
.

Proc. TACAS 2019, c©Springer

Automatic Verification of C and Java Programs:
SV-COMP 2019

Dirk Beyer

LMU Munich, Germany

Abstract. This report describes the 2019 Competition on Software Veri-
fication (SV-COMP), the 8th edition of a series of comparative evaluations
of fully automatic software verifiers for C programs, and now also for
Java programs. The competition provides a snapshot of the current state
of the art in the area, and has a strong focus on replicability of its re-
sults. The repository of benchmark verification tasks now supports a
new, more flexible format for task definitions (based on YAML), which
was a precondition for conveniently benchmarking Java programs in the
same controlled competition setting that was successfully applied in the
previous years. The competition was based on 10 522 verification tasks for
C programs and 368 verification tasks for Java programs. Each verification
task consisted of a program and a property (reachability, memory safety,
overflows, termination). SV-COMP 2019 had 31 participating verification
systems from 14 countries.

1 Introduction

Software verification is an increasingly important research area, and the annual
Competition on Software Verification (SV-COMP) 1 is the showcase of the state
of the art in the area, in particular, of the effectiveness and efficiency that is
currently achieved by tool implementations of the most recent ideas, concepts,
and algorithms for fully automatic verification. Every year, the SV-COMP project
consists of two parts: (1) The collection of verification tasks and their partitioning
into categories has to take place before the actual experiments start, and requires
quality-assurance work on the source code in order to ensure a high-quality
evaluation. It is important that the SV-COMP verification tasks reflect what
the research and development community considers interesting and challenging
for evaluating the effectivity (soundness and completeness) and efficiency (per-
formance) of state-of-the-art verification tools. (2) The actual experiments of
the comparative evaluation of the relevant tool implementations is performed
by the organizer of SV-COMP. Since SV-COMP shall stimulate and showcase
new technology, it is necessary to explore and define standards for a reliable and
reproducible execution of such a competition: we use BenchExec [19], a modern
framework for reliable benchmarking and resource measurement, to run the
experiments, and verification witnesses [14, 15] to validate the verification results.

1 https://sv-comp.sosy-lab.org

https://sv-comp.sosy-lab.org

As for every edition, this SV-COMP report describes the (updated) rules
and definitions, presents the competition results, and discusses other interesting
facts about the execution of the competition experiments. Also, we need to
measure the success of SV-COMP by evaluating whether the main objectives
of the competition are achieved (cf. [10]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.

As for (1), there were 31 participating software systems from 14 countries, repre-
senting a broad spectrum of technologies (cf. Table 5). SV-COMP is considered
an important event in the research community, and increasingly also in indus-
try. As for (2), the total set of verification tasks written in C increased in size
from 8 908 tasks to 10 522 tasks from 2017 to 2019, and in addition, 368 tasks
written in Java were added for 2019. Still, SV-COMP has an ongoing focus
on collecting and constructing verification tasks to ensure even more diversity,
as witnessed by the issue tracker 2 and by the pull requests 3 in the GitHub
project. As for (3), the largest step forward was to establish a exchangeable
standard format for verification witnesses. This means that verification results
are fully counted only if they can be independently validated. As for (4), we
continuously receive positive feedback from industry. Colleagues from industry
reported to us that they observe SV-COMP in order to know about the newest
and best available verification tools. Moreover, since SV-COMP 2017 there are
also a few participating systems from industry.

Related Competitions. It is well-understood that competitions are an impor-
tant evaluation method, and there are other competitions in the field of software
verification: RERS 4 [40] and VerifyThis 5 [41]. While SV-COMP performs repli-
cable experiments in a controlled environment (dedicated resources, resource
limits), the RERS Challenges give more room for exploring combinations of
interactive with automatic approaches without limits on the resources, and the
VerifyThis Competition focuses on evaluating approaches and ideas rather than
on fully automatic verification. The termination competition termCOMP 6 [33]
concentrates on termination but considers a broader range of systems, including
logic and functional programs. This year, SV-COMP is part of TOOLympics [6].
A more comprehensive list of other competitions is provided in the report on
SV-COMP 2014 [9]. There are other large benchmark collections as well (e.g., by

2 https://github.com/sosy-lab/sv-benchmarks/issues
3 https://github.com/sosy-lab/sv-benchmarks/pulls 4 http://rers-challenge.org
5 http://etaps2016.verifythis.org
6 http://termination-portal.org/wiki/Termination_Competition

https://github.com/sosy-lab/sv-benchmarks/issues
https://github.com/sosy-lab/sv-benchmarks/pulls
http://rers-challenge.org
http://etaps2016.verifythis.org
http://termination-portal.org/wiki/Termination_Competition

SPEC 7), but the sv-benchmark suite 8 is (a) free of charge and (b) tailored to the
state of the art in software verification. There is a certain flow of benchmark sets
between benchmark repositories: For example, the sv-benchmark suite contains
programs that were used in RERS 9 or in termCOMP 10 before.

2 Procedure

The overall competition organization did not change in comparison to the past edi-
tions [7, 8, 9, 10, 11, 12]. SV-COMP is an open competition, where all verification
tasks are known before the submission of the participating verifiers, which is nec-
essary due to the complexity of the C language. During the benchmark submission
phase, new verification tasks were collected, classified, and added to the existing
benchmark suite (i.e., SV-COMP uses an accumulating benchmark suite), during
the training phase, the teams inspected the verification tasks and trained their
verifiers (also, the verification tasks received fixes and quality improvement), and
during the evaluation phase, verification runs were preformed with all competition
candidates, and the system descriptions were reviewed by the competition jury.
The participants received the results of their verifier directly via e-mail, and after
a few days of inspection, the results were publicly announced on the competition
web site. The Competition Jury consisted again of the chair and one member of
each participating team. Team representatives of the jury are listed in Table 4.

3 Definitions, Formats, and Rules

License Requirements. Starting 2018, SV-COMP required that the verifier
must be publicly available for download and has a license that

(i) allows replication and evaluation by anybody (including results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows any kind of (re-)distribution of the unmodified verifier archive.

Verification Tasks. The definition of verification tasks was not changed and
we refer to previous reports for more details [9, 12]. The validation of the results
based on verification witnesses [14, 15] was done exactly as in the previous years
(2017, 2018), mandatory for both answers True or False; the only change was
that an additional new, execution-based witness validator [16] was used. A few
categories were excluded from validation if the validators did not sufficiently
support a certain kind of program or property.

Categories, Properties, Scoring Schema, and Ranking. The categories
are listed in Tables 6 and 7 and described in detail on the competition web site.11

7 https://www.spec.org 8 https://github.com/sosy-lab/sv-benchmarks
9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/eca-rers2012/README.txt

10 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/termination-restricted-15/README.txt
11 https://sv-comp.sosy-lab.org/2019/benchmarks.php

https://www.spec.org
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/eca-rers2012/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/termination-restricted-15/README.txt
https://sv-comp.sosy-lab.org/2019/benchmarks.php

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

ReachSafety

Arrays

Heap

LinkedList

Other

MemCleanup

MemSafety

MainConcurrencySafety

BitVectors

Other
NoOverflows

MainControlFlow

MainHeap

Other

Termination

BusyBox MemSafety

BusyBox NoOverflows

DeviceDriversLinux64
ReachSafety

SoftwareSystems

C-FalsificationOverall

Java-Overall

C-Overall

Fig. 1: Category structure for SV-COMP 2019; category C-FalsificationOverall
contains all verification tasks of C-Overall without Termination; Java-Overall
contains all Java verification tasks

Table 1: Properties used in SV-COMP 2019 (G valid-memcleanup is new)
Formula Interpretation
G ! call(foo()) A call to function foo is not reachable on any finite execution.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.

G valid-memcleanup All allocated memory is deallocated before the program
terminates. In addition to valid-memtrack: There exists
no finite execution of the program on which the program
terminates but still points to allocated memory.
(Comparison to Valgrind: This property can be violated even
if Valgrind reports ’still reachable’.)

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates.

Table 2: Scoring schema for SV-COMP 2019 (unchanged since 2017 [12])
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True correct +1 Program correctly reported to satisfy property,
unconfirmed but the witness was not confirmed by a validator

True incorrect −32 Incorrect program reported as correct (wrong proof)

Figure 1 shows the category composition. For the definition of the properties and
the property format, we refer to the 2015 competition report [10]. All specifica-
tions are available in the directory c/properties/ of the benchmark repository.
Table 1 lists the properties and their syntactical representation as overview.
Property G valid-memcleanup was used for the first time in SV-COMP 2019.

The scoring schema is identical for SV-COMP 2017–2019: Table 2 provides the
overview and Fig. 2 visually illustrates the score assignment for one property. The
scoring schema still contains the special rule for unconfirmed correct results for
expected result True that was introduced in the transitioning phase: one point
is assigned if the answer matches the expected result but the witness was not con-

TASK

VERIFIERtrue-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0unknown

-16

false

2true (witness confirmed)

1unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32
true

0
unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 2: Visualization of the scoring schema for the reachability property

firmed. Starting with SV-COMP 2020, the single-point rule will be dropped, i.e.,
points are only assigned if the results got validated or no validator was available.

The ranking was again decided based on the sum of points (normalized for
meta categories) and for equal sum of points according to success run time, which
is the total CPU time over all verification tasks for which the verifier reported
a correct verification result. Opt-out from Categories and Score Normalization
for Meta Categories was done as described previously [8] (page 597).

4 New Format for Task Definitions

Technically, we need a verification task (a pair of a program and a spcification
to verify) to feed as input to the verifier, and an expected result against which
we check the answer that the verifier returns. We changed the format of how
these tasks are specified for SV-COMP 2019: The C track is still based on the
old format, while the Java track already uses the new format.

Recap: Old Format. Previously, the above-mentioned three components were
specified in the file name of the program. For example, consider the file name
c/ntdrivers/floppy_true-unreach-call_true-valid-memsafety.i.cil.c,
which encodes the program, the specification (consisting of two properties), and
two expected results (one for each property) in the following way:

• Program: The program file is identified using the file name
floppy_true-unreach-call_true-valid-memsafety.i.cil.c in directory
c/ntdrivers/. The original program was named as floppy (see [17]).

• Specification: The program comes with a specification that consists of two
properties unreach-call and valid-memsafety, thus, the two verification
tasks (floppy, unreach-call) and (floppy, valid-memsafety) are defined.

• Expected results: The expected result for both verification tasks is true.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ntdrivers/floppy_true-unreach-call_true-valid-memsafety.i.cil.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ntdrivers/floppy_true-unreach-call_true-valid-memsafety.i.cil.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ntdrivers/
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/properties/unreach-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/properties/valid-memsafety.prp

1 format_version: ’1.0’
2

3 # old file name: floppy_true−unreach−call_true−valid−memsafety.i.cil.c
4 input_files: ’floppy.i.cil−3.c’
5

6 properties:
7 − property_file: ../properties/unreach−call.prp
8 expected_verdict: true
9 − property_file: ../properties/valid−memsafety.prp

10 expected_verdict: true

Fig. 3: Example task definition for program floppy.i.cil-3.c

This format was used for eight years of SV-COMP, because it is easy to understand
and use. However, whenever a new property should be added to the specification
of a given program, the program’s file name needs to be changed, which has
negative impact on tracebility and maintenance. From SV-COMP 2020 onwards,
the repository will use the following new format for all tracks.

Explicit Task-Definition Files. All the above-discussed information is stored
in an extra file that contains a structured definition of the verification tasks
for a program. For each program, the repository contains the program file
and a task-definition file. The above program is available under the name
floppy.i.cil-3.c and comes with its task-definition file floppy.i.cil-3.yml.
Figure 3 shows this task definition.

The task definition uses the YAML format as underlying structured data
format. It contains a version id of the format (line 1) and can contain com-
ments (line 3). The field input_files specifies the input program (exam-
ple: ’floppy.i.cil-3.c’), which is either one file or a list of files. The field
properties lists all properties of the specification for this program. Each
property has a field property_file that specifies the property file (example:
../properties/unreach-call.prp) and a field expected_verdict that spec-
ifies the expected result (example: true).

5 Including Java Programs

The first seven editions of SV-COMP considered only programs written in C. In
2019, the competition was extended to include a Java track. Some of the Java
programs existed already in the repository, and many other Java programs were
contributed by the community [29]. Currently, most of the programs are from
the regression-test suites from the verifiers that participate in the Java track; the
goal is to substantially increase the benchmark set over the next years.

In principle, the same definitions and rules as for the C track apply, but some
technical details need to be slightly adapted for Java programs. Most prominently,
the classes of a Java program cannot be inlined into one Java file, which is solved

12 https://github.com/sosy-lab/benchexec/releases/tag/1.17

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.yml
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/unreach-call.prp
https://github.com/sosy-lab/benchexec/releases/tag/1.17

CHECK(init(main()), LTL(G ! call(__VERIFIER_error())))

(a) Property c/properties/unreach-call.prp

CHECK(init(Main.main()), LTL(G assert))

(b) Property java/properties/assert.prp

Fig. 4: Standard reachability property in comparison for C and for Java

by using the new task-definition format, which allows lists of input files. This
required an extension of BenchExec that is present in version 1.17 12 and higher.

The property for reachability is also slightly different, as shown in Fig. 4: The
function call to the start of the program is Main.main() instead of main(), and
the verifiers check that proposition assert is always true, instead of checking that
__VERIFIER_error() is never called. The new proposition assert is false where
a Java assert statement fails, i.e., the exception AssertionError is thrown.

The rules for the C track specify a function __VERIFIER_nondet_X() for
each type X from the set {bool, char, int, float, double, loff_t, long,
pchar, pointer, pthread_t, sector_t, short, size_t, u32, uchar, uint, ulong,
unsigned, ushort} (no side effects, pointer for void *, etc.) that all return an
arbitrary, nondeterministic value (‘input’ value) of the respective type that may
differ for different invocations. Similarly for the Java track: we use a Java class
named org.sosy_lab.sv_benchmarks.Verifier with the following parameter-
less static methods: nondetBoolean, nondetByte, nondetChar, nondetShort,
nondetInt, nondetLong, nondetFloat, nondetDouble, and nondetString.
Each of those methods creates a value of the respective type using functionality
from java.util.Random. The earlier proposal [29] to use the array of arguments
that is passed to the main method to obtain nondeterministic values was not
followed. The SV-COMP community found that the explicitly defined methods
are better for the competition, and also closer to practice.

Finally, the static method assume(boolean) in the same class can be
used to assume a certain value range. The implementation halts using
Runtime.getRuntime().halt(1). It was proposed [29] to omit this method
but in the end the community decided to include it.

6 Reproducibility

It is important that all SV-COMP experiments can be independently replicated,
and that the results can be reproduced. Therefore, all major components that are
used for the competition need to be publicly available. Figure 5 gives an overview
over the components that contribute to the reproducible setup of SV-COMP, and
Table 3 provides the details. We refer to a previous report [11] for a description
of all components of the SV-COMP organization and how it is ensured that
all parts are publicly available for maximal replicability.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/properties/unreach-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/java/properties/assert.prp
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/java/common/org/sosy_lab/sv_benchmarks/Verifier.java

(a) Verification Tasks
(public git: 'svcomp19')

(e) Verification Run
(BenchExec 1.17)

(b) Benchmark Definitions
(public git: 'svcomp19')

(c) Tool-Info Modules
(public git: '1.17')

(d) Verifier Archives
(public git: 'svcomp19')

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 5: Setup: SV-COMP components and the execution flow

Table 3: Publicly available components for replicating SV-COMP 2019
Component Fig. 5 Repository Version

Verification Tasks (a) github.com/sosy-lab/sv-benchmarks svcomp19
Benchmark Definitions (b) github.com/sosy-lab/sv-comp svcomp19
Tool-Info Modules (c) github.com/sosy-lab/benchexec 1.17
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2019 svcomp19
Benchmarking (e) github.com/sosy-lab/benchexec 1.17
Witness Format (f) github.com/sosy-lab/sv-witnesses svcomp19

Since SV-COMP 2018, we use a more transparent way of making the verifier
archives publicly available. All verifier archives are now stored in a public Git
repository. We chose GitLab to host the repository for the verifier archives due
to its generous repository size limit of 10GB (we could not use GitHub, because
it has a strict size limit of 100MB per file, and recommends to keep the repository
under 1GB). An overview table with information about all participating systems
is provided in Table 4 and on the competition web site 13.

In addition to providing the components to replicate the experiments,
SV-COMP also makes the raw results available in the XML-based exchange
format in which BenchExec [20] delivers the data, and also publishes all
verification witnesses [13].

7 Results and Discussion

For the eighth time, the competition experiments represent the state of the art in
fully automatic software-verification tools. The report shows the improvements
compared to last year, in terms of effectiveness (number of verification tasks
that can be solved, correctness of the results, as accumulated in the score) and
efficiency (resource consumption in terms of CPU time). The results that are
presented in this article were inspected and approved by the participating teams.
13 https://sv-comp.sosy-lab.org/2019/systems.php

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c
https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/1.17/benchexec/tools
https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/svcomp19/2019
https://github.com/sosy-lab/benchexec/tree/svcomp19
https://github.com/sosy-lab/sv-witnesses/tree/svcomp19
https://sv-comp.sosy-lab.org/2019/systems.php

Table 4: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2LS [49, 61] Peter Schrammel U. of Sussex, UK
AProVE [34, 38] Jera Hensel RWTH Aachen, Germany
CBMC [46] Michael Tautschnig Amazon Web Services, UK
CBMC-Path [44] Kareem Khazem U. College London, UK
CPA-BAM-BnB [1, 64] Vadim Mutilin ISP RAS, Russia
CPA-Lockator [2] Pavel Andrianov ISP RAS, Russia
CPA-Seq [18, 30] Marie-Christine Jakobs LMU Munich, Germany
DepthK [58, 60] Omar Alhawi U. of Manchester, UK
DIVINE-explicit [5, 62] Vladimír Štill Masaryk U., Czechia
DIVINE-SMT [47, 48] Henrich Lauko Masaryk U., Czechia
ESBMC-kind [31, 32] Mikhail R. Gadelha U. of Southampton, UK
JayHorn [42, 43] Philipp Rümmer Uppsala U., Sweden
JBMC [27, 28] Lucas Cordeiro U. of Manchester, UK
JPF [3, 63] Cyrille Artho KTH, Sweden
Lazy-CSeq [50] Omar Inverso Gran Sasso Science Inst., Italy
Map2Check [57, 59] Herbert Rocha Federal U. of Roraima, Brazil
PeSCo [56] Cedric Richter U. of Paderborn, Germany
Pinaka [24] Eti Chaudhary IIT Hyderabad, India
PredatorHP [39, 45] Veronika Šoková BUT, Brno, Czechia
Skink [21] Franck Cassez Macquarie U., Australia
Smack [36, 55] Zvonimir Rakamaric U. of Utah, USA
SPF [51, 53] Willem Visser Stellenbosch U., South Africa
Symbiotic [22, 23] Marek Chalupa Masaryk U., Czechia
UAutomizer [37] Matthias Heizmann U. of Freiburg, Germany
UKojak [52] Alexander Nutz U. of Freiburg, Germany
UTaipan [35] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [25] Priyanka Darke Tata Consultancy Services, India
VeriFuzz [26] R. K. Medicherla Tata Consultancy Services, India
VIAP [54] Pritom Rajkhowa Hong Kong UST, China
Yogar-CBMC [65, 66] Liangze Yin Nat. U. of Defense Techn., China
Yogar-CBMC-Par. [67] Haining Feng Nat. U. of Defense Techn., China

Participating Verifiers. Table 4 provides an overview of the participating
verification systems and Table 5 lists the features and technologies that are
used in the verification tools.

Computing Resources. The resource limits were the same as in the previous
competitions [11]: Each verification run was limited to 8 processing units (cores),
15GB of memory, and 15min of CPU time. The witness validation was limited
to 2 processing units, 7GB of memory, and 1.5min of CPU time for violation
witnesses and 15min of CPU time for correctness witnesses. The machines for run-
ning the experiments are part of a compute cluster that consists of 168 machines;
each verification run was executed on an otherwise completely unloaded, dedi-
cated machine, in order to achieve precise measurements. Each machine had one

Table 5: Technologies and features that the competition candidates offer

Participant C
E
G
A
R

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

S
ym

b
ol
ic

E
xe
cu

ti
on

B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

k-
In
d
u
ct
io
n

P
ro
p
er
ty
-D

ir
ec
te
d
R
ea
ch
.

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

N
u
m
er
ic
.
In
te
rv
al

A
n
al
ys
is

S
h
ap

e
A
n
al
ys
is

S
ep

ar
at
io
n
L
og
ic

B
it
-P

re
ci
se

A
n
al
ys
is

A
R
G
-B

as
ed

A
n
al
ys
is

L
az
y
A
b
st
ra
ct
io
n

In
te
rp
ol
at
io
n

A
u
to
m
at
a-
B
as
ed

A
n
al
ys
is

C
on

cu
rr
en

cy
S
u
p
p
or
t

R
an

ki
n
g
F
u
n
ct
io
n
s

E
vo
lu
ti
on

ar
y
A
lg
or
it
h
m
s

2LS 3 3 3 3 3

AProVE 3 3 3 3 3 3

CBMC 3 3 3

CBMC-Path 3 3 3

CPA-BAM-BnB 3 3 3 3 3 3 3

CPA-Lockator 3 3 3 3 3 3 3 3

CPA-Seq 3 3 3 3 3 3 3 3 3 3 3 3 3

DepthK 3 3 3 3

DIVINE-explicit 3 3 3

DIVINE-SMT 3 3 3

ESBMC-kind 3 3 3 3

JayHorn 3 3 3 3 3 3

JBMC 3 3 3

JPF 3 3 3 3 3

Lazy-CSeq 3 3 3

Map2Check 3 3

PeSCo 3 3 3 3 3 3 3 3 3 3 3 3 3

Pinaka 3 3 3

PredatorHP 3

Skink 3 3 3 3

Smack 3 3 3 3 3 3

SPF 3 3 3

Symbiotic 3 3 3

UAutomizer 3 3 3 3 3 3 3

UKojak 3 3 3 3 3

UTaipan 3 3 3 3 3 3

VeriAbs 3 3 3 3 3

VeriFuzz 3 3 3

VIAP

Yogar-CBMC 3 3 3 3 3

Yogar-CBMC-Par. 3 3 3 3 3

Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4GHz,
33GB of RAM, and a GNU/Linux operating system (x86_64-linux, Ubuntu 18.04
with Linux kernel 4.15). We used BenchExec [19] to measure and control com-
puting resources (CPU time, memory, CPU energy) and VerifierCloud 14 to
distribute, install, run, and clean-up verification runs, and to collect the results.

One complete verification execution of the competition consisted of 418 bench-
marks (each verifier on each selected category according to the opt-outs), summing
up to 178 674 verification runs. The total consumed CPU time was 461 days for
one complete competition run for verification (without validation). Witness-based
result validation required 2 645 benchmarks (combinations of verifier, category
with witness validation, and a set of validators) summing up to 517 175 validation
runs. Each tool was executed several times, in order to make sure no installation
issues occur during the execution. Including pre-runs, the infrastructure managed
a total of 5 880 071 runs and consumed 15 years and 182 days of CPU time.

Quantitative Results. Table 6 presents the quantitative overview over all
tools and all categories. The head row mentions the category, the maximal
score for the category, and the number of verification tasks. The tools are
listed in alphabetical order; every table row lists the scores of one verifier. We
indicate the top three candidates by formatting their scores in bold face and in
larger font size. An empty table cell means that the verifier opted-out from the
respective main category (perhaps participating in subcategories only, restricting
the evaluation to a specific topic). More information (including interactive tables,
quantile plots for every category, and also the raw data in XML format) is
available on the competition web site. 15

Table 7 reports the top three verifiers for each category. The run time (column
‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results: reporting an error path when
the property holds (incorrect False) and claiming that the program fulfills the
property although it actually contains a bug (incorrect True), respectively.

Discussion of Scoring Schema. The verification community considers compu-
tation of correctness proofs to be more difficult than computing error paths: ac-
cording to Table 2, an answer True yields 2 points (confirmed witness) and 1 point
(unconfirmed witness), while an answer False yields 1 point (confirmed witness).
This can have consequences for the final ranking, as discussed in the report of
SV-COMP 2016 [11]. The data from SV-COMP 2019 draw a different picture.

Table 8 shows the mean and median values for resource consumption regarding
CPU time and energy consumption: the first column lists the five best verifiers of
category C-Overall, the second to fifth columns report the CPU time and CPU
energy (mean and median) for results True, and the sixth to ninth columns
for results False. The mean and median are taken over successfully solved
verification tasks; the CPU time is reported in seconds and the CPU energy

14 https://vcloud.sosy-lab.org 15 https://sv-comp.sosy-lab.org/2019/results

https://vcloud.sosy-lab.org
https://sv-comp.sosy-lab.org/2019/results

Table 6: Quantitative overview over all results; empty cells mark opt-outs

Verifier
R
ea
ch
S
af
et
y

62
96

po
in
ts

38
31

ta
sk
s

M
em

S
af
et
y

64
9
po

in
ts

43
4
ta
sk
s

C
on

cu
rr
en

cy
S
af
et
y

13
44

po
in
ts

10
82

ta
sk
s

N
oO

ve
rfl
ow

s
57
4
po

in
ts

35
9
ta
sk
s

T
er
m
in
at
io
n

35
29

po
in
ts

20
07

ta
sk
s

S
of
tw

ar
eS

ys
te
m
s

49
55

po
in
ts

28
09

ta
sk
s

C
-F
al
si
fi
ca
ti
on

O
ve
ra
ll

38
43

po
in
ts

85
15

ta
sk
s

C
-O

ve
ra
ll

16
66
3
po

in
ts

10
52
2
ta
sk
s

Ja
va
-O

ve
ra
ll

53
2
po

in
ts

36
8
ta
sk
s

2LS 2397 129 0 280 1279 119 733 4174

AProVE 2476
CBMC 2781 60 613 227 827 0 1432 4341

CBMC-Path 1657 -59 -150 192 535 -151 81 1587

CPA-BAM-BnB 1185
CPA-Lockator -441

CPA-Seq 4299 349 996 431 1785 1073 2823 9329
DepthK 986 -113 420 39 37 -1182 129 159

DIVINE-explicit 1413 25 493 0 0 2 200 1547

DIVINE-SMT 1778 -158 339 0 0 0 -339 726

ESBMC-kind 3404 -208 404 224 826 714 1916 3636

JayHorn 247

JBMC 470
JPF 290

Lazy-CSeq 1245
Map2Check 38 8

PeSCo 4239 2313 8466
Pinaka 218 561

PredatorHP 416
Skink

Smack

SPF 365
Symbiotic 3143 426 0 331 1153 555 1828 6129

UAutomizer 3264 -163 270 449 3001 1020 1050 6727

UKojak 2195 -211 0 396 0 818 1060 2595

UTaipan 3012 -91 271 438 0 962 1024 4188

VeriAbs 4638 1061

VeriFuzz 1132 123

VIAP

Yogar-CBMC 1277
Yogar-CBMC-Par.

16 https://github.com/sosy-lab/cpu-energy-meter

https://github.com/sosy-lab/cpu-energy-meter

Table 7: Overview of the top-three verifiers for each category (CPU time in h, rounded
to two significant digits)

Rank Verifier Score CPU Solved False Wrong
Time Tasks Alarms Proofs

ReachSafety
1 VeriAbs 4638 110 2 811
2 CPA-Seq 4299 60 2 519
3 PeSCo 4239 58 2 431 2

MemSafety
1 Symbiotic 426 .030 299
2 PredatorHP 416 .61 296
3 CPA-Seq 349 .55 256

ConcurrencySafety
1 Yogar-CBMC 1277 .31 1 026
2 Lazy-CSeq 1245 3.0 1 006
3 CPA-Seq 996 13 830

NoOverflows
1 UAutomizer 449 .94 306
2 UTaipan 438 .96 302
3 CPA-Seq 431 .59 283

Termination
1 UAutomizer 3001 13 1 662
2 AProVE 2476 33 1 004
3 CPA-Seq 1785 15 1 319

SoftwareSystems
1 CPA-BAM-BnB 1185 9.1 1 572 7
2 CPA-Seq 1073 28 1 447
3 VeriAbs 1061 24 1 407

C-FalsificationOverall
1 CPA-Seq 2823 40 2 129
2 PeSCo 2313 53 2 105 8
3 ESBMC-kind 1916 15 1 753 14

C-Overall
1 CPA-Seq 9329 120 6 654
2 PeSCo 8466 120 6 466 8 1
3 UAutomizer 6727 85 5 454 5 10
Java-Overall
1 JBMC 470 2.7 331
2 SPF 365 .27 337 4 2
3 JPF 290 .15 331 6

Table 8: Necessary effort to compute results False versus True (measurement
values rounded to two significant digits)

Result True False

CPU Time (s) CPU Energy (J) CPU Time (s) CPU Energy (J)
mean median mean median mean median mean median

CPA-Seq 67 9.5 690 82 58 14 560 120
PeSCo 56 19 540 160 77 26 680 220
UAutomizer 56 17 540 140 58 19 570 180
Symbiotic 4.8 .25 57 2.9 19 .45 210 5.5
CBMC 8.6 .20 91 2.3 21 .24 180 2.8

 1

 10

 100

 1000

Ti
m

e
 i
n
 s

2LS
CBMC-Path

CBMC
CPA-Seq
DepthK

DIVINE-explicit
DIVINE-SMT
ESBMC-kind

PeSCo
Symbiotic

UAutomizer
UKojak

UTaipan

-2000 0 2000 4000 6000 8000

Accumulated score

Fig. 6: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [8].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

in joule (BenchExec reads and accumulates the energy measurements of Intel
CPUs using the tool CPU Energy Meter 16).

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [8] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web site 15 includes such
a plot for each category; as example, we show the plot for category C-Overall
(all verification tasks) in Fig. 6. A total of 13 verifiers participated in category
C-Overall, for which the quantile plot shows the overall performance over all cate-
gories (scores for meta categories are normalized [8]). A more detailed discussion
of score-based quantile plots, including examples of what insights one can obtain
from the plots, is provided in previous competition reports [8, 11].

Table 9: Alternative rankings; quality is given in score points (sp), CPU time in
hours (h), energy in kilojoule (kJ), wrong results in errors (E), rank measures in
errors per score point (E/sp), joule per score point (J/sp), and score points (sp)

Rank Verifier Quality CPU CPU Solved Wrong Rank
Time Energy Tasks Results Measure

(sp) (h) (kJ) (E)

Correct Verifiers (E/sp)
1 CPA-Seq 9 329 120 4 300 2 811 0 .0000
2 Symbiotic 6 129 9.7 390 2 519 0 .0000
3 PeSCo 8 466 120 3 900 2 431 9 .0011
worst .3836

Green Verifiers (J/sp)
1 Symbiotic 6 129 9.7 390 299 0 64
2 CBMC 4 341 11 380 296 14 88
3 DIVINE-explicit 1 547 4.4 180 256 10 120
worst 4 200

New Verifiers (sp)
1 PeSCo 8 466 120 3 900 1 026 9 8 466
2 CBMC-Path 1 587 8.9 380 1 006 69 1 587

Alternative Rankings. The community suggested to report a couple of alterna-
tive rankings that honor different aspects of the verification process as complement
to the official SV-COMP ranking. Table 9 is similar to Table 7, but contains
the alternative ranking categories Correct, Green, and New Verifiers. Column
‘Quality’ gives the score in score points, column ‘CPU Time’ the CPU usage
of successful runs in hours, column ‘CPU Energy’ the CPU usage of successful
runs in kilojoule, column ‘Solved Tasks’ the number of correct results, column
‘Wrong results’ the sum of false alarms and wrong proofs in number of errors,
and column ‘Rank Measure’ gives the measure to determine the alternative rank.

Correct Verifiers — Low Failure Rate. The right-most columns of Table 7 report
that the verifiers achieve a high degree of correctness (all top three verifiers in
the C track have less than 1% wrong results). The winners of category C-Overall
and Java-Overall produced not a single wrong answer.

The first category in Table 9 uses a failure rate as rank measure:
number of incorrect results

total score , the number of errors per score point (E/sp). We use E as
unit for number of incorrect results and sp as unit for total score. The total score
is used as tie-breaker to distinguish the rank of error-free verifiers.

Green Verifiers — Low Energy Consumption. Since a large part of the cost of
verification is given by the energy consumption, it might be important to also
consider the energy efficiency. The second category in Table 9 uses the energy
consumption per score point as rank measure: total CPU energy

total score , with the unit J/sp.

Table 10: Confirmation rate of verification witnesses in SV-COMP 2019
Result True False

Total Confirmed Unconf. Total Confirmed Unconf.

CPA-Seq 4 417 3 968 90% 449 2 859 2 686 94% 173
PeSCo 4 176 3 814 91% 362 2 823 2 652 94% 171
UAutomizer 4 244 4 199 99% 45 1 523 1 255 82% 268
Symbiotic 2 430 2 381 98% 49 1 451 1 214 84% 237
CBMC 1 813 1 702 94% 111 1 975 1 248 63% 727
UTaipan 3 015 2 936 97% 79 915 653 71% 262
2LS 2 072 2 045 99% 27 1 419 945 67% 474
ESBMC-kind 3 679 3 556 97% 123 2 141 1 753 82% 388
UKojak 2 070 2 038 98% 32 553 548 99% 5
CBMC-Path 1 206 1 162 96% 44 897 670 75% 727
DIVINE-explicit 693 673 97% 20 768 353 46% 415
DIVINE-SMT 645 626 97% 19 943 601 64% 342
DepthK 612 602 98% 10 1 938 1 370 71% 568

New Verifiers — High Quality. To acknowledge the achievements of verifiers
that participate for the first time in SV-COMP, the third category in Table 9
uses the quality in score points as rank measure, that is, the official SV-COMP
rank measure, but the subject systems reduced to verifiers that participate
for the first time. The Java track consists exclusively of new verifiers, so the
new-verifiers ranking is the same as the official ranking.

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
True or False: each answer should be accompanied by a verification witness.
All verifiers in categories that required witness validation support the common
exchange format for violation and correctness witnesses. We used four indepen-
dently developed witness-based result validators [14, 15, 16].

The majority of witnesses that the verifiers produced can be confirmed
by the results-validation process. Interestingly, the confirmation rate for the
True results is significantly higher than for the False results. Table 10 shows
the confirmed versus unconfirmed results: the first column lists the verifiers of
category C-Overall, the three columns for result True reports the total, confirmed,
and unconfirmed number of verification tasks for which the verifier answered
with True, respectively, and the three columns for result False reports the total,
confirmed, and unconfirmed number of verification tasks for which the verifier
answered with False, respectively. More information (for all verifiers) is given in
the detailed tables on the competition web site 15, cf. also the report on the demo
category for correctness witnesses from SV-COMP 2016 [11]. Result validation is
an important topic also in other competitions (e.g., in the SAT competition [4]).

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

10

20

30

10 11

15

22

35
32

21

31
P
ar
ti
ci
pa

ti
ng

te
am

s

Fig. 7: Number of participating teams for each year

8 Conclusion

SV-COMP 2019, the 8th edition of the Competition on Software Verification,
attracted 31 participating teams from 14 countries (see Fig. 7 for the development).
SV-COMP continues to offer the broadest overview of the state of the art in
automatic software verification. For the first time, the competition included Java
verification; this track had four participating verifiers. The competition does
not only execute the verifiers and collect results, but also tries to validate the
verification results, based on the latest versions of four independently developed
results validators. The number of verification tasks was increased to 10 522
in C and to 368 in Java. As before, the large jury and the organizer made
sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency.

References

1. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_22

2. Andrianov, P., Mutilin, V., Khoroshilov, A.: Predicate abstraction based config-
urable method for data race detection in Linux kernel. In: Proc. TMPA. CCIS 779,
Springer (2018). https://doi.org/10.1007/978-3-319-71734-0_2

3. Artho, C., Visser, W.: Java Pathfinder at SV-COMP 2019 (competition contribu-
tion). In: Proc. TACAS. LNCS 11429, Springer (2019)

4. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT Competition 2016: Recent develop-
ments. In: Proc. AI. pp. 5061–5063. AAAI Press (2017)

5. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai,
P., Štill, V.: Model checking of C and C++ with DIVINE 4. In: Proc. ATVA. pp.
201–207. LNCS 10482, Springer (2017)

6. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,

https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-319-71734-0_2

G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). LNCS 11429, Springer (2019)

7. Beyer, D.: Competition on software verification (SV-COMP). In: Proc.
TACAS. pp. 504–524. LNCS 7214, Springer (2012). https://doi.org/10.1007/
978-3-642-28756-5_38

8. Beyer, D.: Second competition on software verification (Summary of SV-COMP
2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_43

9. Beyer, D.: Status report on software verification (Competition summary SV-COMP
2014). In: Proc. TACAS. pp. 373–388. LNCS 8413, Springer (2014). https://doi.
org/10.1007/978-3-642-54862-8_25

10. Beyer, D.: Software verification and verifiable witnesses (Report on SV-COMP
2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer (2015). https://doi.
org/10.1007/978-3-662-46681-0_31

11. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS. pp. 887–904. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

12. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017). https://doi.
org/10.1007/978-3-662-54580-5_20

13. Beyer, D.: Verification witnesses from SV-COMP 2019 verification tools. Zenodo
(2019). https://doi.org/10.5281/zenodo.2559175

14. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

15. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

16. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

17. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007). https:
//doi.org/10.1007/s10009-007-0044-z

18. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

19. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Proc. SPIN. pp. 160–178. LNCS 9232, Springer (2015). https://doi.org/10.1007/
978-3-319-23404-5_12

20. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https:
//doi.org/10.1007/s10009-017-0469-y

21. Cassez, F., Sloane, A.M., Roberts, M., Pigram, M., Suvanpong, P.,
de Aledo Marugán, P.G.: Skink: Static analysis of programs in LLVM interme-
diate representation (competition contribution). In: Proc. TACAS. pp. 380–384.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_27

22. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety check-
ing. In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/
978-3-319-94111-0_7

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-54862-8_25
https://doi.org/10.1007/978-3-642-54862-8_25
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.5281/zenodo.2559175
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7

23. Chalupa, M., Vitovská, M., Strejcek, J.: Symbiotic 5: Boosted instrumentation
(competition contribution). In: Proc. TACAS. pp. 442–446. LNCS 10806, Springer
(2018). https://doi.org/10.1007/978-3-319-89963-3_29

24. Chaudhary, E., Joshi, S.: Pinaka: Symbolic execution meets incremental solving
(competition contribution). In: Proc. TACAS. LNCS 11429, Springer (2019)

25. Chimdyalwar, B., Darke, P., Chauhan, A., Shah, P., Kumar, S., Venkatesh,
R.: VeriAbs: Verification by abstraction (competition contribution). In: Proc.
TACAS. pp. 404–408. LNCS 10206, Springer (2017). https://doi.org/10.1007/
978-3-662-54580-5_32

26. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program aware
fuzzing (competition contribution). In: Proc. TACAS. LNCS 11429, Springer (2019)

27. Cordeiro, L.C., Kesseli, P., Kröning, D., Schrammel, P., Trtík, M.: JBMC: A bounded
model checking tool for verifying Java bytecode. In: Proc. CAV. pp. 183–190.
LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_10

28. Cordeiro, L., Kröning, D., Schrammel, P.: JBMC: Bounded model checking for
Java bytecode (competition contribution). In: Proc. TACAS. LNCS 11429, Springer
(2019)

29. Cordeiro, L.C., Kröning, D., Schrammel, P.: Benchmarking of Java verification
tools at the software verification competition (SV-COMP). CoRR abs/1809.03739
(2018)

30. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive
programs and floating-point arithmetic (competition contribution). In: Proc.
TACAS. pp. 423–425. LNCS 9035, Springer (2015). https://doi.org/10.1007/
978-3-662-46681-0_34

31. Gadelha, M.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: ESBMC v6.0: Verifying
C programs using k -induction and invariant inference (competition contribution).
In: Proc. TACAS. LNCS 11429, Springer (2019)

32. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (Feb 2017). https://doi.org/10.1007/s10009-015-0407-9

33. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Proc. CADE. pp. 105–108. LNCS 9195, Springer
(2015). https://doi.org/10.1007/978-3-319-21401-6_6

34. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Analyzing program termination and complexity automatically with
aprove. J. Autom. Reasoning 58(1), 3–31 (2017)

35. Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling, C.,
Schüssele, F., Podelski, A.: Ultimate Taipan: Trace abstraction and abstract inter-
pretation (competition contribution). In: Proc. TACAS. pp. 399–403. LNCS 10206,
Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_31

36. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+Corral: A modular verifier (competition contribution). In: Proc. TACAS.
pp. 451–454. LNCS 9035, Springer (2015)

37. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Nutz, A., Musa, B., Schätzle,
C., Schilling, C., Schüssele, F., Podelski, A.: Ultimate Automizer with an on-
demand construction of Floyd-Hoare automata (competition contribution). In: Proc.
TACAS. pp. 394–398. LNCS 10206, Springer (2017). https://doi.org/10.1007/
978-3-662-54580-5_30

https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1007/978-3-662-54580-5_32
https://doi.org/10.1007/978-3-662-54580-5_32
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30

38. Hensel, J., Emrich, F., Frohn, F., Ströder, T., Giesl, J.: AProVE: Proving
and disproving termination of memory-manipulating C programs (competition
contribution). In: Proc. TACAS. pp. 350–354. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_21

39. Holík, L., Kotoun, M., Peringer, P., Šoková, V., Trtík, M., Vojnar, T.: Predator shape
analysis tool suite. In: Hardware and Software: Verification and Testing. pp. 202–209.
LNCS 10028, Springer (2016). https://doi.org/10.1007/978-3-319-49052-6

40. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-box chal-
lenge 2012: Analysis of event-condition-action systems. In: Proc. ISoLA. pp. 608–614.
LNCS 7609, Springer (2012). https://doi.org/10.1007/978-3-642-34026-0_45

41. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012 - A program veri-
fication competition. STTT 17(6), 647–657 (2015). https://doi.org/10.1007/
s10009-015-0396-8

42. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for verifying
Java programs. In: Proc. CAV. pp. 352–358. LNCS 9779, Springer (2016). https:
//doi.org/10.1007/978-3-319-41528-4_19

43. Kahsai, T., Rümmer, P., Schäf, M.: JayHorn: A Java model checker (competition
contribution). In: Proc. TACAS. LNCS 11429, Springer (2019)

44. Khazem, K., Tautschnig, M.: CBMC Path: A symbolic execution retrofit of the C
bounded model checker (competition contribution). In: Proc. TACAS. LNCS 11429,
Springer (2019)

45. Kotoun, M., Peringer, P., Soková, V., Vojnar, T.: Optimized Predators and the
SV-COMP heap and memory safety benchmark (competition contribution). In:
Proc. TACAS. pp. 942–945. LNCS 9636, Springer (2016)

46. Kröning, D., Tautschnig, M.: Cbmc: C bounded model checker (competition contri-
bution). In: Proc. TACAS. pp. 389–391. LNCS 8413, Springer (2014)

47. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via program transformation.
In: Proc. ICTAC. pp. 313–332. Springer (2018)

48. Lauko, H., Štill, V., Ročkai, P., Barnat, J.: Extending DIVINE with symbolic
verification using SMT (competition contribution). In: Proc. TACAS. LNCS 11429,
Springer (2019)

49. Malik, V., Hruska, M., Schrammel, P., Vojnar, T.: 2LS: Heap analysis and memory
safety (competition contribution). Tech. Rep. abs/1903.00712, CoRR (2019)

50. Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq
2.0: Combining lazy sequentialization with abstract interpretation (competition
contribution). In: Proc. TACAS. pp. 375–379. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_26

51. Noller, Y., Pasareanu, C., Le, B.D., Visser, W., Fromherz, A.: Symbolic Pathfinder
for SV-COMP (competition contribution). In: Proc. TACAS. LNCS 11429, Springer
(2019)

52. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with memory
safety checks (competition contribution). In: Proc. TACAS. pp. 458–460. LNCS 9035,
Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_44

53. Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic PathFinder: integrating symbolic execution with model checking for
Java bytecode analysis. Autom. Software Eng. 20(3), 391–425 (2013)

54. Rajkhowa, P., Lin, F.: VIAP 1.1: Automated system for verifying integer assignment
programs with loops (competition contribution). In: Proc. TACAS. LNCS 11429,
Springer (2019)

https://doi.org/10.1007/978-3-662-54580-5_21
https://doi.org/10.1007/978-3-319-49052-6
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-662-54580-5_26
https://doi.org/10.1007/978-3-662-46681-0_44

55. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from
verifier implementations. In: Proc. CAV. pp. 106–113. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_7

56. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of verifiers
(competition contribution). In: Proc. TACAS. LNCS 11429, Springer (2019)

57. Rocha, H., Barreto, R.S., Cordeiro, L.C.: Memory management test-case generation
of C programs using bounded model checking. In: Proc. SEFM. pp. 251–267.
LNCS 9276, Springer (2015). https://doi.org/10.1007/978-3-319-22969-0_18

58. Rocha, H., Ismail, H., Cordeiro, L.C., Barreto, R.S.: Model checking embedded
C software using k -induction and invariants. In: Proc. SBESC. pp. 90–95. IEEE
(2015). https://doi.org/10.1109/SBESC.2015.24

59. Rocha, H.O., Barreto, R., Cordeiro, L.C.: Hunting memory bugs in C programs with
Map2Check (competition contribution). In: Proc. TACAS. pp. 934–937. LNCS 9636,
Springer (2016)

60. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L.C., Fischer, B.: DepthK: A k -induction
verifier based on invariant inference for C programs (competition contribution). In:
Proc. TACAS. pp. 360–364. LNCS 10206, Springer (2017). https://doi.org/10.
1007/978-3-662-54580-5_23

61. Schrammel, P., Kröning, D.: 2LS for program analysis (competition contribution).
In: Proc. TACAS. pp. 905–907. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_56

62. Still, V., Rockai, P., Barnat, J.: DIVINE: Explicit-state LTL model checker (com-
petition contribution). In: Proc. TACAS. pp. 920–922. LNCS 9636, Springer (2016)

63. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Software Eng. 10(2), 203–232 (2003)

64. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions memory modeling method
with separation into disjoint regions. Proceedings of the Institute for Sys-
tem Programming (ISPRAS) 29, 203–216 (2017). https://doi.org/10.15514/
ISPRAS-2017-29(4)-13

65. Yin, L., Dong, W., Liu, W., Li, Y., Wang, J.: YOGAR-CBMC: CBMC with
scheduling constraint based abstraction refinement (competition contribution). In:
Proc. TACAS. pp. 422–426. LNCS 10806, Springer (2018)

66. Yin, L., Dong, W., Liu, W., Wang, J.: On scheduling constraint abstraction for
multi-threaded program verification. IEEE Trans. Softw. Eng. . https://doi.org/
10.1109/TSE.2018.2864122

67. Yin, L., Dong, W., Liu, W., Wang, J.: Parallel refinement for multi-threaded
program verification. In: Proc. ICSE. IEEE (2019)

https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-22969-0_18
https://doi.org/10.1109/SBESC.2015.24
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-662-49674-9_56
https://doi.org/10.1007/978-3-662-49674-9_56
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TSE.2018.2864122

