
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Proc. CAV 2020, Springer

MetaVal: Witness Validation via Verification

Dirk Beyer and Martin Spiessl

LMU Munich, Germany

Abstract. Witness validation is an important technique to increase trust
in verification results, by making descriptions of error paths (violation
witnesses) and important parts of the correctness proof (correctness wit-
nesses) available in an exchangeable format. This way, the verification
result can be validated independently from the verification in a second
step. The problem is that there are unfortunately not many tools avail-
able for witness-based validation of verification results. We contribute to
closing this gap with the approach of validation via verification, which is
a way to automatically construct a set of validators from a set of existing
verification engines. The idea is to take as input a specification, a program,
and a verification witness, and produce a new specification and a trans-
formed version of the original program such that the transformed program
satisfies the new specification if the witness is useful to confirm the result
of the verification. Then, an ‘off-the-shelf’ verifier can be used to validate
the previously computed result (as witnessed by the verification witness)
via an ordinary verification task. We have implemented our approach in
the validator MetaVal, and it was successfully used in SV-COMP 2020
and confirmed 3 653 violation witnesses and 16 376 correctness witnesses.
The results show that MetaVal improves the effectiveness (167 uniquely
confirmed violation witnesses and 833 uniquely confirmed correctness
witnesses) of the overall validation process, on a large benchmark set. All
components and experimental data are publicly available.

Keywords: Computer-Aided Verification · Software Verification · Program
Analysis · Software Model Checking · Certification · Verification Witnesses ·
Validation of Verification Results · Reducer

1 Introduction

Formal software verification becomes more and more important in the development
process for software systems of all types. There are many verification tools
available to perform verification [4]. One of the open problems that was addressed
only recently is the topic of results validation [10, 11, 12, 37]: The verification
work is often done by untrusted verification engines, on untrusted computing
infrastructure, or even on approximating computation systems, and static-analysis
tools suffer from false positives that engineers in practice hate because they are
tedious to refute [20]. Therefore, it is necessary to validate verification results,

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) – 378803395.

https://doi.org/10.5281/zenodo.3831417
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-9169-9130
http://gepris.dfg.de/gepris/projekt/378803395

ideally by an independent verification engine that likely does not have the same
weaknesses as the original verifier. Witnesses also help serving as an interface to
the verification engine, in order to overcome integration problems [1].

The idea to witness the correctness of a program by annotating it with
assertions is as old as programming [38], and from the beginning of model checking
it was felt necessary to witness counterexamples [21]. Certifying algorithms [30]
are not only computing a solution but also produce a witness that can be used by
a computationally much less expensive checker to (re-)establish the correctness
of the solution. In software verification, witnesses became standardized1 and
exchangeable about five years ago [10, 11]. In the meanwhile, the exchangeable
witnesses can be used also for deriving tests from witnesses [12], such that an
engineer can study an error report additionally with a debugger. The ultimate
goal of this direction of research is to obtain witnesses that are certificates and
can be checked by a fully trusted validator based on trusted theorem provers,
such as Coq and Isabelle, as done already for computational models that are
‘easier’ than C programs [40].

Yet, although considered very useful, there are not many witness validators
available. For example, the most recent competition on software verification
(SV-COMP 2020) 2 showcases 28 software verifiers but only 6 witness validators.
Two were published in 2015 [11], two more in 2018 [12], the fifth in 2020 [37], and
the sixth is MetaVal, which we describe here. Witness validation is an interesting
problem to work on, and there is a large, yet unexplored field of opportunities. It
involves many different techniques from program analysis and model checking.
However, it seems that this also requires a lot of engineering effort.

Our solution validation via verification is a construction that takes as input
an off-the-shelf software verifier and a new program transformer, and composes a
witness validator in the following way (see Fig. 1): First, the transformer takes the
original input program and transforms it into a new program. In case of a violation
witness, which describes a path through the program to a specific program location,
we transform the program such that all parts that are marked as unnecessary
for the path by the witness are pruned. This is similar to the reducer for a
condition in reducer-based conditional model checking [14]. In case of a correctness
witness, which describes invariants that can be used in a correctness proof, we
transform the program such that the invariants are asserted (to check that they
really hold) and assumed (to use them in a re-constructed correctness proof).
A standard verification engine is then asked to verify that (1) the transformed
program contains a feasible path that violates the original specification (violation
witness) or (2) the transformed program satisfies the original specification and
all assertions added to the program hold (correctness witness).

MetaVal is an implementation of this concept. It performs the transformation
according to the witness type and specification, and can be configured to use
any of the available software verifiers 3 as verification backend.

1 Latest version of standardized witness format: https://github.com/sosy-lab/sv-witnesses
2 https://sv-comp.sosy-lab.org/2020/systems.php
3 https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020

https://github.com/sosy-lab/sv-witnesses
https://sv-comp.sosy-lab.org/2020/systems.php
https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020

Program

Witness

Specification

Program’

Specification’

TRUE

UNKNOWN

FALSE

Transformer Verifier

CPAchecker

Ultimate
Automizer

Symbiotic

. . .

Validator

Fig. 1: Validator construction using readily available verifiers

Contributions. MetaVal contributes several important benefits:

• The program transformer was a one-time effort and is available from now on.
• Any existing standard verifier can be used as verification backend.
• Once a new verification technology becomes available in a verification tool, it

can immediately be turned into a validator using our new construction.
• Technology bias can be avoided by complementing the verifier by a validator

that is based on a different technology.
• Selecting the strongest verifiers (e.g., by looking at competition results) can

lead to strong validators.
• All data and software that we describe are publicly available (see Sect. 6).

2 Preliminaries

For the theoretical part, we will have to set a common ground for the concepts
of verification witnesses [10, 11] as well as reducers [14]. In both cases, programs
are represented as control-flow automata (CFAs). A control-flow automaton
C = (L, l0, G) consists of a set L of control locations, an initial location l0 ∈ L,
and a set G ⊆ L × Ops × L of control-flow edges that are labeled with the
operations in the program. In the mentioned literature on witnesses and reducers,
a simple programming language is used in which operations are either assignments
or assumptions over integer variables. Operations op ∈ Ops in such a language
can be represented by formulas in first order logic over the sets V ,V ′ of program
variables before and after the transition, which we denote by op(V, V ′). In order to
simplify our construction later on, we will also allow mixed operations of the form
f(V) ∧ (x′ = g(V)) that combine assumptions with an assignment, which would
otherwise be represented as an assumption followed by an assignment operation.

1 void fun(uint x, uint y, uint z) {
2 if (x > y) {
3 z = 2∗x−y;
4 } else {
5 z = 2∗y−x+1;
6 }
7 if (z>y || z>x) {
8 return;
9 } else {

10 error();
11 }
12 }

Fig. 2: Example program for both correctness
and violation witness validation

2

53

7

8 10

x<=yx>y

z=2*x-y; z=2*y-x+1;

z>x||z>y !(z>x||z>y)

Fig. 3: CFA C of example
program from Fig. 2

The conversion from the source code into a CFA and vice versa is straight
forward, provided that the CFA is deterministic. A CFA is called deterministic if
in case there are multiple outgoing CFA edges from a location l, the assumptions
in those edges are mutually exclusive (but not necessarily exhaustive).

Since our goal is to validate (i.e., prove or falsify) the statement that a program
fulfills a certain specification, we need to additionally model the property to
be verified. For properties that can be translated into non-reachability, this can
be done by defining a set T ⊆ L of target locations that shall not be reached.
For the example program in Fig. 2 we want to verify that the call in line 10
is not reachable. In the corresponding CFA in Fig. 3 this is represented by the
reachability of the location labeled with 10. Depending on whether or not a
verifier accounts for the overflow in this example program, it will either consider
the program safe or unsafe, which makes it a perfect example that can be used
to illustrate both correctness and violation witnesses.

In order to reason about the soundness of our approach, we need to also
formalize the program semantics. This is done using the concept of concrete
data states. A concrete data state is a mapping from the set V of program
variables to their domain Z, and a concrete state is a pair of control location
and concrete data state. A concrete program path is then defined as a sequence
π = (c0, l0)

g1−→ . . .
gn−→ (cn, ln) where c0 is the initial concrete data state,

gi = (li−1, opi, li) ∈ G, and ci−1(V), ci(V
′) � opi. A concrete execution ex(π) is

then derived from a path π by only looking at the sequence (c0, l0) . . . (cn, ln)
of concrete states from the path. Note the we deviate here from the definition
given in [14], where concrete executions do not contain information about the
program locations. This is necessary here since we want to reason about the
concrete executions that fulfill a given non-reachability specification, i.e., that
never reach certain locations in the original program.

Witnesses are formalized using the concept of protocol automata [11]. A proto-
col automaton W = (Q,Σ, δ, q0, F) consists of a set Q of states, a set of transition
labels Σ = 2G × Φ, a transition relation δ ⊆ Q×Σ ×Q, an initial state q0, and
a set F ⊆ Q of final states. A state is a pair that consists of a name to identify

the state and a predicate over the program variables V to represent the state
invariant.4 A transition label is a pair that consists of a subset of control-flow
edges and a predicate over the program variables V to represent the guard
condition for the transition to be taken. An observer automaton [11, 13, 32, 34, 36]
is a protocol automaton that does not restrict the state space, i.e., if for each
state q ∈ Q the disjunction of the guard conditions of all outgoing transitions is
a tautology. Violation witnesses are represented by protocol automata in which
all state invariants are true. Correctness witnesses are represented by observer
automata in which the set of final states is empty.

3 Approach

3.1 From Witnesses to Programs

When given a CFA C = (L, l0, G), a specification T ⊆ L, and a witness
automaton W = (Q,Σ, δ, q0, F), we can construct a product automaton
AC×W = (L×Q, (l0, q0), Γ, T × F) where Γ ⊆ (L×Q)× (Ops× Φ)× (L×Q).
The new transition relation Γ is defined by allowing for each transition g in the
CFA only those transitions (S, ϕ) from the witness where g ∈ S holds:

Γ =
{(

(li, qi), (op, ϕ), (lj , qj)
) ∣∣ ∃S :

(
qi, (S, ϕ), qj

)
∈ δ, (li, op, lj) ∈ S

}
We can now define the semantics of a witness by looking at the paths

in the product automaton and mapping them to concrete executions in
the original program. A path of the product automaton AC,W is a se-
quence (l0, q0)

α0−→ . . .
αn−1−−−→ (ln, qn) such that

(
(li, qi), αi, (li+1, qi+1)

)
∈ Γ and

αi = (opi, φi).
It is evident that the automaton AC×W can easily be mapped to a new

program CC×W by reducing the pair (op, ϕ) in its transition relation to an
operation op. In case op is a pure assumption of the form f(V) then op will
simply be f(V) ∧ ϕ(V). If op is an assignment of the form f(V) ∧ (x′ = g(V)),
then op will be (f(V)∧ϕ(V))∧ (x′ = g(V)). This construction has the drawback
that the resulting CFA might be non-deterministic, but this is actually not
a problem when the corresponding program is only used for verification. The
non-determinism can be expressed in the source code by using non-deterministic
values, which are already formalized by the community and established in the
SV-COMP rules, and therefore also supported by all participating verifiers. The
concrete executions of CC×W can be identified with concrete executions of C by
projecting their pairs (l, q) on their first element. Let projC(ex(CC×W)) denote
the set of concrete executions that is derived this way. Due to how the relation Γ
of AC×W is constructed, it is guaranteed that this is a subset of the executions
of C, i.e., projC(ex(CC×W)) ⊆ ex(C). In this respect the witness acts in very
much the same way as a reducer [14], and the reduction of the search space is
also one of the desired properties of a validator for violation witnesses.
4 These invariants are the central piece of information in correctness witnesses. While
invariants that proof a program correct can be hard to come up with, they are usually
easier to check.

q0

q1

q2

qE

{x>y},>

o/w

{z=2*x-y;},>

o/w

o/w

{!(z>y||z>x)},>

Fig. 4: Violation witnessWV

2, q0

3, q1 5, q0

7, q07, q2

8, q210, qE 8, q0 10, q0

x>y,> x<=y,>

z=2*y-x+1;,>z=2*x-y;,>

!(z>x||z>y),>
z>x||z>y,>

!(z>x||z>y),>z>x||z>y,>

Fig. 5: Product automaton AC×WV

3.2 Programs from Violation Witnesses

For explaining the validation of results based on a violation witness, we consider
the witness in Fig. 4 for our example C program in Fig. 2. The program CC×WV

resulting from product automaton AC×WV
in Fig. 5 can be passed to a verifier.

If this verification finds an execution that reaches a specification violation, then
this violation is guaranteed to be also present in the original program. There
is however one caveat: In the example in Fig. 5, a reachable state (10, q0) at
program location 10 (i.e., a state that violates the specification) can be found
that is not marked as accepting state in the witness automaton WV . For a strict
version of witness validation, we can remove all states that are in T ×Q but not
in T × F from the product automaton, and thus, from the generated program.
This will ensure that if the verifier finds a violation in the generated program, the
witness automaton also accepts the found error path. The version of MetaVal
that was used in SV-COMP 2020 did not yet support strict witness validation.

3.3 Programs from Correctness Witnesses

Correctness witnesses are represented by observer automata. Figure 6 shows a
potential correctness witness WC for our example program C in Fig. 2, where
the invariants are annotated in bold font next to the corresponding state. The
construction of the product automaton AC×WC

in Fig. 7 is a first step towards
reestablishing the proof of correctness: the product states tell us to which control
locations of the CFA for the program the invariants from the witness belong.

The idea of a result validator for correctness witnesses is to

1. check the invariants in the witness and
2. use the invariants to establish that the original specification holds.

We can achieve the second goal by extracting the invariants from each state in the
product automaton AC×WC

and adding them as conditions to all edges by which
the state can be reached. This will then be semantically equivalent to assuming
that the invariants hold at the state and potentially make the consecutive proof
easier. For soundness we need to also ensure the first goal. To achieve that, we
add transitions into a (new) accepting state from T × F whenever we transition

q0

q1 q2

q3

z>y

q4

z>x

{x>y},> {x<=y},>

{z=2*y-x+1;},>{z=2*x-y;},>

o/wo/w

Fig. 6: Correctness witness WC

2, q0

3, q1 5, q2

7, q4 z>x7, q3z>y

8, q3

z>y
10, q3

z>y
8, q4

z>x
10, q4

z>x

x>y,> x<=y,>

z=2*y-x+1;,>z=2*x-y;,>

!(z>x||z>y),>
z>x||z>y,>

!(z>x||z>y),>z>x||z>y,>

Fig. 7: Product automaton AC×WC

into a state q and the invariant of q does not hold, and we add self-loops such
that the automaton stays in the new accepting state forever. In sum, for each
invariant, there are two transitions, one with the invariant as guard (to assume
that the invariant holds) and one with the negation of the invariant as guard
(to assert that the invariant holds, going to an accepting (error) state if it does
not hold). This transformation ensures that the resulting automaton after the
transformation is still a proper observer automaton.

4 Evaluation

This section describes the results that were obtained in the 9th Competition
on Software Verification (SV-COMP 2020), in which MetaVal participated as
validator. We did not perform a separate evaluation because the results of SV-
COMP are complete, accurate, and reproducible; all data and tools are publicly
available for inspection and replication studies (see data availability in Sect. 6).

4.1 Experimental Setup

Execution Environment. In SV-COMP 2020, the validators were executed in
a benchmark environment that makes use of a cluster with 168 machines, each
of them having an Intel Xeon E3-1230 v5 CPU with 8 processing units, 33GB
of RAM, and the GNU/Linux operating system Ubuntu 18.04. Each validation
run was limited to 2 processing units and 7GB of RAM, in order to allow up to
4 validation runs to be executed on the same machine at the same time. The time
limit for a validation run was set to 15min for correctness witnesses and to 90 s
for violation witnesses. The benchmarking framework BenchExec 2.5.1 was used
to ensure that the different runs do not influence each other and that the resource
limits are measured and enforced reliably [15]. The exact information to replicate
the runs of SV-COMP 2020 can be found in Sect. 3 of the competition report [4].

Benchmark Tasks. The verification tasks 5 of SV-COMP can be partitioned
wrt. their specification into ReachSafety, MemSafety, NoOverflows, and Termina-
tion. Validators can be configured using different options for each specification.
5 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

Table 1: Overview of validation for violation witnesses in SV-COMP 2020
Specification Measure CPAchecker CPA-wtt FShell-wtt MetaVal NITWIT UAutomizer

ReachSafety
(35 652

witnesses)

executed on 35 652 25 812 25 812 35 652 21 636 25 812
uniquely confirmed 3 043 42 175 44 398 547
jointly confirmed 8 019 6 010 6 740 1 566 8 055 3 802

Termination
(9 720

witnesses)

executed on 3 043 9 720 9 720
uniquely confirmed 566 9 235
jointly confirmed 1 539 256 1 493

NoOverflow
(3 149

witnesses)

executed on 3 149 3 149 3 149 3 149 3 149
uniquely confirmed 6 1 31 1 89
jointly confirmed 1 668 1 067 1 267 1 186 1 590

MemSafety
(2 681

witnesses)

executed on 2 681 2 213 2 681 2 681 2 681
uniquely confirmed 278 0 21 113 44
jointly confirmed 737 250 364 478 372

Table 2: Overview of validation for correctness witnesses in SV-COMP 2020
Specification Measure CPAchecker MetaVal UAutomizer

ReachSafety
(66 435 witnesses)

executed on 66 435 66 435 66 435
uniquely confirmed 1 750 391 708
jointly confirmed 17 592 13 862 16 834

NoOverflow
(3 179 witnesses)

executed on 3 179 3 179
uniquely confirmed 44 74
jointly confirmed 870 870

MemSafety
(4 426 witnesses)

executed on 4 426 4 426
uniquely confirmed 398 173
jointly confirmed 811 811

Validator Configuration. Since our architecture (cf. Fig. 1) allows for a
wide range of verifiers to be used for validation, there are many interesting
configurations for constructing a validator. Exploring all of these in order to
find the best configuration, however, would require significant computational
resources, and also be susceptible to over-fitting. Instead, we chose a heuristic
based on the results of the competition from the previous year, i.e., SV-COMP
2019 [3]. The idea is that a verifier which performed well at verifying tasks for a
specific specification is also a promising candidate to be used in validating results
for that specification. Therefore the configuration of our validator MetaVal
uses CPA-Seq as verifier for tasks with specification ReachSafety, Ultimate
Automizer for NoOverflow and Termination, and Symbiotic for MemSafety.

4.2 Results

The results of the validation phase in SV-COMP 2020 [5] are summarized in
Table 1 (for violation witnesses) and Table 2 (for correctness witnesses). For each
specification, MetaVal was able to not only confirm a large number of results

that were also validated by other tools, but also to confirm results that were
not previously validated by any of the other tools.6

For violation witnesses, we can observe that MetaVal confirms significantly
less witnesses than the other validators. This can be explained partially by
the restrictive time limit of 90 s. Our approach not only adds overhead when
generating the program from the witness, but this new program can also be
harder to parse and analyze for the verifier we use in the backend. It is also the
case that the verifiers that we use in MetaVal are not tuned for such a short
time limit, as a verifier in the competition will always get the full 15min. For
specification ReachSafety, for example, we use CPA-Seq, which starts with a
very simply analysis and switches verification strategies after a fixed time that
happens to be also 90 s. So in this case we will never benefit from the more
sophisticated strategies that CPA-Seq offers.

For validation of correctness witnesses, where the time limit is higher, this
effect is less noticeable such that the number of results confirmed by MetaVal is
more in line with the numbers achieved by the other validators. For specification
MemSafety, MetaVal even confirms more correctness witnesses than Ultimate
Automizer. This indicates that Symbiotic was a good choice in our configuration
for that specification. Symbiotic generally performs much better in verification
of MemSafety tasks than Ultimate Automizer, so this result was expected.

Before the introduction of MetaVal, there was only one validator for correct-
ness witnesses in the categories NoOverflow and MemSafety, while constructing
a validator for those categories with our approach did not require any addi-
tional development effort.

5 Related Work

Programs from Proofs. Our approach for generating programs can be seen as a
variant of the Programs from Proofs (PfP) framework [27, 41]. Both generate
programs from an abstract reachability graph of the original program. The
difference is that PfP tries to remove all specification violations from the graph,
while we just encode them into the generated program as violation of the standard
reachability property. We do this for the original specification and the invariants
in the witness, which we treat as additional specifications.
Automata-Based Software Model Checking. Our approach is also similar to that of
the validator Ultimate Automizer [10]. For violation witnesses, it also constructs
the product of CFA and witness. For correctness witnesses, it instruments the
invariants directly into the CFA of the program (see [10], Sect. 4.2) and passes the
result to its verification engine, while MetaVal constructs the product of CFA
and witness, and applies a similar instrumentation. In both cases, MetaVal’s
transformer produces a C program, which can be passed to an independent verifier.
Reducer-Based Conditional Model Checking. The concept of generating programs
from an ARG has also been used to successfully construct conditional verifiers [14].
6 In the statistics, a witness is only counted as confirmed if the verifier correctly stated
whether the input program satisfies the respective specification.

Our approach for correctness witnesses can be seen as a special case of this
technique, where MetaVal acts as initial verifier that does not try to reduce the
search space and instead just instruments the invariants from the correctness
witness as additional specification into the program.
Verification Artifacts and Interfacing. The problem that verification results are
not treated well enough by the developers of verification tools is known [1] and
there are also other works that address the same problem, for example, the work
on execution reports [19] or on cooperative verification [17].
Test-Case Generation. The idea to generate test cases from verification coun-
terexamples is more than ten years old [8, 39], has since been used to create
debuggable executables [31, 33], and was extended and combined to various
successful automatic test-case generation approaches [24, 25, 29, 35].
Execution. Other approaches [18, 22, 28] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, witness validation does not require
full counterexamples, but works on more flexible, possibly abstract, violation
witnesses from a wide range of verification tools.
Debugging and Visualization. Besides executing a test, it is important to un-
derstand the cause of the error path [23], and there are tools and methods to
debug and visualize program paths [2, 9, 26].

6 Conclusion

We address the problem of constructing a tool for witness validation in a system-
atic and generic way: We developed the concept of validation via verification,
which is a two-step approach that first applies a program transformation and
then applies an off-the-shelf verification tool, without development effort.

The concept is implemented in the witness validator MetaVal, which has
already been successfully used in SV-COMP 2020. The validation results are
impressive: the new validator enriches the competition’s validation capabilities by
164 uniquely confirmed violation results and 834 uniquely confirmed correctness re-
sults, based on the witnesses provided by the verifiers. This paper does not contain
an own evaluation, but refers to results from the recent competition in the field.

The major benefit of our concept is that it is now possible to configure a
spectrum of validators with different strengths, based on different verification
engines. The ‘time to market’ of new verification technology into validators is
negligibly small because there is no development effort necessary to construct
new validators from new verifiers. A potential technology bias is also reduced.

Data Availability Statement. All data from SV-COMP 2020 are publicly
available: witnesses [7], verification and validation results as well as log files [5], and
benchmark programs and specifications [6] 7. The validation statistics in Tables 1
and 2 are available in the archive [5] and on the SV-COMP website 8. MetaVal 1.0
is available on GitLab 9 and in our AEC-approved virtual machine [16].
7 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
8 https://sv-comp.sosy-lab.org/2020/results/results-verified/validatorStatistics.html
9 https://gitlab.com/sosy-lab/software/metaval/-/tree/1.0

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://sv-comp.sosy-lab.org/2020/results/results-verified/validatorStatistics.html
https://gitlab.com/sosy-lab/software/metaval/-/tree/1.0

References

1. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28–42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

2. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent pro-
gram executions. In: Proc. COMPSAC. pp. 541–546. IEEE (2007).
https://doi.org/10.1109/COMPSAC.2007.236

3. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

4. Beyer, D.: Advances in automatic software verification: SV-COMP
2020. In: Proc. TACAS (2). pp. 347–367. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_21

5. Beyer, D.: Results of the 9th International Competition on Software Verification
(SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3630205

6. Beyer, D.: SV-Benchmarks: Benchmark set of 9th Intl. Competition on Software Ver-
ification (SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3633334

7. Beyer, D.: Verification witnesses from SV-COMP 2020 verification tools. Zenodo
(2020). https://doi.org/10.5281/zenodo.3630188

8. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

9. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Proc. CAV (2). pp. 502–509. LNCS 9780, Springer
(2016). https://doi.org/10.1007/978-3-319-41540-6_28

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

13. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-
flow analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_16

14. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based con-
struction of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018).
https://doi.org/10.1145/3180155.3180259

15. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

16. Beyer, D., Spiessl, M.: Replication package (virtual machine) for article
‘MetaVal: Witness validation via verification’ in Proc. CAV ’20. Zenodo (2020).
https://doi.org/10.5281/zenodo.3831417

17. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Sur-
vey and unifying component framework. arXiv/CoRR 1905(08505) (May 2019),
https://arxiv.org/abs/1905.08505

https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3630205
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3630188
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.5281/zenodo.3831417
https://arxiv.org/abs/1905.08505

18. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Auto-
matically generating inputs of death. In: Proc. CCS. pp. 322–335. ACM (2006).
https://doi.org/10.1145/1180405.1180445

19. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model
checker execution reports. In: Proc. ASE. pp. 200–205. IEEE (2017).
https://doi.org/10.1109/ASE.2017.8115633

20. Christakis, M., Bird, C.: What developers want and need from program
analysis: An empirical study. In: Proc. ASE. pp. 332–343. ACM (2016).
https://doi.org/10.1145/2970276.2970347

21. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proc. DAC. pp.
427–432. ACM (1995). https://doi.org/10.1145/217474.217565

22. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: Combining static
checking and testing. In: Proc. ICSE. pp. 422–431. ACM (2005).
https://doi.org/10.1145/1062455.1062533

23. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Proc. FM. pp. 187–201.
LNCS 7436, Springer (2012). https://doi.org/10.1007/978-3-642-32759-9_17

24. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
Proc. PLDI. pp. 213–223. ACM (2005). https://doi.org/10.1145/1065010.1065036

25. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Proc. FSE. pp. 117–127. ACM (2006).
https://doi.org/10.1145/1181775.1181790

26. Gunter, E.L., Peled, D.A.: Path exploration tool. In: Proc. TACAS. pp. 405–419.
LNCS 1579, Springer (1999). https://doi.org/10.1007/3-540-49059-0_28

27. Jakobs, M.C., Wehrheim, H.: Programs from proofs: A framework for the safe
execution of untrusted software. ACM Trans. Program. Lang. Syst. 39(2), 7:1–7:56
(2017). https://doi.org/10.1145/3014427

28. Li, K., Reichenbach, C., Csallner, C., Smaragdakis, Y.: Residual investigation:
predictive and precise bug detection. In: Proc. ISSTA. pp. 298–308. ACM (2012).
https://doi.org/10.1145/2338965.2336789

29. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proc. ICSE. pp. 416–426. IEEE
(2007). https://doi.org/10.1109/ICSE.2007.41

30. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certi-
fying algorithms. Computer Science Review 5(2), 119–161 (2011).
https://doi.org/10.1016/j.cosrev.2010.09.009

31. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verifi-
cation attempts. In: Proc. FM. pp. 73–87. LNCS 6664, Springer (2011).
https://doi.org/10.1007/978-3-642-21437-0_8

32. Plasil, F., Visnovsky, S.: Behavior protocols for software com-
ponents. IEEE Trans. Software Eng. 28(11), 1056–1076 (2002).
https://doi.org/10.1109/TSE.2002.1049404

33. Rocha, H., Barreto, R.S., Cordeiro, L.C., Neto, A.D.: Understanding programming
bugs in ANSI-C software using bounded model checking counter-examples. In: Proc.
IFM. pp. 128–142. LNCS 7321, Springer (2012). https://doi.org/10.1007/978-3-642-
30729-4_10

34. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

35. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for C. In:
Proc. FSE. pp. 263–272. ACM (2005). https://doi.org/10.1145/1081706.1081750

36. O. Ŝerý: Enhanced property specification and verification in Blast. In: Proc. FASE.
pp. 456–469. LNCS 5503, Springer (2009)

https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/217474.217565
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1145/3014427
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/1081706.1081750

37. Svejda, J., Berger, P., Katoen, J.P.: Interpretation-based violation witness valida-
tion for C: NitWit. In: Proc. TACAS. pp. 40–57. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_3

38. Turing, A.: Checking a large routine. In: Report on a Conference on High Speed
Automatic Calculating Machines. pp. 67–69. Cambridge Univ. Math. Lab. (1949)

39. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

40. Wimmer, S., von Mutius, J.: Verified certification of reachability checking for
timed automata. In: Proc. TACAS. pp. 425–443. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_24

41. Wonisch, D., Schremmer, A., Wehrheim, H.: Programs from proofs: A
PCC alternative. In: Proc. CAV. pp. 912–927. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_65

https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-030-45190-5_24
https://doi.org/10.1007/978-3-642-39799-8_65

	MetaVal: Witness Validation via Verification

