
cba

Steffen Becker et al. (Hrsg.): Software Engineering und Software Management,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Combining Verifiers in Conditional Model Checking
via Reducers

Dirk Beyer1, Marie-Christine Jakobs2, Thomas Lemberger3, Heike Wehrheim4

Abstract: Software verification received lots of attention in the past two decades. Nonetheless, it
remains an extremely difficult problem. Some verification tasks cannot be solved automatically by
any of today’s verifiers. To still verify such tasks, one can combine the strengths of different verifiers.
A promising approach to create combinations is conditional model checking (CMC). In CMC, the
first verifier outputs a condition that describes the parts of the program state space that it successfully
verified, and the next verifier uses that condition to steer its exploration towards the unverified state
space. Despite the benefits of CMC, only few verifiers can handle conditions.

To overcome this problem, we propose an automatic plug-and-play extension for verifiers. Instead of
modifying verifiers, we suggest to add a preprocessor: the reducer. The reducer takes the condition
and the original program and computes a residual program that encodes the unverified state space in
program code. We developed one such reducer and use it to integrate existing verifiers and test-case
generators into the CMC process. Our experiments show that we can solve many additional verification
tasks with this reducer-based construction.

Keywords: Conditional Model Checking, Testing, Software Verification, Sequential Combination

1 Overview

Automatic software verification received lots of attention in the past years: Many different
approaches and verifiers were proposed, and all of them have different strengths, but also
weaknesses. Thus, there still exist lots of programs that are in principle verifiable, but that
no existing verifier can solve on its own. One solution to this problem is to combine the
strength of different verifiers.

Conditional model checking (CMC) [Be12] is one promising combination approach. In
CMC, the first verifier outputs a condition which summarizes the verifier’s work, i.e., the
state space that it successfully verified. If the first verifier fails to verify the complete
state space, the condition and the program are passed to a second verifier, a so called
conditional verifier. This conditional verifier uses that condition to restrict its verification
1 LMU Munich, Institute of Informatics, Oettingenstraße 67, 80538 Munich, Germany
2 LMU Munich, Institute of Informatics, Oettingenstraße 67, 80538 Munich, Germany
3 LMU Munich, Institute of Informatics, Oettingenstraße 67, 80538 Munich, Germany
4 Paderborn University, Department of Computer Science, Warburger Straße 100, 33098 Paderborn, Germany

https://creativecommons.org/licenses/by-sa/4.0/


2 Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, Heike Wehrheim

to the unverified state space. Unfortunately, only few conditional verifiers exist and it is
difficult to make a verifier understand and use conditions.

Reducer Verifier
Residual
program

Conditional Verifier

Program

Condition

Result

Fig. 1: Reducer-based conditional verifier template

Instead of adapting existing verifiers, we
propose a reducer-based construction of
conditional verifiers [Be18]. Our reducer-
based construction uses the template shown
in Fig. 1 to easily and automatically build
a conditional verifier from an existing off-
the-shelf verifier without changing the verifier itself. The idea is to add a preprocessor: the
reducer. The reducer takes the condition and the original program to compute a residual
program that encodes the unverified state space in a format that every verifier understands:
program code.

In principle, many different reducers are possible. We implemented a reducer that uses a
product construction: The program and the condition are converted to automata and the
reduced product automaton is converted back to the residual program. We proved that the
residual programs generated by this reducer neither miss any non-verified program path nor
add program paths that do not occur in the original program. Hence, the reducer is reliable.

In our experiments, we instantiated the reducer-based construction template with the
reducer implemented by us and six off-the-shelf verifiers; the best three verifiers from SV-
COMP 20175 and three popular test-generation tools. Our evaluation on 5 687 verification
tasks from a widely used software-verification benchmark6 revealed that each of the created
CMC combinations (1) solves additional tasks, (2) solves tasks that the corresponding
sequential combination cannot solve, (3) solves tasks that were not solvable by any of the
considered verifiers, and (4) solves tasks that only this specific CMC combination can solve.
Summing up, we showed that reducer-based conditional model checking is effective, and to
take full advantage of the approach one requires different conditional verifiers.

To solve difficult verification tasks, one needs to combine the strength of different verifiers,
e.g., through CMC. The insight of our experiments is that we need different conditional
verifiers for CMC to be effective and it is not worth the effort to modify existing verifiers
to become conditional. Instead, our reducer-based construction of conditional verifiers
allows us to easily derive k conditional verifiers from k arbitrary existing verifiers, without
changing the implementation of the verifiers at all.

References
[Be12] Beyer, D.; Henzinger, T. A.; Keremoglu, M. E.; Wendler, P.: Conditional Model Checking:

A Technique to Pass Information Between Verifiers. In: Proc. FSE. ACM, 2012.

[Be18] Beyer, D.; Jakobs, M.-C.; Lemberger, T.; Wehrheim, H.: Reducer-Based Construction of
Conditional Verifiers. In: Proc. ICSE. ACM, pp. 1182–1193, 2018.

5 https://sv-comp.sosy-lab.org/2017/

6 https://github.com/sosy-lab/sv-benchmarks

https://sv-comp.sosy-lab.org/2017/
https://github.com/sosy-lab/sv-benchmarks

