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Abstract—The analysis of correctness proofs and counterex-
amples of program source code is an important way to gain
insights into methods that could make it easier in the future
to find invariants to prove a program correct or to find bugs.
The availability of high-quality data is often a limiting factor
for researchers who want to study real program invariants and
real bugs. The described data set provides a large collection
of concrete verification results, which can be used in research
projects as data source or for evaluation purposes. Each result
is made available as verification witness, which represents ei-
ther program invariants that were used to prove the program
correct (correctness witness) or an error path to replay the
actual bug (violation witness). The verification results are taken
from actual verification runs on 10 522 verification problems,
using the 31 verification tools that participated in the 8th

edition of the International Competition on Software Verification
(SV-COMP). The collection contains a total of 125 720 verifi-
cation witnesses together with various meta data and a map
to relate a witness to the C program that it originates from.
Data set is available at: https://doi.org/10.5281/zenodo.2559175

Index Terms—Invariant Mining, Program Comprehension,
Formal Verification, Model Checking, Program Analysis, Veri-
fication Witnesses, Program Invariants, Error Paths, Bugs

I. INTRODUCTION

Automatic software verification is the problem of answering,
for a given program and a given specification, the question:
“Does the program fulfill the specification.” The answer is either
TRUE or FALSE, or —because the problem is undecidable [43]—
the verification tool runs out of resources (reports UNKNOWN).
The past two decades were filled with breakthroughs in software
verification, and model-checking technology is already used
in practice [2], [29]. The maturity of the research area is
showcased by the annual International Competition on Software
Verification (SV-COMP)1, which is a large-scale comparative
evaluation where the world’s best automatic verifiers compete in
solving software-verification problems without user interaction.

One of the most important problems in software verification
is to find program invariants that help proving the program
correct, and in software testing, to find a path through
the program that witnesses a violation of the specification.
There are many open questions in the field that could be
answered using data-mining techniques. Invariant synthesis is
a large research area and there are many successful techniques.
However, the recent progress in data science opens new
possibilities that might contribute to software verification and
to better understanding of program invariants and error paths.

Since a few years, it is an established standard for software-
verification tools to store the verification results, i.e., the

1https://sv-comp.sosy-lab.org, [5]

program invariants and error paths, in an exchangeable format,
called verification witness. The feature of storing verification
witnesses was introduced in order to be able to validate verifica-
tion results, to avoid spending time on investigating erroneous
proofs and false alarms, and to increase the trustworthiness
of verification technology. One of the standard solutions is
to view software verification as a certifying algorithm [34],
that is, to validate concrete answers of the algorithm using a
witness. Applying this idea to software verification means that
a verification tool does not only report a result from {TRUE,
FALSE, UNKNOWN}, but in addition a witness that contains
information to validate (hopefully with less resources) that the
result of the verification process is correct. This possibility was
investigated for bugs (“violation witnesses”, [6], [13], [17])
and for correctness proofs (“correctness witnesses”, [7], [12]).

This data set [10] provides a large collection of verification
witnesses together with meta information and a mapping from
the programs [9] for which the witnesses were produced.

II. DATA SOURCE, METHODOLOGY TO GATHER THE DATA

The data source from which the verification witnesses
were produced is the largest and most diverse publicly
known repository of verification tasks 2, which is used by
the software-verification community to benchmark their tools.
The benchmark repository contains thousands of programs
derived from the Linux kernel, from BusyBox, models of
the Secure Shell implementation, and also artificially created
programs to explore features of verification tools. There are
verification tasks of various sizes, from less than 10 lines up
to hundreds of thousands of lines of code. The ‘difficulty’ of
a verification problem does not depend on the length of the
program; it is rather important for a benchmark suite to cover
code that is similar to the code written in industrial practice. The
competition on software verification [8] uses the verification
problems from this repository. According to the rules of the
competition, all verifiers need to write the verification results
as exchangeable witnesses (witness automata in XML format).

The verification results (i.e., the witnesses) were produced
using the verifiers that participated in the competition on the
verification tasks that were used in the competition. The bench-
marking (controlled execution) was done with BENCHEXEC 3,
a lightweight tool for container-based execution of tools and
for results collection. All verifiers are available in an open
repository 4. The setup and technical configuration for these

2https://github.com/sosy-lab/sv-benchmarks, [9]
3https://github.com/sosy-lab/benchexec, [16]
4https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/svcomp19/2019
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1 {
2 "architecture": "32bit",
3 "creationtime": "2018-12-05T12:59:54+01:00",
4 "producer": "CPAchecker 1.7-svn 29852",
5 "program-sha256": "d12be2991167702d1ce44aa0d0c4a2533945107abce0ec58bc87a3ffa57c4388",
6 "programfile": "../../sv-benchmarks/c/loop-invgen/apache-get-tag_true-unreach-call_true-termination.i",
7 "programhash": "d12be2991167702d1ce44aa0d0c4a2533945107abce0ec58bc87a3ffa57c4388",
8 "sourcecodelang": "C",
9 "specification": "CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) )",

10 "witness-file": "witnessFileByHash/8481a3c9e45d6ccad5c5f8f4e5b9a00f218e30[...].graphml",
11 "witness-sha256": "8481a3c9e45d6ccad5c5f8f4e5b9a00f218e30bbc4edd95f55fbfb695f5665f7",
12 "witness-size": 17133,
13 "witness-type": "correctness_witness"
14 }

Fig. 1: Example JSON record for a verification witness, [...] is used to abbreviate a long hash

verifiers, that is, all settings required to reproduce the data set,
are documented in the benchmarks definitions.5

While the data set can be reproduced, it requires a large
amount of computing resources: reproducing the data set would
currently require a total of over 450 days of CPU time. The
data set was computed on a compute cluster with 168 machines,
each having one Intel Xeon E3-1230 v5 CPU, with 8 processing
units each, a frequency of 3.4GHz, 33GB of RAM, and a
GNU/Linux operating system (x86_64-linux, Ubuntu 18.04
with Linux kernel 4.15).

III. STRUCTURE OF THE DATA SET

The data set is freely available at Zenodo 6 [10] as a ZIP
archive that contains three directories:

witnessFileByHash. This directory contains 125 720
verification witnesses (of type correctness witness or
violation witness). Each witness in this directory is stored
in a file whose name is the SHA2 256-bit hash of its
contents followed by the filename extension .graphml. The
format of each witness is a standard XML-based exchange
format 7, more precisely, witness automata in GraphML [18].
The witness contains also metadata in order to relate it
to the verification problem for which it was produced.
As example, let us consider the following witness file:
8481a3c9e45d6ccad5c5f8f4e5b9a00f218e30[...].graphml

(hyperlinks are typeset in blue color, [...] abbreviates a
long strings). The file contains a correctness witness that was
produced by the verifier CPACHECKER, version 1.7-svn 29852,
for the competition (sub-) category ReachSafety-Loops.
More results for this category and by this verifier are
available on the competition web site.8 The witness was
produced for the program loop-invgen/apache-get-tag_-

true-unreach-call_true-termination.i from the open-
source sv-benchmarks repository.9 The invariants are
contained in XML tags <data key="invariant">.

5https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs
6https://doi.org/10.5281/zenodo.2559175
7https://github.com/sosy-lab/sv-witnesses
8https://sv-comp.sosy-lab.org/2019/results/results-verified/cpa-seq.

2018-12-05_0546.results.sv-comp19_prop-reachsafety.ReachSafety-Loops.
xml.bz2.merged.xml.bz2.table.html

9https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invgen/
apache-get-tag_true-unreach-call_true-termination.i

witnessInfoByHash. This directory contains for each
witness in directory witnessFileByHash a record in JSON
format (also using the SHA2 256-bit hash of the witness as
filename, with .json as filename extension). In order to make
the access to the metadata more convenient (avoid parsing all
the witness files), the following metadata are provided in the
JSON records: the bit architecture that the program was written
for, the creation time, the producing verification tool, the pro-
gram file path in order to find the program in the repository, the
program hash to identify the exact version of the program, the
programming language in which the program was written, the
specification that was given as input for the verification when
the witness was produced (using the specification language of
the competition10), and some characteristics of the witness file
itself (filename, SHA2 256-bit hash, size in bytes, and type of
witness). As example, Fig. 1 shows the complete JSON record
with metadata for the above-mentioned correctness witness:
8481a3c9e45d6ccad5c5f8f4e5b9a00f218e30[...].json.

witnessListByProgramHashJSON. For convenient ac-
cess to all witnesses for a certain program, this directory
represents a function that maps each program (via its SHA2
256-bit hash) to a set of verification results (JSON records for
witnesses as described above) that the verifiers have produced
for that program. For each program for which witnesses exist,
the directory contains a JSON file (using the SHA2 256-bit
hash of the program as filename, with .json as filename
extension) that contains all JSON records for witnesses for
that program. As example, let us consider the program for
which the above-mentioned witness was produced. The file
d12be2991167702d1ce44aa0d0c4a253394510[...].json con-
tains the JSON records for all witnesses produced for program
loop-invgen/apache-get-tag[...]. This mapping and the
metadata records are also used to generate information pages
about witnesses that are linked from the competition web site.11

IV. STATISTICAL DESCRIPTION OF THE DATA SET

Table I reports aggregated numbers for some measures
that characterize the witnesses in the data set. The table
considers all witnesses that were produced by verifiers and
could be parsed (witnesses produced in validation mode and
syntactically invalid witnesses were excluded; we were not

10https://sv-comp.sosy-lab.org/2019/rules.php, [8]
11https://sv-comp.sosy-lab.org/inspect.php?programSHA256=d12be2991[. . . ]
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TABLE I: Statistical description of the data set of verification witnesses, numbers are rounded to 2 significant digits

Witness Measure All Witnesses Correctness Witnesses Violation Witnesses
Median Mean Max Sum Median Mean Max Sum Median Mean Max Sum

Number of States 27 950 1.5 · 106 58 · 106 23 1 100 1.0 · 106 39 · 106 31 750 1.5 · 106 19 · 106
Number of Transitions 27 1 200 1.5 · 106 74 · 106 24 1 400 0.90 · 106 52 · 106 31 860 1.5 · 106 22 · 106

Number of Invariants 3.0 380 0.70 · 106 3.1 · 106
Length of All Invariants 270 35 000 9.6 · 106 290 · 106
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Fig. 2: Distribution of the number of states for correctness witnesses (left) and violation witnesses (right); histogram with
40 bins for the value range [0, 1 000]
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Fig. 3: Distribution of the number of invariants (left, value range [1, 100]) and the length of all invariants (right, value range
[1, 10 000]) for correctness witnesses; histogram with 40 bins

able to parse two of the correctness witnesses due to their size
and excluded them from all statistics: 2a6fe50[...].graphml
and d4af9f2[...].graphml, both produced by CBMC, both
954MB large). The columns are grouped into values for (1) all
witnesses, for (2) correctness witnesses, and for (3) violation
witnesses. In each group, there are columns for the statistical
properties median, arithmetic mean, maximum, and total sum.
For each witness, we measure the number of states and the
number of transitions of the witness automaton. For each
correctness witness, we measure in addition the number of
invariants and the length of all invariants of the witness. Those
witnesses that have value zero for the last two measures are
excluded from the statistics in the third and forth row.

In order to provide a rough picture of the size (in
terms of states of the witness automata), we show the
distribution of the number of states as histogram in Fig. 2.
Verification witnesses can be very large; the following

correctness witness is 295MB large and has small invariants:
0e2805f6717240f656788d0d12ebeea0bbf473[...].graphml.
This correctness witness was constructed by the verifier
CBMC (bounded model checker) for the following program:
zonotope_2_true-unreach-call_true-termination.c.

In contrast to the above program, there are also programs
for which the invariants can become pretty large, depending on
how the verifier constructs the correctness proof. For example,
consider the invariants in the following correctness witness:
7e7f927bbcb7d659c63aa4281a6201569a4b37[...].graphml.
The witness was constructed by CPACHECKER for the program:
gauss_sum_true-unreach-call_true-termination.i. The
distributions of the values for the measures number of
invariants and length of all invariants of a witness are shown
in Fig. 3. Although the witnesses do not need to contain full
proofs (compare to proof-carrying code [35]), the individual
invariants can still be quite large.
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TABLE II: Statistical description of correctness witnesses, per verifier, numbers are rounded to 2 significant digits

Verifier Number of States Number of Invariants Length All Invariants Total
Median Mean Max Sum Median Mean Max Sum Median Mean Max Sum Witnesses

2LS [41] 310 4 900 360 000 10 000 000 1.0 1.2 8 610 1 300 1 700 4 600 830 000 2 100
CBMC [30] 45 3 800 1 000 000 8 700 000 24 1 300 700 000 3 100 000 640 21 000 9 000 000 48 000 000 2 300
CPA-BAM-BnB [1] 440 2 000 51 000 4 400 000 3.0 5.6 130 4 000 130 220 12 000 160 000 2 200
CPA-Seq [23] 140 760 21 000 3 500 000 2.0 4.8 340 8 100 260 84 000 9 400 000 140 000 000 4 600
PeSCo [38] 130 580 14 000 1 700 000 3.0 8.5 420 6 500 4 000 130 000 9 600 000 97 000 000 2 900
Skink [19] 2.0 2.0 2 690 1.0 1.0 1 350 1.0 1.0 1 350 350
UAutomizer [27] 310 1 900 61 000 6 700 000 2.0 6.0 79 3 500 180 1 300 160 000 750 000 3 600
UKojak [36] 310 760 17 000 1 100 000 1.0 1.9 32 1 400 59 660 120 000 470 000 1 400
UTaipan [26] 230 1 400 61 000 2 900 000 2.0 4.4 68 1 300 120 780 22 000 220 000 2 100
VeriAbs [22] 1.0 30 790 32 000 4.0 5.2 18 560 470 2 400 65 000 260 000 1 100
VIAP [37] 2.0 52 2 300 11 000 1.0 1.0 1 170 1.0 1.0 1 170 210

Both above-mentioned programs are small (both below 30
lines of code), thus, the number and size of the invariants in
the correctness witnesses suggest that there is low correlation
between program size and verification effort (at least for the
verifiers that constructed the witnessed correctness proofs).

Table II reports more details on correctness witnesses. The
table contains rows only for those verifiers that produced at
least one correctness witness with an invariant. The statistical
properties are the same as before and exclude zero-values
again; the last column shows the total number of produced
correctness witnesses for each of those verification tools.

V. FUTURE RESEARCH QUESTIONS

In the following we outline a few example applications of
program invariants and error paths. The data set could be used
as data source or for evaluation.

Visualization of error paths. Violation witnesses can help
to understand a bug by replying the error path and inspect
the error path with visualization tools [11]. Also, violation
witnesses can be used to generate test cases that execute
the error path described by the witness [14]. Future research
projects might develop an infrastructure that provides engineers
with a convenient way to integrate witness-based results
validation into their daily workflow.

Annotation of Programs with Invariants. Understanding
of a program could be improved by source-code editors that
show loop invariants for the loop heads (e.g., via tool tip when
the developer hovers the mouse pointer over the code). Also,
programs could be transformed in order to annotate invariants
as comments in ACSL format [4].

Classification of Bugs. It can be suspected that there exist
classes of bugs that share similarities in their characteristics.
Using machine learning and clustering technology, one can
automatically and semi-automatically find classes of similar
witnesses and try to understand the characteristics of the bugs.

Classification of Program Invariants. A correctness wit-
ness can contain the (loop) invariants that are a necessary to
prove the correctness of the program. It is not yet studied what
kind of theories are used in those invariants and how expressive
the invariants are. For example, are the invariants mostly of
the form x = y, how much linear arithmetics is involved, how

many variables per invariant? Are the invariants inequalities
or equalities, what is their structure?

For all these ideas, a large number of witnesses is necessary
to evaluate ideas and research approaches.

VI. POTENTIAL IMPROVEMENTS, LIMITATIONS

The research area of software verification is rapidly growing,
and the repository of verification tasks is expected to grow as
well, and therefore, further invariants and error paths can be
produced in the future. As new tasks will be more difficult to
prove, future verification runs might produce more complex
and more interesting invariants.

The data set is limited to the C programming language. All
conclusions drawn from this collection of witnesses might
be limited to C programs. However, there is no principle
limitation: witnesses and results validation are not limited to a
certain programming language, and the insights from studying
invariants and bugs can be of general interest.

The data set is also limited by the verifiers. The best publicly
known verifiers participated in the competition, but in principle
there might be other verification tools that can generate more
interesting invariants.

VII. RELATED WORK

This work builds on the literature on witness-based results
validation [6], [7], [12], [13], [17] and on the verification tools
that participated in the Competition on Software Verification
(SV-COMP) 2019 [1], [3], [15], [19]–[28], [30]–[33], [36]–[42].
See also the SV-COMP competition report [8].

VIII. CONCLUSION

The presented data set provides a large collection of verifi-
cation witnesses, which are containers for program invariants
and error paths in an exchangeable format. This collection of
witnesses for many different kinds of programs can serve as
data source to apply clustering, machine learning, matching,
and other classification techniques in order to gain new insights
about the program invariants and bugs on the semantic level.

We hope that researchers might find it interesting to work
with verification witnesses towards deeper semantical under-
standing of the nature of correctness proofs and software bugs.
Producing the witnesses in the data set required 4 days of CPU
time on a compute cluster with 168 CPUs.
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