
VerifyThis – Verification Competition
with a Human Factor

Gidon Ernst1, Marieke Huisman2, Wojciech Mostowski3, and Mattias Ulbrich4?

1 University of Melbourne, Australia, gidon.ernst@unimelb.edu.au
2 University of Twente, The Netherlands, m.huisman@utwente.nl

3 Halmstad University, Sweden, wojciech.mostowski@hh.se
4 Karlsruhe Institute of Technology, Germany, mattias.ulbrich@kit.edu

Abstract. VerifyThis is a series of competitions that aims to evaluate
the current state of deductive tools to prove functional correctness of
programs. Such proofs typically require human creativity, and hence it
is not possible to measure the performance of tools independently of the
skills of its user. Similarly, solutions can be judged by humans only. In
this paper, we discuss the role of the human in the competition setup
and explore possible future changes to the current format. Regarding
the impact of VerifyThis on deductive verification research, a survey
conducted among the previous participants shows that the event is a
key enabler for gaining insight into other approaches, and that it fosters
collaboration and exchange.

Keywords: VerifyThis · Program Verification · Specification Languages
· Tool Development · Competition.

1 Introduction

The VerifyThis program verification is held in 2019 for the 8th time; earlier
editions were held at FoVeOOS 2011 [6], FM 2012 [15,20], Dagstuhl (April
2014) [4], and ETAPS 2015–2018 [21,18,16,17], the next event takes place as
part of TOOLympics at ETAPS 2019 [2]. On the VerifyThis webpage5 the aim
of the competition is formulated as follows:

– to bring together those interested in formal verification, and to pro-
vide an engaging, hands-on, and fun opportunity for discussion, and

– to evaluate the usability of logic-based program verification tools in
a controlled experiment that could be easily repeated by others.

The competition will offer a number of challenges presented in natural
language and pseudo code. Participants have to formalize the require-
ments, implement a solution, and formally verify the implementation for
adherence to the specification.

? In alphabetic order
5 See http://www.pm.inf.ethz.ch/research/verifythis.html.

http://www.pm.inf.ethz.ch/research/verifythis.html

There are no restrictions on the programming language and verification
technology used. The correctness properties posed in problems will have
the input-output behaviour of programs in focus. Solutions will be judged
for correctness, completeness, and elegance.

What we would like to emphasise up-front is that VerifyThis is different from
most other competitions of formal method tools at TOOLympics6 at ETAPS 2019,
see the TOOLympics proceedings [2] (this volume) for more details on each of
them. Typically, the other events run a (large) number of benchmarks as batch
jobs to determine the winner from values that are obtained from the invocations
(like the runtimes or the number of successes) in a fully mechanised way.7 More-
over, often they target both proving and disproving examples. There are also
other TOOLympics competitions in which software verification tools are com-
pared: SV-COMP [3] and RERS [23], which are both off-site events focussing on
automatically checkable system properties that do not require user input.

In contrast, VerifyThis deliberately takes the user into the loop, and only
considers proving correctness. VerifyThis challenges are developed under the
assumption that there is currently no technique available out there that can run
the problem in a widely accepted input specification format out of the box. Part
of the challenge – and in many cases also the key to a successful solution – is
to find a suitable logical encoding of the desired property, and to come up with
smartly-encoded sufficiently strong annotations, i.e., specification engineering.
Understanding the problem is essential for solving the challenges, the human
factor can thus definitely not be removed.

In this paper, we discuss the current set-up of the competition, and our expe-
riences from the past editions (Section 2). In addition, we also critically reflect
on the current organisation, and discuss whether it still matches the compe-
tition’s aims. For this purpose, we have investigated feedback and experiences
from earlier participants (Section 3). From the participants’ feedback and our
experiences, we conclude that VerifyThis indeed is an engaging and fun expe-
rience. However, it is less clear whether the current setup indeed evaluates the
capabilities of the tools used, or if also other things are measured. Therefore,
in Section 4 we make several suggestions of possible changes to the setup that
could make the measuring aspects of the competition more precise.

2 Previous Editions

The format of the competition has been rather stable since its first edition
(see [19] for the reflections of the organisers after the first VerifyThis edition),
with fine-tuning changes made whenever it was felt that this was appropriate. In
this section we discuss: who are the organisers, how do we define the challenges,

6 https://tacas.info/toolympics.php
7 A notable exception are the evaluation-based rewards of the RERS [23] competition

where submitted approaches and solutions are reviewed and ranked by the challenge
organisers.

2

https://tacas.info/toolympics.php

who are participating, what side events do we organise, and what are the results
of the competition.

Organisers. The first editions of VerifyThis were run by the same group of or-
ganisers (Marieke Huisman, Rosemary Monahan, and Vladimir Klebanov (until
2014), and Peter Müller (since 2015)). Since 2016, this part of the organisation
has changed a bit. The original organisers created a steering committee, which
invites a new pair of organisers every year. They work in close collaboration
with one or more steering committee members to define the challenges, and are
fully responsible for judging the solutions. There are several advantages to the
approach: it ensures that there are sufficient fresh ideas, it avoids a repeated bias
on a single technique, it widens the community, and it allows the steering com-
mittee members to also participate themselves. The two organisers are always
selected with the following criteria in mind: they should be familiar with the
area of program verification; at least one of them should have been participating
in an earlier edition of VerifyThis; and they should be from different groups, in
order to involve the community as a whole as much as possible.

Challenges. To involve the community in the competition since 2012 a call for
challenges has been published widely – and the submitted challenges regularly
form the basis for one of the challenges set during the competition.

There is a wide variety of program verification tools used by the participants,
and no particular input programming (or specification) language has been set.
Therefore, problems are either presented in a standard well-known programming
language or in pseudo code, and no obligatory formal specification is given,
neither in logics nor in a particular specification language. If a natural language
specification is given, it is formulated as precisely as possible, showcasing the
problem with exemplary situations. Good challenges move the participants out
of their comfort zone: they do not immediately know how to solve it, and will
have to think about how to use their tool to actually solve the challenge.

Challenges are inherently “real”. If a person is expected to look into a problem
and understand it, the problem cannot be a generated routine that only exposes
a challenge for verification tools, but it must have a sensible purpose beyond
verification. Typical problems are algorithmically challenging routines, which
are (possibly simplified) real-world snippets from larger code bases.

The competition typically consists of three challenges and the participants
have 90 minutes to work on each one. The first is usually a relatively simple
warm-up challenge – often involving a computation on the elements of an array.
The other two challenges are typically more involved. Often one of them is about
a complicated heap-based data structure that for example requires reasoning
about operations on a binary tree. Since 2015, the third challenge typically deals
with concurrency – however, as not all tools participating in the competition
support reasoning about concurrency, the challenge is always set up in such a
way that it also has a sequential version. As an illustration of the kind of effort
required at VerifyThis, a solved, automatically provable by most tools solution to
the warm-up challenge from the FoVeOOS’11 competition [6] is shown in Fig. 1.

3

The maximum element property of the following array traversing procedure has to be
shown:

int max(int[] a) {

int x = 0, y = |a| - 1;

while(x != y)

if(a[x] <= a[y]) x++; else y--;

return x;

}

where |·| stands for array length. Under the assumption (precondition) of a non-null and
non-empty input array a, i.e. a 6= null∧ |a| > 0, the procedure correctness assertion
(postcondition) can be expressed as ∀0≤i<|a| a[i] ≤ a[r], where r is the procedure
result. The required while loop invariants to show this property are 0 ≤ x ≤ y < |a|,
∀0≤i≤x a[i] ≤ a[x]∨ a[i] ≤ a[y] and ∀y<j<|a| a[j] ≤ a[x]∨ a[j] ≤ a[y] with the y − x
termination measure. Teams express the procedure and specification in their tool’s
specific notation, in particular, the loop invariants can take different equivalent forms,
many of which are more compact, yet might be more difficult to read, see [6] for the
complete range of solutions.

Fig. 1. Search by elimination VerifyThis challenge from FoVeOOS’11 competition.

At the end of the 90 minutes, all teams are asked to submit their solutions
(also if they are only partial) to the organisers by email. These are the versions
that will be judged. However, teams sometimes also send a more complete version
later, as a kind of evidence how close they were to the full solution. This happens
in particular if somebody completes the challenges in the break right after the
challenge was finished.

The full collection of earlier challenges (with links to polished solutions) is
available from the VerifyThis webpage. This collection also serves as a bench-
mark set (beyond the competitions) in the program verification community, in
particular because it enables comparison in verification efforts and approaches
for different verification tools.

Participants & Tools. Over the years, the number of participants in VerifyThis
has grown slightly. The very first editions of the competition had about 6 to
8 teams participating; the more recent ones had 10 to 12 teams participating.
Most teams are “developer teams”, i.e., their members are actively working on
the development of the tool (sometimes even during the competition). However,
we have also had several non-developer teams participating, and in particu-
lar Dafny [28] is widely used. We specifically encourage participation of stu-
dents/PhD candidates. The most remarkable participation was a Dafny team at
ETAPS 2016 which was formed by Bachelor students from the Technical Univer-
sity of Eindhoven (where ETAPS was located that year). They had read about
the competition, and then taught themselves the basics of Dafny to participate
in the competition. Many of the participants joined the competition multiple

4

times: in general they find the competition quite engaging, and will try to come
back the next year.

Most of the tools are deductive program verifiers, which have explicit support
for imperative programming constructs (in contrast to theorem provers for math-
ematical logic) and explicit support for assertion languages of various flavours.
There are major differences in the way proofs are developed and checked, in the
degree of automation, and the programming and specification features. Never-
theless, the common aim of these deductive tools is full-functional correctness
proofs. We have also had several tools used in the competition that fall out-
side of this classification, such as the bounded model checkers CIVL [32] and
CMBC [27], the model checker mCRL2 [9], the interactive theorem prover Is-
abelle [30], and the termination prover AProVE [13].

Table 1 below gives an overview of all the tools that participated in the
competition, the number of times a team participated using the tool, and how
many times a team using the tool actually won a first prize or first student prize.

Tool # of teams # of prizes won
participating Overall/Student/Feature

AProVE [13] 1
AutoProof [35] 1
CBMC [27] 1
CIVL [32] 3 F:1
Dafny [28] 12
ESC/Java [8] 1
F* [34] 1
Frama-C [24] 2
Isabelle [30] 1 O:1
jStar [10] 1
KeY [1] 7
KIV [11] 5 S:3
mCRL2 [9] 2 F:1
MoCHi [26] 1
PAT [33] 1
Spark/Ada/GNATprove [14] 1 F:1
VCC [7] 1
VerCors [5] 5
VeriFast [22] 4 O:2
Viper [29] 2 F:1
Why3 [12] 9 O:2, S:4, F:1

Table 1. Overview of tools with teams participating in VerifyThis8

5

Side Events. As VerifyThis is an on-site competition, it means that it also pro-
vides an opportunity for the program verification community to meet and ex-
change ideas, establish and improve personal contacts, and to see, experience and
learn from each other’s tools. To encourage this exchange, we organise several
side events around the competition.

Since several years, before the competition itself starts, we therefore have
an invited tutorial on one of the program verification tools. So far, we have
tutorials about Dafny (Rustan Leino), Why3 (Jean-Christophe Filliâtre), and
Viper (Alexander J. Summers). We encourage the presenter to explain the main
characteristics of the tool, and to provide a challenge for the audience, so they get
hands-on experience with the tool. This tutorials are open to non-competition
participants as well, though typically it attracts only a few extra attendees.

Furthermore, on the evening of the competition, we organise a dinner for
all participants, where they can talk about their experiences during the day.
Usually, almost all participants join for the dinner, and there is a good, bonding
atmosphere.

Finally, the next day the judges (usually, the organisers who set the chal-
lenges) talk with all teams privately to evaluate their solutions. The versions
submitted by email form the basis for the discussion, and participants are given
the chance to explain their formalisation and which parts of the challenges they
have solved. Judges ask for clarifications and general questions (cf. Sec. 4.2).
Experience has shown that for the judges these discussions are very helpful for
understanding the solutions and the taken approaches, and thus for judging
them. As teams use different tools, without the explanation, the solutions are
much harder to understand and assess, and the judges might miss aspects of the
solutions.

In parallel, the participants meet among themselves and present their so-
lutions amongst each other. As all participants have been intensively thinking
about the same problem the day before, these discussions really help to gain in-
sights into how other program verification tools work, and their relative strengths
and weaknesses. This session occasionally is also attended by other conference
participants.

Competition Results. In most editions of VerifyThis prizes have been awarded
(see Table 1 for an overview). The prizes that are usually awarded are:

– best overall team,

– best student team, and

– distinguished tool feature.

Occasionally, the judges have decided to award a second prize in some cate-
gory, or to hand out two prizes (this happened in particular in the category of
distinguished tool feature). Thanks to our sponsors, we usually have been able

8 Please note that prizes have not been awarded every year, and sometimes two prizes
have been awaraded in a single category.

6

to hand out not only a certificate, but also a financial reward. No further order
on the participating teams is given.

In addition, in some years we have also had a prize for the best submitted
challenge, or the tool used by most teams. However, even though related to the
competition, these prizes are not for the competition effort itself, and are not
further discussed here.

Judging is done by considering the following aspects of the submitted solu-
tion:

– How close is the solution to a complete solution, i.e., how much work will it
be to finish verification of the code w.r.t. the implementation?

– Did the team capture all the relevant properties to be verified in the speci-
fication?

– How understandable and accessible are the specifications?

In general, the judges do not penalise the use of auxiliary annotations such as
loop invariants or intermediate assertions. Because of the time constraint, a tool
requiring many auxiliary annotations, already has a drawback. Often the judges
find it relatively straightforward to decide about a winner (and are relieved that
no further ordering on teams is required). In some cases, the decision required
more discussion, and careful re-examining of the submitted solutions.

3 The Impact of VerifyThis

In order to asses the impact of VerifyThis we conducted an online survey among
all previous participants. The survey consisted of three parts: 1) General ques-
tions, such as number of times participated, the current position, participation
as student and/or developer, 2) an assessment of recent advances and the state-
of-the-art of deductive verification tools relative to several categories of tool
qualities and features, and 3) the participant’s personal take-away from the
competition, including the impact it had on his/her research and career, as well
as feedback to the organisers. The questionnaire is included in Appendix A.

For the second part, we asked the participants more specifically for their
opinion about: which progress in recent years they considered most important,
which aspects could have the most impact if they were improved, and how this is
reflected in the development of the participants’ own verification tools. We were
interested specifically in the following categories, with an additional possibility
of submitting free form responses.

– Expressiveness and ease of use of specification languages

– Proof automation and guidance

– Integration with static analysis techniques (e.g. invariant inference)

– Verification debugging and counterexample generation

– Specification and proof refactoring

7

Position # responses developer

PhD/MSc student 5 0
Postdoc 3 3
Academic 6 5
Industry 2 2

Overall 16 10 0 1 2 3 4
0

2

4

6

8

1

7

5

2
1

times participated

#
re

sp
o
n
se

s

Fig. 2. Background of participants who took part in our questionnaire

Results. We received 16 responses from the approximately 80 previous partici-
pants that we contacted. Figure 2 shows the distribution of their current posi-
tions, respectively, whether they are tool developers, and how many times they
have participated. Note that there is one response of a person having not par-
ticipated in the competition itself (but presumably in the side events).

Table 3 shows the responses on the current state of verification tools w.r.t. the
five categories, ranked on a scale with four items. Based on the responses, the par-
ticipants agree that advances in all of these categories have been made, and sig-
nificantly so in expressiveness, automation, and debugging. However, no partici-
pant felt that a major breakthrough had been achieved in any of the categories.
Additional remarkable improvements that were mentioned in the free-form re-
sponses were proof support for safety and liveness properties, the automation of
separation logic, and integration of tools into development environments.

Regarding potential impact if major breakthroughs were to be achieved, the
most common answer was proof automation, followed by debugging capabilities,
and further advances in the expressiveness of specification languages. Integration
of static analysis into deductive tools was typically considered of minor impor-
tance. The free-form answers furthermore mentioned ease of use and graphical
interfaces, maturity and predictability of tools, integration into development pro-
cess and existing codebases. One answer suggested to address different properties
separately, i.e., separate functional specifications from canonical concerns such
as memory safety and race-freedom.

Participants who are also developers indicated a number of improvements
to their tools related to all of the above categories, partly in response to the
experience of the competition. The majority of completely new features was
related to expressiveness of specification languages, and one mention of each
proof automation and debugging, respectively. One free-form answer mentioned,
however, that major investments into all of the categories are planned.

Another result from the survey is that verification challenges serve as bench-
marks or regression tests of the tools, with five answers indicating 9 or more
challenges to be used in this way, and seven answers indicating between 3 and 6
challenges used.

All participants of the survey stated that they had enjoyed solving the chal-
lenges, and almost all indicated they particularly liked the exchange between

8

Specifying Proving Integration Debugging Refactoring
0

10

20

0 1

6

1

8
6

8 8
10

7

10

7

2

5

10 0 0 0 0

Which improvements have been achieved in the recent years?

#
re

sp
o
n
se

s

stayed the same minor improvements

significant improvements major breakthroughs

Specifying Proving Integration Debugging Refactoring
0

10

20

1 1 2 1 23
1

12

4

7

10

5

2

8 7

2

9

0

3

0

Which tool aspects would have the most impact if improved?

#
re

sp
o
n
se

s

no impact/irrelevant minor impact

significant impact major breakthrough

Specifying Proving Integration Debugging Refactoring
0

10

20

4 4

10

6

10

4 4 4

7

43
5

0 0 1
3

1 0 1 0

Which features were improved or implemented as response to the competition?

#
re

sp
o
n
se

s

no investment minor improvement

significant improvement novel feature

Fig. 3. Participants’ assessment on the current state of deductive verification tools

9

colleagues and learning about how other tools tackle challenges. The participants
were less excited about the Jury discussions (9 answers) and the presentation
sessions (7 answers with a suggestion that these should be more formally orga-
nized). An additional free-form response appreciated the publications associated
with the competitions that summarize the results and discuss the solutions.

Get Overview Verification Skills Tool Improvements Collaboration
0

10

20

0 0 1 0

5

13 12

66

2 3

9

5

1 0 1

How did you benefit from participation at VerifyThis?

#
re

sp
o
n
se

s

no benefit minor benefit

significant benefit key enabler

Fig. 4. Participants’ personal benefit from the VerifyThis events

Participating in the competition lead to personal take-away regarding the
following aspects: getting an overview and learning about state-of-the-art tech-
niques and tools, improving one’s own ability in specification and verification,
improving one’s own tools for day-to-day use, and establishing academic contacts
or collaborative research. The results are shown in Table 4: The most common
and greatest benefit, as indicated by the participants, is thereby to obtain a
better insight into other approaches.

We have received several suggestions to improve future instalments. Some an-
swers were related to potential off-line participation (reminiscent of VSComp [25]),
potentially for a subset of the challenges to facilitate participation. One response
suggested to release a “prepare for this” exercise beforehand, and one response
suggested to release a more difficult off-line challenge. There was the suggestion
to release partial information on the nature of the challenges in advance, i.e.,
which tool and library features would be helpful, to ease preparation. We were
also encouraged to increase the variety of verification problems.

Discussion. The feedback from the participants sheds some light into the mostly
academic perspective on the state-of-the-art and recent advances in deductive
verification tools.

The response rate of 20% was less than what we had hoped for. However,
clearly many of the younger participants of the earlier instalments are likely to
have completed their degrees and thus moved to another institution or industry.

Since the answers to the three tool-related questions had the same format,
we can attempt to investigate how well current research is aligned with those

10

aspects that are thought to be critical. Of the 66 data points for the question on
improvements made to the tools, there were 34 indications of “no investment”
to a particular aspect, and of these the majority of 26 answers is related to
integration with static analysis, debugging, and proof maintenance. While the
latter two features have been identified to have critical importance in industrial
context [31], they seem to be less important in academic verification projects,
which are often at a smaller scale w.r.t. the software being built, as well as the
team involved. Integration with static analysis, on the other hand, is arguably
a less active research area, and from personal communication we can report
scepticism on the usefulness of e.g., automatically inferred invariants.

Similarly, considering the motivation of improving the tools’ capabilities, al-
most all of the answers relate to personal benefit to the developers (and academic
users), i.e., related to solving the competitions better and to support ongoing
research. Only three (free-form) answers were related to other stakeholders (in-
dustry, customers, non-experts).

The personal impact of VerifyThis was overwhelmingly positive, with 7 replies
indicating that participation was the key enabler for the respective category. We
would also remark that 7 of 11 participants mentioned that improvements to
their tools were inspired by features of other tools observed at the competition.

Outlook. The more general question with respect to the impact of VerifyThis is
in which way can VerifyThis be understood as a controlled experiment? Which
measurements can be taken for a systematic better assessment of the potential
and improvements of modern verification tools over time? Given the diversity
in approaches, tools, and levels of experience of the participants in relation to
their (relatively) small numbers of participants and the great effort to develop
challenges and solutions, it is not likely that events like VerifyThis can arrive at
statistically sound scientific conclusions any time soon.

However, it is possible to keep track of some descriptive measures, similarly
to the data obtained by this survey, as a proxy that would provide an ongoing
and semi-rigorous evaluation that is independent of the individual challenges and
VerifyThis instalments. We therefore plan to conduct similar surveys on a routine
basis as part of the competition event. This will provide a more thorough, up-
to-date, and ongoing assessment of the field, in addition to the results reported
here.

4 The Human Factor

The feedback from Sec. 3 is very encouraging and suggests that VerifyThis has
succeeded as a community event, i.e., having achieved its first goal. However, it
is much less clear in which sense the current format of the competition including
the evaluation and summarization done in the corresponding publications, con-
stitutes to an experimental assessment of the usability of verification tools, i.e.,
the quality of user guidance, and feedback in case of failed verification attempts,
to tackle real verification problems? How do we even measure this?

11

As mentioned before, the crucial aspect in this discussion is that VerifyThis
takes the human into the loop. In fact, there are several ways in which the
outcome of a task depends on the person(s) performing the task, i.e., where the
human factor becomes visible, namely, through the abilities of the participants
during the competition to solve the challenge using their respective tools, as well
as through the ability of the judges to compensate for the varying tool contexts
and the need to be objective about the quality of (often partial) solutions.

4.1 The Human Factor in the Competition

Most competitions in the area of formal methods are unsupervised, i.e., fully
automated tools are run on a batch of challenges without human interaction
and the ranking is determined from the results that they produce (and, possibly,
their runtimes/memory consumption). VerifyThis is a supervised competition
since challenges are not submitted to a fully automatic analysis.

One aspect in the success of solving a particular problem, at a high-level,
is the experience of a competition participant with respect to the problem’s
characteristics (e.g., whether it involves pointer structures, concurrency, . . .).
This determines how hard or easy one may find it to come up with suitable
invariants, for example, or to employ clever approaches that lend themselves to
an elegant solution, mathematically.

As an example, even a seemingly trivial property like sortedness can be for-
malised in different ways, either stating that any element is not greater than
its successor (a[i] ≤ a[i + 1] for all i < |a| − 1), or stating that any element is
not greater than all succeeding elements (a[i] ≤ a[j] for all i < j < |a|). Note
that in order to derive the second formulation from the first one, an explicit
induction is needed, and hence the second one is strictly more “powerful” when
one may assume, e.g., a sorted input. Depending on the challenge, choosing the
right encoding may be the enabling key to a successful verification. In general,
finding the ideal encoding, the ideal function contract or the ideal loop invariant
can require a considerable amount of creativity and ingenuity.

Another aspect is that such intuition must be formalized into a concrete rep-
resentation of the specification within the confines of the deductive verification
tool. This task is usually more than a straightforward logical encoding of natural
language properties. Not only could logical choices (as the one above) critically
affect whether the automation can find a proof (at all resp. within a reasonable
time limit). Even benign things like the order of conjuncts can make a significant
difference. As a consequence, effective use of a verification tool may require sig-
nificant and detailed knowledge of the internal mechanics of the tool itself and
the verification infrastructure it is built on.

The central question regarding the goal of the VerifyThis competition is,
hence, whether it is

– a competition in which humans compete about their capabilities to perform
difficult verification tasks verification, or

12

– a competition in which the capabilities, strengths or weaknesses of the par-
ticipating verification tools come to light.

The conciliatory answer to this is that VerifyThis combines both, as these charac-
ters are inherently entangled by the nature of the field itself: Deductive program
verification for challenging, algorithmic problems with heavyweight properties is
far from begin a push-button technology–and probably always will be for suf-
ficiently complex challenges. Human and tool must play together to succeed.
Moreover, in all but trivial cases, a challenge will not be solved in one go, but
requires an iterative process towards the final solution. The design of the Veri-
fyThis competition reflects these aspects and thus mirrors reality in this respect.
The human factor is not added per se as an on-top feature to the competition,
but arises as an integral part of the specification and verification process. Fur-
thermore, the human factor brings to light the qualities of a verification tool in
the interactive process. For instance,

– usability and intuitiveness, in particular of the provided error messages,

– degree of automation,

– responsiveness (how easy is it to try a slightly changed specification),

– facilities to debug failed verification attempts, e.g. by producing counterex-
amples for failing specifications,

– the quality of counterexamples and their presentation,

– and the quality of a tool’s specification libraries

all manifest themselves through the human factor. To measure these aspects,
the human operator needs to be involved in the process and its evaluation.
The in-vitro character of the competition emphasizes the human factor since it
takes much experience to successfully interact with the tool under the tight time
constraints.

How can the competition and the challenges be designed to control the in-
fluence of the human factor?

Ideally, one would like to separate the abilities of the human expert from the
usability and performance of a tool when assessing the solution of a challenge.
Due to the mentioned entanglement, this is difficult. Even worse, missing expe-
rience or unfamiliarity with a particular part of the verification system or type
of specification, may be a showstopper for a team during the competition time.
Several ideas for the design of the competition have emerged that would allow
one to control the role of the human in the process, in particular by reducing its
impact.

Reduce the need for human creativity: If crucial proof-guiding annotations
(e.g. invariants) cannot be found, a solution to a challenge may become stuck
in early stages. To mitigate this factor, the challenge description could contain
logical formulations of such annotations. These hints could also be provided
in a closed envelope, to be opened at the discretion of the team only, or half
way through the time available for the challenge. This challenge scheme where
part of the solution is given away, suggests itself particularly for the warm-up

13

challenge where the solution is usually not so particular to the applied verification
technology.

As an alternative, instead of an algorithm-driven challenge, we could provide
a specification and ask to provide a verifiable implementation.

Reduce the need for experience: Experience with program verification in gen-
eral and with a particular verification tool have a prominent impact on the results
of the competition. To lessen this effect, one of the challenges could be solved by
ad-hoc teams composed during the competition. This has the potential to bring
together different experience levels and tool expertises, and would also provide
a great opportunity for knowledge transfer.

Decouple tools from their users: Verification tools may have a tendency to
be (over)fitted to the specification and verification style of their developers.
To lighten this bias, we could do a cross-validation experiment, where teams
are asked to reproduce a solution of another team, in their own specification
methodology using their own technique.

Another possible cross-validation experiment is to reserve one of the chal-
lenges as a competition of tool A vs. tool B (judged separately). This can be
incorporated into the tutorial session, where both these tools could be presented
but the audience is leveraged for a more systematical evaluation. Such an effort
could also be done off-line, similarly to the Isabelle competition9.

4.2 The Human Factor in the Judging

There is a second human factor involved with supervised competitions: Judging
cannot be automated to the same degree as it can with unsupervised competi-
tions. For the latter, ranking schemes can still be biased for particular tools or
approaches, but at least the criteria are defined a priori. Manually crafted so-
lutions are usually not comparable by pre-definable metrics, and require careful
examination. Therefore, for the judges, the most intensive activity of the com-
petition with substantial time urgency is the evaluation process to arrive at the
prize decision: the complete judging for all the teams and their solutions takes
just one (long) day. This activity is certainly receptive to the judges’ subjective
views and tastes, and thus another human factor.

The judges have to consider all the possible specification and verification
aspects in the solutions – parts that have been done, parts that could have been
done, and parts that were only completed to a certain degree, as well as the
automation level and tool support aspects. At the same time, the teams being
interviewed concentrate on the best and completed parts of their solution. Both
sides also tend to have a technology specific view – the teams look at the solution
and possible improvements from the point of view of their tool and method,
while the judges, even though staying impartial, would have their own expertise
and tool bias. This is especially true considering that the judging committee is
now different every competition instance and coming with their own expertise,
expectations, and often first time experience approach.

9 See https://competition.isabelle.systems.

14

https://competition.isabelle.systems

Defining objective criteria: In this context, one of the ideas that we would
like to implement in the future instalment of the competition to reduce the
biases and to optimize the judging process is a challenge solution form that the
teams should fill in along with the submission. The form would include generic
questions about the solution completeness, e.g.,

– “Have you specified the main functional property?”,
– “To what degree were you able to prove it?”,
– “Have you specified/proved the termination/memory safety/non-interference/

. . . properties?”,
– “Are the proofs automatic? If not, what is the user interaction effort?”,
– “Is the incompleteness of your solution due to insufficient proof guidance

(e.g., too weak invariants), or due to tool or method shortcomings?”,
– “Estimate how much time you would need to complete the task?”, etc.

Systematic judging process: Such questions would also give the teams the
chance to preliminary self-evaluate the solution before the discussion and prepare
some answers up-front. To not occupy the challenge solving time, this form can
be easily filled in between the challenge closing time and the judging, nevertheless
it should be obligatory.

A structured interview after the competition also helps to mitigate the human
factor and use it to our advantage: By explicitly querying about the usability
and interaction support of the tool (e.g., guided by the usability issues listed in
Sec. 4.1), both weaknesses and strengths can be learned by inspecting the impact
of the human factor during the competition. This feedback can then again help
developers to improve the user experience of their tools. One question that was
typically asked previously during judging was “which tool feature did you find
most helpful”, in order to determine the corresponding prize.

Another possibility is to integrate the judging and the team presentations
into a single event. This opens up the opportunity to involve all participants
in the judgement process through consensus (e.g. a voting or scoring scheme),
thereby avoiding potential bias of the judges on the competition’s outcome.

These suggestions can help in answering questions related to completeness of
solutions and usability of the tool. It still remains difficult to check whether a
given solution does in fact formalize the requirements adequately, i.e., whether it
is a correct solution. Answering this question is highly non-trivial as it involves
not only understanding the specification language of the tool, but also its meta-
theory and verification approach and what is, semantically, implied by proving
a particular statement. An example for this was last year’s third concurrency
challenge, which involved a lock-free data structure [17]: How fine-grained is the
concurrency model of the tool? How do the synchronization primitives work?
Such aspects can be illuminated in the dialogue between the judges and the
participants only.

Finally, one criterion where the human factor is intentionally brought into
the judging process is “elegance”. While elegance affects the ranking much less
than completeness and correctness of solutions, it may serve as a tie-breaker, and
is often recognized by singling out certain solutions in the competition reports.

15

5 Conclusion

We set out to reflect on the organisation of VerifyThis, discussed the compe-
tition’s format and impact to come up with several concrete ideas to improve
future events.

The survey in Sec. 3 showed that VerifyThis leads to an intense exchange
between participants, allowing them to gain a unique overview of the state-of-
the-art and establishing academic collaboration. The personal contact between
the participants is thereby a major strength of VerifyThis. VerifyThis has also
led to concrete improvements to the verification tools including a few completely
novel features.

In Sec. 4 we illustrated that the human factor in the competition is inherent
both in solving the challenges as well as in the judging. Human interaction (e.g.,
by providing a suitable encoding in the specification or by providing auxiliary
annotations) is indispensable in deductive program verification of sophisticated
properties. The human factor can thus not be fully eliminated from the com-
petition – nor should it be. The discussion led to a few suggestions responding
to the involved human factor: We identified a number of possible modifications
of the modalities of the challenges regarding the composition of the teams and
the design of the challenges. To mitigate the influence of the human factor in
the judging, we suggest to aid the process by questionnaires filled out by the
participants themselves.

Finally, we think it is important to widen our reach for a more diverse set of
tools that implement different approaches, such as software model checkers and
tools to synthesise specifications and programs that are correct by construction,
as attempted in Dagstuhl in 2014 [4].

The VerifyThis competition enriches the portfolio of the TOOLympics as it
differs from other competitions by explicitly incorporating the tool’s user into
the process.

Acknowledgement. We thank Microsoft Research, Amazon Web Services, Ga-
lois, and Formal Methods Europe for their support and generous sponsorship of
VerifyThis over the last years. We thank Rosemary Monahan for suggestions to
improve the competition format and feedback on the manuscript.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book: From Theory to Prac-
tice, Lecture Notes in Computer Science, vol. 10001. Springer (Dec 2016).
https://doi.org/10.1007/978-3-319-49812-6

2. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sut-
cliffe, G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions
in formal methods. In: Proc. TACAS, part 3. LNCS 11429, Springer (2019)

16

https://doi.org/10.1007/978-3-319-49812-6

3. Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:
25st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2019). LNCS, vol. 11429. Springer (2019), in this
volume

4. Beyer, D., Huisman, M., Klebanov, V., Monahan, R.: Evaluating Software Verifica-
tion Systems: Benchmarks and Competitions (Dagstuhl Reports 14171). Dagstuhl
Reports 4(4), 1–19 (2014)

5. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors Tool Set: Verifi-
cation of Parallel and Concurrent Software. In: iFM. LNCS, vol. 10510, pp. 102 –
110. Springer (2017)

6. Bormer, T., Brockschmidt, M., Distefano, D., Ernst, G., Filliâtre, J.C., Grigore,
R., Huisman, M., Klebanov, V., Marché, C., Monahan, R., Mostowski, W., Polikar-
pova, N., Scheben, C., Schellhorn, G., Tofan, B., Tschannen, J., Ulbrich, M.: The
COST IC0701 verification competition 2011. In: Beckert, B., Damiani, F., Gurov,
D. (eds.) International Conference on Formal Verification of Object-Oriented Sys-
tems (FoVeOOS 2011). LNCS, vol. 7421, pp. 3–21. Springer (2011)

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W.: VCC: a practical system for verifying concurrent C. In: TPHOLs
(2009)

8. Cok, D., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML: Progress and issues
in building and using ESC/Java2 and a report on a case study involving the use
of ESC/Java2 to verify portions of an internet voting tally system. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.L., Muntean, T. (eds.) Construction and Analysis
of Safe, Secure and Interoperable Smart Devices: Proceedings of the International
Workshop CASSIS 2004. LNCS, vol. 3362, pp. 108–128. Springer (2005)

9. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2013).
LNCS, vol. 7795, pp. 199–213. Springer (2013)

10. DiStefano, D., Parkinson, M.: jStar: Towards practical verification for Java. In:
ACM Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications. pp. 213–226. ACM Press (2008)

11. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: overview and
VerifyThis competition. International Journal on Software Tools for Technology
Transfer pp. 1–18 (2014)

12. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) 22nd European Symposium on Programming (ESOP 2013).
LNCS, vol. 7792, pp. 125–128. Springer (2013)

13. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker,
M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termi-
nation of programs automatically with AProVE. In: Automated Reasoning - 7th
International Joint Conference, IJCAR 2014. Lecture Notes in Computer Science,
vol. 8562, pp. 184–191. Springer (2014)

14. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and gnatprove
- A competition report from builders of an industrial-strength verifying compiler.
STTT 17(6), 695–707 (2015)

15. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis verification competition 2012
– organizer’s report. Tech. Rep. 2013-01, Department of Informatics, Karlsruhe
Institute of Technology (2013), available at http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000034373

17

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000034373
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000034373

16. Huisman, M., Monahan, R., Mostowski, W., Müller, P., Ulbrich, M.: VerifyThis
2017: A program verification competition. Tech. rep., Karlsruhe Reports in Infor-
matics (2017)

17. Huisman, M., Monahan, R., Müller, P., Paskevich, A., Ernst, G.: VerifyThis 2018:
A program verification competition. Tech. rep., Inria (2019)

18. Huisman, M., Monahan, R., Müller, P., Poll, E.: VerifyThis 2016: A program ver-
ification competition. Tech. Rep. TR-CTIT-16-07, Centre for Telematics and In-
formation Technology, University of Twente, Enschede (2016)

19. Huisman, M., Klebanov, V., Monahan, R.: On the organisation of program verifica-
tion competitions. In: Klebanov, V., Beckert, B., Biere, A., Sutcliffe, G. (eds.) 1st
International Workshop on Comparative Empirical Evaluation of Reasoning Sys-
tems (COMPARE 2012). CEUR Workshop Proceedings, vol. 873. CEUR-WS.org
(2012)

20. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012. Int. J. Softw. Tools
Technol. Transf. 17(6), 647–657 (Nov 2015)

21. Huisman, M., Klebanov, V., Monahan, R., Tautschnig, M.: VerifyThis 2015. A
program verification competition. Int. J. Softw. Tools Technol. Transf. 19(6), 763–
771 (2017)

22. Jacobs, B., Smans, J., Piessens, F.: Solving the verifythis 2012 challenges with
verifast. STTT 17(6), 659–676 (2015)

23. Jasper, M., Mues, M., Murtovi, A., Schlüter, M., Howar, F., Steffen, B., Schor-
dan, M., Hendriks, D., Schiffelers, R., Kuppens, H., Vaandrager, F.: RERS 2019:
Combining synthesis with real-world models. In: 25st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2019).
LNCS, vol. 11429. Springer (2019), in this volume

24. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

25. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience report. In: Butler, M., Schulte, W. (eds.) 17th International Symposium
on Formal Methods (FM 2011). LNCS, vol. 6664, pp. 154–168. Springer (2011)

26. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2011).
pp. 222–233. ACM (2011)

27. Kroening, D., Tautschnig, M.: CBMC - C bounded model checker - (competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2014). LNCS, vol. 8413, pp. 389–391. Springer (2014)

28. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR 2010). LNCS, vol. 6355,
pp. 348–370. Springer (2010)

29. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 9583, pp. 41–
62. Springer-Verlag (2016)

30. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

18

31. O’Hearn, P.W.: Continuous reasoning: Scaling the impact of formal methods. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. pp. 13–25. ACM (2018)

32. Siegel, S.F., Dwyer, M.B., Gopalakrishnan, G., Luo, Z., Rakamaric, Z., Thakur, R.,
Zheng, M., Zirkel, T.K.: CIVL: The concurrency intermediate verification language.
Tech. Rep. UD-CIS-2014/001, Department of Computer and Information Sciences,
University of Delaware (2014)

33. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fair-
ness. In: Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings. vol. 5643, pp. 709–714.
Springer (2009)

34. Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. J. Funct. Program. 23(4),
402–451 (2013)

35. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: Auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
21st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2015). LNCS, vol. 9035, pp. 566–580. Springer (2015)

19

A Survey Questions

As part of the celebration 20’s anniversary of TACAS, we are writing an article
on the VerifyThis competition. In contrast to previous publications on the series
(which emphasized the practical technical aspects), we would now like to focus
on the higher-level perspective that relates the competition to the field, the
community, as well as your personal view.

A.1 General questions

– How many times have you participated? [1–6]
– What is your current position? [Undergraduate, PhD/MSc, Postdoc, Aca-

demic, Other...]
– Have you participated as a student? [Yes, No, Both]
– Have you participated as a tool developer? [Yes, No]

A.2 Tool Improvement

– Which improvements in deductive verification tools do you think have been
achieved in the recent years?
Scale: [Stayed the same, Minor improvements, Significant improvements, Ma-
jor breakthroughs that have or will change the field]
Categories:
• Expressiveness and ease of use of specification languages
• Proof automation and guidance
• Integration with static analysis techniques (invariant inference, shape

analysis, ...)
• Verification debugging and counterexample generation
• Specification and proof refactoring

– Which tool aspects do you think could have the most impact if they were
improved?
Scale: [No impact/irrelevant, Minor impact, Significant impact, Major break-
throughs that would change the field]
Categories: (as above)

– Are there any other future improvements that you think need to happen?
– If you are a developer: Which changes to the tool were improved or imple-

mented as response to the experience at the competition?
Scale: [No investment, Minor improvements, Significant improvements, Novel
feature previously not present]
Categories: (as above)

– Are there any other future improvements that you would like to add to your
tool?

– If you are a developer: What was the motivation for adding new features?
• Missing feature required solve certain competition challenges
• For research unrelated to the competition
• Improvements to the verification process
• Other: . . .

20

A.3 Personal Take-Away

– How did you benefit from participation?
Scale: [Did not benefit, Minor benefit, Significant benefit, Major benefit that
was primarily enabled through participating at VerifyThis]
Categories
• Learn about state-of-the-art techniques and tools
• Improve own ability in specification and verification
• Improve own tool in day-to-day use
• Establish academic contacts or collaborative research

– How many of the VerifyThis challenges from the past serve currently as a
benchmark / test in the development of your tool?

– Which aspects of the event did you particularly enjoy?
• The challenge problems & solving them
• Presentation sessions among the participants
• Discussions with the jury
• Exchange with colleagues
• Leaning how other approaches tackle things
• Other: . . .

– How could future instalments be improved?

21

	VerifyThis – Verification Competitionwith a Human Factor
	Introduction
	Previous Editions
	The Impact of VerifyThis
	The Human Factor
	The Human Factor in the Competition
	The Human Factor in the Judging

	Conclusion
	Survey Questions
	General questions
	Tool Improvement
	Personal Take-Away

