combinations have been proposed for verification [2, 10,11,14,25,27,
29, 30, 31, 35, 37, 40, 50, 64] and test-suite generation [1, 32, 34, 36, 38, 47, 51, 54, 56,
59,60,63]. We focus on combinations that interleave approaches. SYNERGY [40]
and DASH [2] alternate test generation and proof construction to (dis)prove a
property. Similarly, SMASH [37] combines underapproximation with overapproxi-
mation. Interleaving is also used in test generation. Hybrid concolic testing [54]
interleaves random testing with symbolic execution. When random testing gets
stuck, symbolic execution is started from the current state. As soon as a new goal
is covered, symbolic execution hands over to random testing providing the values

CoVeriTest: Cooperative Verifier-Based Testing 15

used to cover the goal. Similarly, Driller [60] and Badger [56] combine fuzzing
with concolic execution. However, they only exchange inputs. Xu et al. [51,63]
interleave different approaches to augment test suites. The approach closest to
CoVeriTest is abstraction-driven concolic testing [32]. Abstraction-driven con-
colic testing interleaves concolic execution and predicate analysis. Furthermore, it
uses conditions extracted from the ARGs generated by the predicate analysis to
direct the concolic execution towards feasible paths. Abstraction-driven concolic
testing can be seen as one particular configuration of CoVeriTest.

Also, ARG information has been reused in different contexts. Precision
reuse [19] uses the precision determined in a previous analysis run to rever-
ify a modified program. Similarly, extreme model checking [42] adapts an ARG
constructed in a previous analysis to fit to the modified program. CPA/Tiger [12]
transforms an ARG that was constructed for one test goal such that it fits to a
new test goal. Lazy abstraction refinement [43] adapts an ARG to continue ex-
ploration after abstraction refinement. Configurable program certification [48,49]
constructs a certificate from an ARG, which can be used to reverify a program.
Similarly, reachability tools like CPAchecker construct witnesses [6, 7] from
ARGs. Conditional model checking [10, 14] constructs a condition from an ARG
when a verifier gives up. The condition describes the remaining verification task
and is used by a subsequent verifier to restrict its exploration.

6 Conclusion

Testing is a standard technique for software quality assurance. But state-of-
the-art techniques still miss many bugs that involve sophisticated branching
conditions [17]. It turns out that techniques performing abstract reachability
analyses are well-suited for this task. They simply need to check the reach-
ability of every branch and generate a test for each positive check. However,
in practice, for every such technique there exist reachability queries on which
the technique is inefficient or fails [8]. We propose CoVeriTest to overcome
these practical limitations. CoVeriTest interleaves different reachability analyses
for test generation. We experimented with various configurations of CoVeri-
Test, which vary in the time limits of the analyses and the type of information
exchanged between different analysis runs. CoVeriTest works best when each
analysis resumes its exploration, different analyses only share test goals, and more
powerful analyses get larger time budgets. Moreover, a comparison of CoVeriTest
with (a) the reachability analyses used by CoVeriTest and (b) state-of-the-art
test generation tools witness the benefits of the new CoVeriTest approach.

CoVeriTest participated in Test-Comp 2019 [4] and achieved rank 3 (out of 9)
in both categories, bug finding and branch coverage. 17

In future, we plan to integrate further analyses, e.g., bounded model checking
or symbolic execution, into CoVeriTest and to evaluate CoVeriTest on real-
world applications.

17 https://test-comp.sosy-lab.org/2019/results/

https://test-comp.sosy-lab.org/2019/results/

16 D. Beyer and M.-C. Jakobs

References

1. Baars, A.I., Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Tonella, P., Vos,
T.E.J.: Symbolic search-based testing. In: Proc. ASE. pp. 53–62. IEEE (2011),
https://doi.org/10.1109/ASE.2011.6100119

2. Beckman, N., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proc. ISSTA. pp. 3–14. ACM (2008), https://doi.org/10.1145/1390630.1390634

3. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017), https://doi.
org/10.1007/978-3-662-54580-5_20

4. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS, part 3.
Springer (2019)

5. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004), https:
//doi.org/10.1109/ICSE.2004.1317455

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016),
https://doi.org/10.1145/2950290.2950351

7. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015), https://doi.org/10.1145/2786805.2786867

8. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software ver-
ification. J. Autom. Reasoning 60(3), 299–335 (2018), https://doi.org/10.1007/
s10817-017-9432-6

9. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow analy-
sis. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook on Model Checking,
pp. 493–540. Springer (2018), https://doi.org/10.1007/978-3-319-10575-8_16,

10. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012), https://doi.org/10.1145/2393596.2393664

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: Proc. ASE. pp. 29–38. IEEE (2008), http://dx.doi.org/10.1109/
ASE.2008.13

12. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Information reuse for multi-goal
reachability analyses. In: Proc. ESOP. pp. 472–491. LNCS 7792, Springer (2013),
https://doi.org/10.1007/978-3-642-37036-6_26

13. Beyer, D., Jakobs, M.C.: Replication package for article “CoVeriTest: Cooperative
verifier-based testing” in Proc. FASE ’19. Zenodo (2019), https://doi.org/10.5281/
zenodo.2566735

14. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018), https://doi.
org/10.1145/3180155.3180259

15. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011), https:
//doi.org/10.1007/978-3-642-22110-1_16

16. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010), http://ieeexplore.
ieee.org/document/5770949/

17. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017), https://doi.org/10.1007/
978-3-319-70389-3_7

https://doi.org/10.1109/ASE.2011.6100119
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16,
https://doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1109/ASE.2008.13
http://dx.doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.5281/zenodo.2566735
https://doi.org/10.5281/zenodo.2566735
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7

CoVeriTest: Cooperative Verifier-Based Testing 17

18. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013),
https://doi.org/10.1007/978-3-642-37057-1_11

19. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. FSE. pp. 389–399. ACM (2013), https:
//doi.org/10.1145/2491411.2491429

20. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Proc. SPIN. pp. 160–178. LNCS 9232, Springer (2015), https://doi.org/10.1007/
978-3-319-23404-5_12

21. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Proc. SPIN. pp. 20–38.
LNCS 9232, Springer (2015), https://doi.org/10.1007/978-3-319-23404-5_3

22. Beyer, D., Löwe, S., Wendler, P.: Sliced path prefixes: An effective method to enable
refinement selection. In: Proc. FORTE. pp. 228–243. LNCS 9039, Springer (2015),
https://doi.org/10.1007/978-3-319-19195-9_15

23. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

24. Chalupa, M., Vitovská, M., Strejcek, J.: SYMBIOTIC 5: Boosted instrumentation -
(competition contribution). In: Proc. TACAS. pp. 442–446. LNCS 10806, Springer
(2018), https://doi.org/10.1007/978-3-319-89963-3_29

25. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances a
verification technique combining static and dynamic analysis. In: Proc. SAC. pp.
1284–1291. ACM (2012), http://doi.acm.org/10.1145/2245276.2231980

26. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program aware
fuzzing. In: Proc. TACAS, part 3. Springer (2019), to appear

27. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proc. ICSE. pp. 144–155. ACM (2016),
http://doi.acm.org/10.1145/2884781.2884843

28. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003),
http://doi.acm.org/10.1145/876638.876643

29. Cousot, P., Cousot, R.: Systematic design of program-analysis frameworks. In: Proc.
POPL. pp. 269–282. ACM (1979), http://doi.acm.org/10.1145/567752.567778

30. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: Combining static checking and
testing. In: Proc. ICSE. pp. 422–431. ACM (2005), http://doi.acm.org/10.1145/
1062455.1062533

31. Czech, M., Jakobs, M.C., Wehrheim, H.: Just test what you cannot verify! In:
Proc. FASE. pp. 100–114. LNCS 9033, Springer (2015), https://doi.org/10.1007/
978-3-662-46675-9_7

32. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In:
Proc. VMCAI. pp. 328–347. LNCS 9583, Springer (2016), https://doi.org/10.1007/
978-3-662-49122-5_16

33. D’Silva, V., Kröning, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. on CAD of Integrated Circuits and
Systems 27(7), 1165–1178 (2008), https://doi.org/10.1109/TCAD.2008.923410

34. Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite generation
with dynamic symbolic execution. In: Proc. ISSRE. pp. 360–369. IEEE (2013),
https://doi.org/10.1109/ISSRE.2013.6698889

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-19195-9_15
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-319-89963-3_29
http://doi.acm.org/10.1145/2245276.2231980
http://doi.acm.org/10.1145/2884781.2884843
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/567752.567778
http://doi.acm.org/10.1145/1062455.1062533
http://doi.acm.org/10.1145/1062455.1062533
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/ISSRE.2013.6698889

18 D. Beyer and M.-C. Jakobs

35. Ge, X., Taneja, K., Xie, T., Tillmann, N.: Dyta: Dynamic symbolic execution
guided with static verification results. In: Proc. ICSE. pp. 992–994. ACM (2011),
http://doi.acm.org/10.1145/1985793.1985971

36. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: Proc. PLDI. pp. 213–223. ACM (2005), http://doi.acm.org/10.1145/1065010.
1065036

37. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: Unleashing the power of alternation. In: Proc. POPL. pp. 43–56.
ACM (2010), http://doi.acm.org/10.1145/1706299.1706307

38. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proc. NDSS. The Internet Society (2008), http://www.isoc.org/isoc/conferences/
ndss/08/papers/10_automated_whitebox_fuzz.pdf

39. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Proc. CAV.
pp. 72–83. LNCS 1254, Springer (1997), https://doi.org/10.1007/3-540-63166-6_10

40. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Proc. FSE. pp. 117–127. ACM (2006),
https://doi.org/10.1145/1181775.1181790

41. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004), http://doi.acm.org/10.1145/
964001.964021

42. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model
checking. In: Verification: Theory and Practice. pp. 332–358 (2003), http://dx.doi.
org/10.1007/978-3-540-39910-0_16

43. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL. pp. 58–70. ACM (2002), https://doi.org/10.1145/503272.503279

44. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
Proc. CAV. pp. 209–213. LNCS 5123, Springer (2008), https://doi.org/10.1007/
978-3-540-70545-1_20

45. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Proc. VMCAI. pp. 151–166. LNCS 5403, Springer (2009), https://doi.org/10.
1007/978-3-540-93900-9_15

46. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your test
suite. In: Proc. ASE. pp. 407–416. ACM (2010), https://doi.org/10.1145/1858996.
1859084

47. Inkumsah, K., Xie, T.: Improving structural testing of object-oriented programs
via integrating evolutionary testing and symbolic execution. In: Proc. ASE. pp.
297–306. IEEE (2008), https://doi.org/10.1109/ASE.2008.40

48. Jakobs, M.C.: Speed up configurable certificate validation by certificate reduction
and partitioning. In: Proc. SEFM. pp. 159–174. LNCS 9276, Springer (2015),
http://dx.doi.org/10.1007/978-3-319-22969-0_12

49. Jakobs, M.C., Wehrheim, H.: Certification for configurable program analysis. In:
Proc. SPIN. pp. 30–39. ACM (2014), https://doi.org/10.1145/2632362.2632372

50. Jalote, P., Vangala, V., Singh, T., Jain, P.: Program partitioning: A framework for
combining static and dynamic analysis. In: Proc. WODA. pp. 11–16. ACM (2006),
http://doi.acm.org/10.1145/1138912.1138916

51. Kim, Y., Xu, Z., Kim, M., Cohen, M.B., Rothermel, G.: Hybrid directed test suite
augmentation: An interleaving framework. In: Proc. ICST. pp. 263–272. IEEE
(2014), https://doi.org/10.1109/ICST.2014.39

http://doi.acm.org/10.1145/1985793.1985971
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1706299.1706307
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/1181775.1181790
http://doi.acm.org/10.1145/964001.964021
http://doi.acm.org/10.1145/964001.964021
http://dx.doi.org/10.1007/978-3-540-39910-0_16
http://dx.doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-540-70545-1_20
https://doi.org/10.1007/978-3-540-70545-1_20
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1109/ASE.2008.40
http://dx.doi.org/10.1007/978-3-319-22969-0_12
https://doi.org/10.1145/2632362.2632372
http://doi.acm.org/10.1145/1138912.1138916
https://doi.org/10.1109/ICST.2014.39

CoVeriTest: Cooperative Verifier-Based Testing 19

52. Lemieux, C., Sen, K.: FairFuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In: Proc. ASE. pp. 475–485. ACM (2018), https://doi.org/10.
1145/3238147.3238176

53. Li, J., Zhao, B., Zhang, C.: Fuzzing: A survey. Cybersecurity 1(1), 6 (Jun 2018),
https://doi.org/10.1186/s42400-018-0002-y

54. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proc. ICSE. pp. 416–426. IEEE
(2007), https://doi.org/10.1109/ICSE.2007.41

55. McMinn, P.: Search-based software test data generation: A survey. Softw. Test.,
Verif. Reliab. 14(2), 105–156 (2004), https://doi.org/10.1002/stvr.294

56. Noller, Y., Kersten, R., Pasareanu, C.S.: Badger: Complexity analysis with fuzzing
and symbolic execution. In: Proc. ISSTA. pp. 322–332. ACM (2018), http://doi.
acm.org/10.1145/3213846.3213868

57. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proc. ICSE. pp. 75–84. IEEE (2007), https://doi.org/10.1109/ICSE.
2007.37

58. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009), https://doi.org/10.
1007/s10009-009-0118-1

59. Sakti, A., Guéhéneuc, Y., Pesant, G.: Boosting search based testing by using
constraint based testing. In: Proc. SSBSE. pp. 213–227. LNCS 7515, Springer
(2012), https://doi.org/10.1007/978-3-642-33119-0_16

60. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing
through selective symbolic execution. In: Proc. NDSS. The Internet Society
(2016), http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

61. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004), http://doi.acm.org/10.
1145/1007512.1007526

62. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 613–615.
LNCS 7795, Springer (2013), https://doi.org/10.1007/978-3-642-36742-7_45

63. Xu, Z., Kim, Y., Kim, M., Rothermel, G.: A hybrid directed test suite augmentation
technique. In: Proc. ISSRE. pp. 150–159. IEEE (2011), https://doi.org/10.1109/
ISSRE.2011.21

64. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: Better to-
gether! In: Proc. ISSTA. pp. 145–156. ACM (2006), http://doi.acm.org/10.1145/
1146238.1146255

https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1002/stvr.294
http://doi.acm.org/10.1145/3213846.3213868
http://doi.acm.org/10.1145/3213846.3213868
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/978-3-642-33119-0_16
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://doi.acm.org/10.1145/1007512.1007526
http://doi.acm.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1109/ISSRE.2011.21
https://doi.org/10.1109/ISSRE.2011.21
http://doi.acm.org/10.1145/1146238.1146255
http://doi.acm.org/10.1145/1146238.1146255

	CoVeriTest: Cooperative Verifier-Based Testing
	Introduction
	Testing with Verifiers
	CoVeriTest
	Evaluation
	Related Work
	Conclusion

