
Proc. TACAS 2019, c© Springer

International Competition on Software Testing
(Test-Comp)

Dirk Beyer

LMU Munich, Germany

Abstract. Tool competitions are a special form of comparative evalua-
tion, where each tool has a team of developers or supporters associated
that makes sure the tool is properly configured to show its best possi-
ble performance. Tool competitions have been a driving force for the
development of mature tools that represent the state of the art in several
research areas. This paper describes the International Competition on
Software Testing (Test-Comp), a comparative evaluation of automatic
tools for software test generation. Test-Comp 2019 is presented as part
of TOOLympics 2019, a satellite event of the conference TACAS.

1 Introduction

Software testing is as old as software development itself, because the easiest
way to find out if the software works is to test it. In the last few decades the
tremendous breakthrough of theorem provers and satisfiability-modulo-theory
(SMT) solvers have led to the development of efficient tools for automatic test-case
generation. For example, symbolic execution and the idea to use it for test-case
generation [14] exists for more than 40 years, efficient implementations (e.g.,
Klee [8]) had to wait for the availability of mature constraint solvers. On the other
hand, with the advent of automatic software model checking, the opportunity
to extract test cases from counterexamples arose (see Blast [5] and JPF [16]).
In the following years, many techniques from the areas of model checking and
program analysis were adapted for the purpose of test-case generation and several
strong hybrid combinations have been developed [9].

There are several powerful software test generators available [9], but they are
very difficult to compare. For example, a recent study [6] first had to develop a
framework that supports to run test-generation tools on the same program source
code and to deliver test cases in a common format for validation. Furthermore,
there is no widely distributed benchmark suite available and neither input
programs nor output test suites follow a standard format. In software verification,
the competition SV-COMP [4] helped to overcome the problem: the competition
community developed standards for defining nondeterministic functions and a
language to write specifications (so far for C and Java programs) and established a
standard exchange format for the output (witnesses). The competition also helped
to adequately give credits to PhD students and PostDocs for their engineering
efforts and technical contributions. A competition event with high visibility can

foster the transfer of theoretical and conceptual advancements in software testing
into practical tools, and would also give credits and benefits to students who
spend considerable amounts of time developing testing algorithms and software
packages (achieving a high rank in the testing competition improves the CV).

Test-Comp is designed to compare automatic state-of-the-art software testers
with respect to effectiveness and efficiency. This comprises a preparation phase
in which a set of benchmark programs is collected and classified (according to
application domain, kind of bug to find, coverage criterion to fulfill, theories
needed), in order to derive competition categories. After the preparation phase,
the tools are submitted, installed, and applied to the set of benchmark instances.

Test-Comp uses the benchmarking framework BenchExec [7], which is al-
ready successfully used in other competitions, most prominently, all compe-
titions that run on the StarExec infrastructure [15]. Similar to SV-COMP,
the test generators in Test-Comp are applied to programs in a fully automatic
way. The results are collected via the BenchExec results format, and trans-
formed into tables and plots in several formats.

Competition Goals. In summary, the goals of Test-Comp are the following:

• Provide a snapshot of the state-of-the-art in software testing to the community.
This means to compare, independently from particular paper projects and
specific techniques, different test-generation tools in terms of effectiveness
and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the students the opportunity to publish about the
development work that they have done.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, and agree on a specification language for
test-coverage criteria.

Related Competitions. In other areas, there are several established competi-
tions. For example, there are three competitions in the area of software verification:
(i) a competition on automatic verifiers under controlled resources (SV-COMP [3]),
(ii) a competition on verifiers with arbitrary environments (RERS [12]), and
(iii) a competition on (interactive) verification (VerifyThis [13]). In software
testing, there are several competition-like events, for example, the IEEE Inter-
national Contest on Software Testing, the Software Testing World Cup, and
the Israel Software Testing World Cup. Those contests are organized as on-site
events, where teams of people interact with certain testing platforms in order
to achieve a certain coverage of the software under test. There is no compara-
tive evaluation of automatic test-generation tools in a controlled environment.

Test-Comp is meant to close this gap. The results of the first edition of Test-
Comp will be presented as part of the TOOLympics 2019 event [1], where
16 competitions in the area of formal methods are presented.

2 Organizational Classification

The competition Test-Comp is designed according to the model of SV-COMP [2],
the International Competition on Software Verification. Test-Comp shares
the following organizational principles:

• Automatic: The tools are executed in a fully automated environment,
without any user interaction.

• Off-site: The competition takes place independently from a conference
location, in order to flexibly allow organizational changes.

• Reproducible: The experiments are controlled and reproducible, that is,
the resources are limited, controlled, measured, and logged.

• Jury: The jury is the advisory board of the competition, is responsible
for qualification decisions on tools and benchmarks, and serves as program
committee for the reviewing and selection of papers to be published.

• Training: The competition flow includes a training phase during which the
participants get a chance to train their tools on the potential benchmark
instances and during which the organizer ensures a smooth competition run.

3 Competition Schedule

Schedule. A typical Test-Comp schedule has the following deadlines and phases:

• Call for Participation: The organizer announces the competition on the
mailing list.1

• Registration of Participation / Training Phase: The tool developers
register for participation and submit a first version of their tool together with
documentation to the competition. The tool can later be updated and is used
for pre-runs by the organizer and for qualification assessment by the jury.
Preliminary results are reported to the tool developers, and made available
to the jury.

• Final-Version Submission / Evaluation Phase: The tool developers
submit the final versions of their tool. The benchmarks are executed using
the submitted tools and the experimental results are reported to the authors.
Final results are reported to the tool developers for inspection and approval.

• Results Announced: The organizer announces the results on the competi-
tion web site.

• Publication: The competition organizer writes the competition report, the
tool developers write the tool description and participation reports. The jury
reviews the papers and the competition report.

1 https://groups.google.com/forum/#!forum/test-comp

https://groups.google.com/forum/#!forum/test-comp

4 Participating Tools

The following tools for automatic software test generation participate in the
first edition of Test-Comp (the list provides the tester name, the representing
jury member, the affiliation, and the URL of the project web site):

• CoVeriTest, Marie-Christine Jakobs, LMU Munich, Germany
https://cpachecker.sosy-lab.org/

• CPA/Tiger-MGP, Sebastian Ruland, TU Darmstadt, Germany
https://www.es.tu-darmstadt.de/testcomp19

• ESBMC-bkind, Rafael Menezes, Federal University of Amazonas, Brazil
http://www.esbmc.org/

• ESBMC-falsif, Mikhail Gadelha, University of Southampton, UK
http://www.esbmc.org/

• FairFuzz, Caroline Lemieux, University of California at Berkeley, USA
https://github.com/carolemieux/afl-rb

• KLEE, Cristian Cadar, Imperial College London, UK
http://klee.github.io/

• PRTest, Thomas Lemberger, LMU Munich, Germany
https://github.com/sosy-lab/tbf

• Symbiotic, Martina Vitovská, Masaryk University, Czechia
https://github.com/staticafi/symbiotic

• VeriFuzz, Raveendra Kumar Medicherla, Tata Consultancy Services, India
https://www.tcs.com/creating-a-system-of-systems

5 Rules and Definitions

Test Task. A test task is a pair of an input program (program under test) and
a test specification. A test run is a non-interactive execution of a test generator
on a single test task, in order to generate a test suite according to the test
specification. A test suite is a sequence of test cases, given as a directory of
files according to the format for exchangeable test-suites.2

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets
as input (i) a program from the benchmark suite and (ii) a test specification (find
bug, or coverage criterion), and returns as output a test suite (i.e., a set of test
vectors). The test generator is contributed by the competition participant. The
test runs are executed centrally by the competition organizer. The test validator
takes as input the test suite from the test generator and validates it by executing
the program on all test cases: for bug finding it checks if the bug is exposed
and for coverage it reports the coverage using the GNU tool gcov.3

2 Test-suite format: https://gitlab.com/sosy-lab/software/test-format/
3 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://cpachecker.sosy-lab.org/
https://www.es.tu-darmstadt.de/testcomp19
http://www.esbmc.org/
http://www.esbmc.org/
https://github.com/carolemieux/afl-rb
http://klee.github.io/
https://github.com/sosy-lab/tbf
https://github.com/staticafi/symbiotic
https://www.tcs.com/creating-a-system-of-systems
https://gitlab.com/sosy-lab/software/test-format/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Test
Generator

Benchmark
Suite

(Programs)

Test
Specification

Test Suite
(Test Vectors)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator

Table 1: Coverage specifications used in Test-Comp 2019

Formula Interpretation

COVER EDGES(@CALL(__VERIFIER_error)) The test suite contains at least one test
that executes function __VERIFIER_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2019).

The definition init(main()) is used to define the initial states of the pro-
gram by a call of function main (with no parameters). The definition FQL(f)
specifies that coverage definition f should be achieved. The FQL (FShell query
language [11]) coverage definition COVER EDGES(@DECISIONEDGE) means that all
branches should be covered, COVER EDGES(@BASICBLOCKENTRY) means that all
statements should be covered, and COVER EDGES(@CALL(__VERIFIER_error))
means that function __VERIFIER_error should be called. A complete specification
looks like: COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of Test-
Comp 2019. The first describes a formula that is typically used for bug finding:
the test generator should find a test case that executes a certain error function.
The second describes a formula that is used to obtain a standard test suite for
quality assurance: the test generator should find a test suite for branch coverage.

Setup. The competition runs on an otherwise unloaded, dedicated compute
cluster composed of 168 machines with Intel Xeon E3-1230 v5 CPUs, with
8 processing units each, a frequency of 3.4GHz, and 33GB memory. Each test
run will be started on such a machine with a GNU/Linux operating system
(x86_64-linux, Ubuntu 18.04); there are three resource limits for each test run:

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-branches.prp

• a memory limit of 15 GB (14.6 GiB) of RAM,
• a runtime limit of 15 min of CPU time, and
• a limit to 8 processing units of a CPU.

Further technical parameters of the competition machines are available in the
repository that also contains the benchmark definitions. 4

License Requirements for Submitted Tester Archives. The testers need
to be publicly available for download as binary archive under a license that
allows the following (cf. [4]):

• replication and evaluation by anybody (including results publication),
• no restriction on the usage of the verifier output (log files, witnesses), and
• any kind of (re-)distribution of the unmodified verifier archive.

Qualification. Before a tool or person can participate in the competition, the
jury evaluates the following qualification criteria.

Tool. A test tool is qualified to participate as competition candidate if the tool is
(a) publicly available for download and fulfills the above license requirements,
(b) works on the GNU/Linux platform (more specifically, it must run on an
x86_64 machine), (c) is installable with user privileges (no root access required,
except for required standard Ubuntu packages) and without hard-coded absolute
paths for access to libraries and non-standard external tools, (d) succeeds for
more than 50% of all training programs to parse the input and start the test
process (a tool crash during the test-generation phase does not disqualify), and
(e) produces test suites that adhere to the exchange format (see above).

Person. A person (participant) is qualified as competition contributor for a
competition candidate if the person (a) is a contributing designer/developer
of the submitted competition candidate (witnessed by occurrence of the per-
son’s name on the tool’s project web page, a tool paper, or in the revision
logs) or (b) is authorized by the competition organizer (after the designer/de-
veloper was contacted about the participation).

6 Categories and Scoring Schema

Error Coverage. The first category is to show the abilities to discover bugs.
The programs in the benchmark set contain programs that contain a bug.

Evaluation by scores and runtime. Every run will be started by a batch
script, which produces for every tool and every test task (a C program)
one of the following scores:

+1 point: program under test is executed on all generated test cases and
the bug is found (i.e., specified function was called)

0 points: all other cases

4 https://gitlab.com/sosy-lab/test-comp/bench-defs/

https://gitlab.com/sosy-lab/test-comp/bench-defs/

The participating test-generation tools are ranked according to the sum of
points. Tools with the same sum of points are ranked according to success-runtime.
The success-runtime for a tool is the total CPU time over all benchmarks for
which the tool reported a correct verification result.

Branch Coverage. The second category is to cover as many branches as pos-
sible. The coverage criterion was chosen because many test-generation tools
support this standard criterion by default. Other coverage criteria can be re-
duced to branch coverage by transformation [10].

Evaluation by scores and runtime. Every run will be started by a batch script,
which produces for every tool and every test task (a C program) the coverage
(as reported by gcov; value between 0 and 1) of branches of the program that
are covered by the generated test cases. The score is the returned coverage.

+c points: program under test is executed on all generated tests and
c is the coverage value as measured with the tool gcov

0 points: all other cases

The participating verification tools are ranked according to the cumulative
coverage. Tools with the same coverage are ranked according to success-runtime.
The success-runtime for a tool is the total CPU time over all benchmarks for
which the tool reported a correct verification result.

7 Benchmark Programs

The first edition of Test-Comp is based on programs written in the program-
ming language C. The input programs are taken from the largest and most
diverse open-source repository of software verification tasks 5, which is also used
by SV-COMP [4]. We selected all programs for which the following proper-
ties were satisfied (cf. issue on GitHub 6):

1. compiles with gcc, if a harness for the special methods is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yields a total of 2 356 test tasks, namely 636 test tasks for category
Error Coverage and 1 720 test tasks for category Code Coverage. 7 The final set
of benchmark programs might be obfuscated in order to avoid overfitting.

5 https://github.com/sosy-lab/sv-benchmarks
6 https://github.com/sosy-lab/sv-benchmarks/pull/774
7 https://test-comp.sosy-lab.org/2019/benchmarks.php

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774
https://test-comp.sosy-lab.org/2019/benchmarks.php

8 Conclusion and Future Plans

This report gave an overview of the organizational aspects of the International
Competition on Software Testing (Test-Comp). The competition attracted nine
participating teams from six countries. At the time of writing of this article,
the execution of the benchmarks of the first edition of Test-Comp was just
finished. Unfortunately, the results could not be processed on time for publication.
The feedback from the testing community was positive, and the competition on
software testing will be held annually from now on. The plan for next year is to
extend the competition to more categories of programs and to more tools.

References

1. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS, part 3. LNCS 11429, Springer (2019)

2. Beyer, D.: Competition on software verification (SV-COMP). In: Proc.
TACAS. pp. 504–524. LNCS 7214, Springer (2012). https://doi.org/10.1007/
978-3-642-28756-5_38

3. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017). https://doi.
org/10.1007/978-3-662-54580-5_20

4. Beyer, D.: Automatic verification of c and java programs: Sv-comp 2019. In: Proc.
TACAS, part 3. LNCS 11429, Springer (2019)

5. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004). https:
//doi.org/10.1109/ICSE.2004.1317455

6. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017). https://doi.org/10.1007/
978-3-319-70389-3_7

7. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https:
//doi.org/10.1007/s10009-017-0469-y

8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

9. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook
of Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_19

10. Harman, M.: We need a testability transformation semantics. In: Proc.
SEFM. pp. 3–17. LNCS 10886, Springer (2018). https://doi.org/10.1007/
978-3-319-92970-5_1

11. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your
test suite. In: Proc. ASE. pp. 407–416. ACM (2010). https://doi.org/10.1145/
1858996.1859084

12. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.:
Rigorous examination of reactive systems. The RERS challenges 2012 and 2013.

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-92970-5_1
https://doi.org/10.1007/978-3-319-92970-5_1
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084

Int. J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014). https://doi.org/10.
1007/s10009-014-0337-y

13. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012 - A program veri-
fication competition. STTT 17(6), 647–657 (2015). https://doi.org/10.1007/
s10009-015-0396-8

14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

15. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

16. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004). https://doi.org/10.
1145/1007512.1007526

https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526

	International Competition on Software Testing (Test-Comp)
	Dirk Beyer

