
Domain-Independent Interprocedural Program Analysis
using Block-Abstraction Memoization

Dirk Beyer
LMU Munich, Germany

Karlheinz Friedberger
LMU Munich, Germany

ABSTRACT

Whenever a new software-verification technique is developed, ad-

ditional effort is necessary to extend the new program analysis to

an interprocedural one, such that it supports recursive procedures.

We would like to reduce that additional effort. Our contribution

is an approach to extend an existing analysis in a modular and

domain-independent way to an interprocedural analysis without

large changes: We present interprocedural block-abstraction memo-

ization (BAM), which is a technique for procedure summarization to

analyze (recursive) procedures. For recursive programs, a fix-point

algorithm terminates the recursion if every procedure is sufficiently

unrolled and summarized to cover the abstract state space.

BAM Interprocedural works for data-flow analysis and for model

checking, and is independent from the underlying abstract domain.

To witness that our interprocedural analysis is generic and config-

urable, we defined and evaluated the approach for three completely

different abstract domains: predicate abstraction, explicit values,

and intervals. The interprocedural BAM-based analysis is imple-

mented in the open-source verification framework CPAchecker. The

evaluation shows that the overhead for modularity and domain-

independence is not prohibitively large and the analysis is still

competitive with other state-of-the-art software-verification tools.

CCS CONCEPTS

· Software and its engineering → Formal methods; Formal

software verification; · Theory of computation → Program

verification; Verification by model checking.

KEYWORDS

Software Verification, Interprocedural ProgramAnalysis, Recursive

C Program, Block Abstraction, Procedure Summary

ACM Reference Format:

Dirk Beyer and Karlheinz Friedberger. 2020. Domain-Independent Interpro-

cedural Program Analysis using Block-Abstraction Memoization. In Proceed-

ings of the 28th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-

vember 8ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3368089.3409718

Funded in part by Deutsche Forschungsgemeinschaft (DFG) ś 378803395 (ConVeY).
A reproduction package is available on Zenodo [11].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409718

1 INTRODUCTION

Software verification has been successfully applied to improve the

quality and reliability of computer programs [2, 3, 19, 22, 28, 30, 40].

In the last decades, several algorithms and approaches were de-

veloped to perform software model checking for various kinds of

C programs. However, only a few verifiers for C support full inter-

procedural analysis, that is, verification of recursive programs: Only

13 out of 22 tool submissions (17 different tools) in the 2020 com-

petition on software verification [5] participated successfully in

the benchmark category of recursive tasks.

A program analysis is called interprocedural if procedures are

analyzed separately and verification results are merged together

from the separate results. The idea is that a program analysis does

not depend on long traces through the program, but analyzes pro-

cedures independently from each other, such that the result of a

procedure’s analysis can be used at all call sites with the same con-

text (e. g., with the same abstract arguments). Many verifiers inline

called procedures into the calling procedure and verify long traces

through a program without any benefit from a modular approach.

This not only hinders the reuse of sub-results of the analysis, but

also makes it impossible to verify unbounded recursive programs.

We present BAM Interprocedural, a generalization of summary-

based interprocedural analysis. The abstract framework is an ex-

tension of block-abstraction memoization (BAM) [9, 57] and is

currently used to verify reachability properties about programs.

Example. We outline how to prove the correctness of the example

program in Fig. 1 (illustrated in Fig. 2), which uses two unsigned in-

teger variables a and b, and nondeterministically initializes them as

input for the recursive procedure sum, which returns the sum of its

arguments. The program is deemed correct if error () is not called.

This program can not be verified by a default bounded model

checker that iteratively unrolls the recursion, because the number

of unrollings is unknown. However, using a procedure summary

like ret =m + n, wherem and n are the parameters of procedure

sum and ret is the return value of the procedure call, would help

with the verification. This summary is a valid abstraction for the

control-flow for every call of the procedure sum and can be applied

as a substitution for the initial call in proceduremain as well as

for the recursive call in procedure sum itself. For a fully automated

analysis, the verification algorithmmust come up with this (or some

similar) summary and apply it as part of the proof strategy.

This example program requires an abstract domain that tracks re-

lations between variables. Thus, a standard predicate analysis (such

as in Sect. 4) is able to infer such predicates (e. g., via CEGAR [27]

and interpolation [43]) and can soundly apply procedure summaries

for all call-sites of a procedure. In general, our approach works on

a domain-independent level and does not depend on SMT-based

summaries. The combination of procedure summaries with a fixed-

point algorithm computes an over-approximation of the reachable

50

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409718
https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1145/3368089.3409718

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

1 void main(void) {

2 uint a = nondet();

3 uint b = nondet();

4 uint s = sum(a, b);

5 if (s != a + b) {

6 error();

7 }

8 }

9

10 uint sum(uint n, uint m) {

11 if (n == 0) {

12 return m;

13 } else {

14 uint tmp = sum(n - 1, m + 1);

15 return tmp;

16 }

17 }

Figure 1: Example program with a recursive procedure sum

2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a,b)

[s , a + b] [s = a + b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n − 1,m + 1)

returnm

return tmp

Bsum

Bmain

call s
um

return from sum

call sum

return from sum

Figure 2: CFAs for the example program in Fig. 1, with pro-

cedure blocks Bmain and Bsum

state space of the recursive procedure. The algorithm first deter-

mines a procedure summary for a single unrolling of the procedure,

i. e., for all paths through the procedure that are not traversing

the recursive call. Using the above mentioned abstract domain, the

analysis obtains a summary like ret =m +n in this first step. Then,

the algorithm applies the computed procedure summary to the

recursive call and explores longer paths through the program and

refines the procedure summary until the algorithm cannot explore

any new path. For the given example, applying this summary once

for the recursive procedure call within the procedure sum does

not change the summary of the whole procedure sum, thus it is

sufficient to reach a fixed-point and the analysis can terminate.

Contribution. Our contribution consists of three parts:

(1) We present a domain-independent approach of BAM [57]

for a fully interprocedural analysis: every procedure is analyzed

separately and the result of a procedure’s analysis (an abstraction of

the procedure, also known as łprocedure summaryž) is integrated

in the analysis of the calling context.

(2) A program might contain unbounded recursion (e. g., the re-

cursion depth is depending on unknown input). Instead of just

cutting off program traces at a predefined depth, our analysis ter-

minates the unrolling of a recursive procedure in a sound way once

a fixed point is reached, and does not omit feasible error paths. The

fixed-point algorithm iteratively increments the unrolling of the

recursion until no new abstract state is reachable. The algorithm

is domain-independent, because only coverage checks for abstract

states are used, which are already provided by each abstract domain.

The overhead is negligible for non-recursive programs.

(3) We formally define an additional domain-specific operator

rebuild in the framework, such that recursive procedures can be

handled in every domain. This operator restores eliminated infor-

mation of the calling context after leaving a recursive call.

Related Work. As programs with (recursive) procedures have

been analyzed and also verified since decades, many ideas are al-

ready available and implemented in some tools. We give a short

overview of the tools and the domains they are based on.

Inlining-Based Analysis. A common approach to analyze proce-

dures in bounded model checking is to unroll them up to a certain

limit and ignore any deeper recursive calls. Tools like Cbmc [29],

Esbmc [36], and Smack [47] implement this approach, which leads

to an unsound analysis in combination with recursive procedure

calls, because there is no guarantee that the bug is unreachable

through further unrolling. Without the user specifying a bound, the

model checker might run into an endless unrolling of the recursion.

Constant propagation (like in Cbmc) or additional checks can avoid

too far unrolling of recursive procedures. Also unbounded frame-

works like CPAchecker [15] have several analyses based on different

domains [16, 17, 46] that inline procedure calls. Our approach is

built on top of them and reuses existing components, such that the

amount of changes to a single analysis is minimal.

Interpolation-Based Summaries. Some approaches to verify re-

cursive programs start with a the analysis of single procedures

and compute procedure summaries when applying nested func-

tion calls. The bounded model checker FunFrog [53, 54] generates

interpolation-based [33] procedure summaries to avoid the repeated

analysis of procedures. Whale [1] is an extension of Impact [44] and

analyzes recursive procedures using two types of formulas in its

intra-procedural analysis, namely state- and transition-interpolants,

to get summaries. Those approaches separately analyze each pro-

cedure until a fixed-point is reached and the procedures (or the

representing formulas) are sufficiently refined. UAutomizer uses

nested interpolants [38] to compute formulas for procedures de-

pending on the caller’s context. Those approaches are bound to

an SMT-based domain and the algorithms do not support combi-

nations with other domains.

Further Domain-Specific Interprocedural Analyses. Bebop [4]

computes procedure summaries for boolean programs. The applica-

tion of Bebop however is limited to boolean programs and abstract

states are described with binary decision diagrams. Abductor [23] is

an interprocedural program verifier that applies the domain of sepa-

ration logic to provememory-related safety properties. Additionally,

a recursive program can be transformed into a non-recursive one,

such that any verification tool without direct support for recur-

sion can be used indirectly to analyze the recursive program. For

example, CPArec [26] is a light-weight approach using an external

black-box verifier and a fixed-point algorithm that increments the

unrolling depth to compute procedure summaries until coverage is

reached. This approach is limited to predicate-based verifiers.

51

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Interprocedural Data-Flow Analysis. The above examples are

based on symbolic analysis, i. e., depending on BDD-, SAT-, or SMT-

based domains, while our proposed approach works for classic data-

flow domains as well. Since many years, programs were analyzed

in interprocedural manner using several lattice-based domains [31,

50] and with procedure summaries [55]. The classic approach to

interprocedural data-flow analysis [21, 41, 48] is restricted to finite-

height lattices of domain elements and an operator yielding the

join of two domain elements.

BAM Interprocedural works for arbitrary, unlimited abstract

domains and different operators for combining elements (depending

on the represented data, not only join) or coverage checks for

elements (domain-specific comparison).

2 BACKGROUND

We describe the program representation as a control-flow automa-

ton and domain-independent reachability analysis based on the

concept of configurable program analysis. Afterwards, their appli-

cation as components in an interprocedural analysis is shown.

2.1 Programs

A program is represented by a control-flow automata (CFA) A =

(L, l0,G) that consists of a set L of program locations, an initial

program location l0 ∈ L, and a setG ⊆ L×Ops ×L of control-flow

edges. An edge models the control-flow operation (from Ops) be-

tween program locations, for example assignments or assumptions.

Figure 2 represents the example program as CFAs. Our presentation

uses a simple imperative programming language, which allows only

assignments, assume operations, procedure calls and returns, and

all variables are integers. The implementation of our tool provides

basic support for heap-related data-structures including pointers

and arrays, but this article avoids them for simplicity. In general,

CPAchecker [15] supports the verification of C programs including

pointers and arrays. However, the analysis of recursive procedures

for such programs is still under development and a topic of research.

2.2 Blocks in a Program

Blocks are formally defined as parts of a program: A block B =

(L′
,G ′) of a CFA A = (L, l0,G) consists of a set L′ ⊆ L of

program locations and a set G ′
= {(l1,op, l2) ∈ G | l1, l2 ∈ L′}

of control-flow edges. We assume that two blocks B and

B′ are either disjoint (B.L′ ∩ B′.L′ = ∅) or one block is

completely nested in the other block (B.L′ ⊂ B′.L′). Each

block has input and output locations, which are defined as

In(B) = {l∈L′ | (∃l ′:(l ′, ·, l)∈G ∧ l ′<L′) ∨ (∄l ′:(l ′, ·, l)∈G)} and

Out(B) = {l∈L′ | (∃l ′:(l , ·, l ′)∈G ∧ l ′<L′) ∨ (∄l ′:(l , ·, l ′)∈G)}, re-
spectively. In general, the block size can be freely chosen in our

approach. For an interprocedural analysis, we use procedures as

blocks, such that a block abstraction represents a procedure sum-

mary. In Fig. 2, the blocks Bmain and Bsum represent the two pro-

cedures of the program. The input and output locations are marked

in color for each block.

2.3 CPA and CPA Algorithm

The reachability analysis is based on the concept of configurable

program analysis (CPA) [13], which specifies the abstract domain

for a program analysis and additional operations.

A CPA D = (D,{,merge, stop) consists of an abstract do-

main D, a transfer relation{, and the operators merge and stop.

The abstract domain D = (C, E, [[·]]) consists of a set C of concrete

states, a semi-lattice E = (E,⊑) over a set E of abstract-domain

elements (i. e., abstract states) and a partial order ⊑ (the join ⊔ of

two elements and the join ⊤ of all elements are unique), and a con-

cretization function [[·]] : E → 2C that maps each abstract-domain

element to the represented set of concrete states. The transfer rela-

tion{⊆ E × E computes abstract successor states, a transfer rela-

tion
д
{ matches the transfer along an edge д ∈ G of the CFA. The

merge operator merge : E × E → E specifies if and how to merge

two abstract states when control flow meets. The stop operator

stop : E × 2E → B determines whether an abstract state is covered

by a given set of abstract states. The operators merge and stop can

be chosen appropriately to influence the abstraction level of the

analysis. Common choices includemergesep (e, e ′) = e ′ (which does

not merge abstract states) and stopsep (e,R) = (∃e ′ ∈ R : e ⊑ e ′)

(which determines coverage by checking whether the given ab-

stract state is less than or equal to any other reachable abstract

state according to the semi-lattice).

Given a CPA, we can apply a reachability algorithm (denoted

as CPA algorithm in [13]) that explores the abstract state space

of a program and computes all reachable abstract states. The stop

operator determines the fixed-point criteria, i. e., whether a state

has already been discovered before. For the following description,

we consider a reachability analysisCPA(D, reached,waitlist) using

a CPAD and two sets reached andwaitlist of abstract states as input

and returning two sets reached′ andwaitlist′ of abstract states. The

idea is that starting with the given sets of already reached abstract

states and a frontier waitlist, the reachability algorithm computes

more reachable successors and a new frontier waitlist.

The CPA algorithm can be used as component in a CEGAR-based

fixed-point loop [27] to refine the granularity of the current analysis.

For simplicity we ignore the precision in this article.

In the following Sect. 3, we describe our interprocedural exten-

sion of block-abstraction memoization, and then in Sect. 4 pro-

vide an application of the concept to three separate domains: the

Callstack-CPA for tracking a call stack of the program, the Value-

CPA for tracking variable assignments explicitly, and the Predicate-

CPA for handling variable assignments with predicates.

3 BAM FOR INTERPROCEDURAL ANALYSIS

Block-Abstraction Memoization (BAM) [57] is a modular and scal-

able approach for model checking abstract state spaces by leverag-

ing the idea of divide and conquer. BAM divides a large program

into smaller parts, named blocks, and analyzes them separately.

The result of a block’s analysis is denoted as a block abstraction.

Block abstractions are stored in a cache. Whenever a larger block

depends on a nested block, a block abstraction of the nested block

is created during the larger block’s analysis. Block abstractions are

independent of a concrete domain and work on an abstract level.

52

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

There can be several block abstractions for the same block, e. g.,

depending on different input values of the block.

In the following, we use procedures as blocks. More precisely,

a procedure block Bf consists of the procedure f itself and all pro-

cedures that are (transitively) called from f , such that the whole

control-flow of nested blocks, including call and return edges, is

included in the block Bf (see Fig. 2).

BAM ensures efficiency by using a cache cache ⊆ (Blocks×E) →

(2E×2E) for block abstractions, whichmaps the initial abstract state

for a block to the block abstraction. The block abstraction is defined

as the set of reached abstract states and the set of frontier abstract

states, which both are computed during the block’s analysis.

BAM is defined recursively (independent of any recursion in the

analyzed program) and repeatedly (nestedly) applies the reacha-

bility analysis. Our implementation of BAM uses a stack of pairs

p ∈ Blocks × E that consists of all currently open analyses ref-

erenced by their block of the CFA to be analyzed and an initial

abstract state (starting point of the block abstraction).

This section defines BAM Interprocedural. We show that pro-

cedure blocks correspond to procedure summaries, describe the

problems of analyzing recursive procedures, the necessity of the

fixed-point algorithm, and a new operator rebuild.

3.1 Operators of BAM

BAM uses two complementing operators reduce ⊆ Blocks ×E → E

and expand ⊆ Blocks × E × E → E, and an additional operator

rebuild ⊆ E × E × E → E, to drop or restore context-based infor-

mation for each analyzed block. A CPA with these three additional

operators is called CPAwith BAM operators. On an abstract level, the

reduce operator performs an abstraction of the given abstract state

and the expand operator concretizes an abstract state for a given

context. These operators aim towards an interprocedural analysis

where each block can be analyzed without knowing its concrete

context. How much of this context-independence can be achieved

depends on the concrete domain (see Sect. 4 for more details). The

implicit benefit of the first two operators is an improvement of the

cache-hit-rate. The operator reduce drops unimportant informa-

tion from an abstract state when entering a block. The resulting

abstract state is more abstract and is used as cache key and as ini-

tial abstract state for the block’s analysis. The importance of some

information depends on the wrapped analysis and the available

block. For example, variables, predicates, or levels of the call stack

that are not accessed inside the entered block, but only depend on

the surrounding context, might be good candidates to be removed

from the abstract state. The operator expand restores removed in-

formation for abstract states when applying the block abstraction in

the surrounding context. The operator rebuild avoids collisions of

program identifiers (like variables) when returning from a (possibly

recursive) procedure scope into its calling context. This operator

does not compute an abstraction, but performs simple operations

depending on the given abstract domain such as renaming variables,

substituting predicates, or updating indices.

With these operators, we now formally define the CPA for BAM.

Algorithm 1 fixedPoint(Bmain , l0, e0)

Input: block Bmain with initial program location l0, abstract state e0
Output: set of reachable states, which all represent output states

of the block Bmain

Global Variables: boolean flag fixedpointReached

Variables: set blockResult of abstract states

1: repeat

2: fixedpointReached := true ;

3: blockResult := applyBlockAbstraction(Bmain, e0);

4: until fixedpointReached

5: return blockResult;

3.2 BAM as CPA

For usage with the CPA concept (see Sect. 2.3), BAM itself is for-

malized as a CPA BAM = (DBAM,{BAM,mergeBAM, stopBAM).

As BAM works on an abstract, domain-independent level, it re-

quires a separate abstract-domain-dependent analysis (like the

value analysis or predicate analysis) to track variables, values, and

assignments. This separate component analysis is also defined via

the CPA concept (see Sect. 4). For the following definition we

denote it as a general (wrapped) CPA with BAM operators W =

(DW,{W,mergeW, stopW, reduceW, expandW, rebuildW).

(1) The domain DBAM is the wrapped domain DW, i. e., BAM

simply uses the abstract states of the underlying domain.

(2) The transfer relation includes the transfer e {BAM e ′ for

two abstract states e and e ′ and a block B if

e ′ ∈




fixedPoint(Bmain , l , e) if l = l0 and stack = []

applyBlockAbstraction(B, e) if l ∈ In(B)

{e ′′ | e {W e ′′} if l < Out(B)

where l is the program location for e and stack is the internal

stack of nested blocks during the analysis.

The transfer relation applies one of three possible steps:

(1) The fixed-point algorithm Alg. 1 is executed if the current

program location is the initial program location l0 and the

stack is empty. (2) At an input location of a block B, i. e., if

a new nested block would be entered from a surrounding

context, we apply the block abstraction returned from the

operation applyBlockAbstraction (cf. Alg. 2) for the nested

block. (3) For output locations of blocks, there is no succeed-

ing abstract state (in the sub-analysis). For other program

locations, the wrapped transfer relation{W is applied.

(3) The merge operator mergeBAM = mergeW delegates to the

wrapped analysis, i. e., BAM merges whenever the underly-

ing domain merges abstract states.

(4) The termination check stopBAM = stopW delegates to the

wrapped analysis, i. e., the coverage relation between abstract

states depends on the underlying domain.

The transfer relation{BAM uses the fixed-point algorithm and

the computation of block abstractions as explained in the next

subsections.

53

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Algorithm 2 applyBlockAbstraction(B, eI)

Input: abstract state eI at a block input location of a block B

Output: abstract states for the output locations of the analyzed block B

Global Variables: boolean flag fixedpointReached,

set cache mapping a block and an abstract state to a

block abstraction,

sequence stack consisting of pairs of a procedure block

and an abstract state

Variables: sets reached and waitlist of abstract states

for the analysis of the current block

1: ei := reduceW(B, eI);

2: if ∃(B, ec) ∈ stack : ei ⊑ ec then

3: if cache contains (B, ec) then

4: (reached, ·) := cache(B, ec);

5: else

6: reached := {}

7: fixedpointReached := false ;

8: else

9: if cache contains (B, ei) then

10: (reached, waitlist) := cache(B, ei)

11: else

12: reached := {ei }; waitlistr := {ei }

13: stack.push((B, ei));

14: (reached, waitlist) := CPA(W, reached, waitlist)

15: stack.pop();

16: if cache contains (B, ei) then

17: (reachedold , ·) := cache(B, ei);

18: for e ∈ reached do

19: if loc(e) ∈ Out (B) ∧ ∄e′ ∈ reachedold : e ⊑ e′ then

20: fixedpointReached := false ;

21: cache(B, ei) := (reached, waitlist)

22: ecall := getPredecessor(eI);

23: tmp := {expandW(B, eI , eo) | eo ∈ reached ∧ loc(eo) ∈ Out (B)}

24: return {rebuildW(ecall , eI , eO) | eO ∈ tmp};

3.3 Fixed-Point Algorithm for Unbounded
Recursion

An analysis of recursive procedures must handle a possibly un-

bounded unrolling of the call stack if the information of an ab-

stract state is insufficient to avoid deeper exploration and can

not cut off the state space. In our approach, the fixed-point al-

gorithm (fixedPoint, Alg. 1) repeatedly analyzes the program using

applyBlockAbstraction (Alg. 2) from the initial program location on-

wards. It iteratively increments the number of unrollings and termi-

nates only if coverage was reached for all analyzed procedure calls.

In each iteration of the fixed-point algorithm, we generate an

overapproximation of some (more) paths through the recursive

procedure (because of the limited unrolling of the recursion) and

determine a summary for the currently analyzed procedure block.

The termination is decided by a coverage check for the abstract

states of the analyzed block summary.

The first iteration of the fixed-point algorithm assumes no valid

path through the recursive call. We only explore the non-recursive

parts of the program’s control flow and skip the recursive call

of the procedure. Depending on the abstract domain, the initial

summary for the recursive procedure is an empty set of abstract

states (Alg. 2, line 6). The block abstraction of a procedure is stored

in the cache after returning from the procedure call (Alg. 2, line 21).

{P}b = f (a){Q} ⊢ {P ∧ p = a}Bf {Q ∧ p = a ∧ b = r }

{P}b = f (a){Q}

Figure 3: Hoare’s rule for recursion, for a given procedure

definition f (p) {Bf ; return r ; }

{[[Pe]]}b = f (a){[[Qe]]} ⊢ {[[Pe]]}Bf {[[Qe]]}

{[[Pe]]}b = f (a){[[Qe]]}

Figure 4: Hoare’s rule for recursion (with abstract states)

In further iterations, we increment the limit of unrollings of the

recursive procedure and refine the block abstraction, analyze the

program again, starting from the initial program location (and using

several intermediate results from the cache), until the procedure

summary becomes stable.

3.4 Soundness of BAM for Recursion

The fixed-point criteria are based on Hoare’s rule for recursion

(Fig. 3): if the body of a procedure f satisfies the pre- and post-

conditions P andQ (including parameter passing and return values)

under the condition that all recursive calls to the procedure f

satisfy P and Q , then the whole procedure f satisfies P and Q .

Translated into our model, we use (concretizations of) abstract

states as pre- and post-conditions of statements, the procedure and

its body corresponds to the procedure’s block; Fig. 4 shows the

resulting rule. The renaming (or an equivalent operation) of equal

identifiers from the recursive call of f , which appear in the calling

and called procedure f , is shifted into a different part of the analysis

(see Sect. 3.5 on operator rebuild) and is handled in a sound way.

To determine the fixed-point criteria for termination, Alg. 2

checks the following two properties during the analysis.

Firstly, we try to stop the unrolling of an unbounded recursive

procedure by an over-approximating analysis. Thus, before analyz-

ing a new recursive procedure call, we check whether the abstract

state at a procedure entry is already covered by any abstract state

from the current stack (Alg. 2, line 2). If such a covering abstract

state exists, we skip the recursive call and use a procedure summary

instead of further exploring the recursive call (Alg. 2, line 3 to 7).

The procedure summary consists of either previously computed

abstract successor states from the BAM cache or (in case of a cache

miss) no successor states at all.

Secondly, because a procedure summary represents only a

bounded execution of the called procedure, this approach alone

represents only a subset of possible traces in the procedure and

might be unsound in cases that require deeper unrolling. To deter-

mine if the inserted procedure summaries are sufficient for Hoare’s

rule of Fig. 4, we check for coverage of the exit state (of the proce-

dure executed with the inserted procedure summary) against the

previously computed abstract states (of the procedure summary).

This check is performed in lines 18 to 20 of Alg. 2. If the coverage

relation is satisfied (for all procedures in the program), then the

fixed-point algorithm terminates, because fixedpointReached was

never set to false during the iteration. In this case we have found a

sound over-approximation of the recursive procedure. Otherwise

the fixed-point algorithm continues.

54

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

3.5 Block-Abstraction Computation with
Operators

The operation applyBlockAbstraction (cf. Alg. 2) starts with the re-

duction reduceW(B, eI) of initial abstract state eI and determines

the block abstraction for a block B. The block abstraction is either

taken from the cache or computed via a separate application of the

reachability algorithm (i. e., CPA algorithm). To integrate the block

abstraction into a surrounding context, the operators expandW and

rebuildW are applied to each abstract state at the block’s output loca-

tion (lines 23 and 24). The operators reduce and expand abstract or

concretize the given abstract state and aim to increase the cache-hit

rate of BAM. For an interprocedural approach, they remove and re-

store (most of) the context-based information of a procedure block.

While the fixed-point algorithm handles over-approximations

and refinements of block abstractions, an interesting detail of the

implementation remains open: How can we identify and work

with symbols, i. e., variable identifiers, across procedure scopes?

Identical identifiers for program variables of the same procedure

scope are problematic for the analysis of recursive procedures. Due

to the modularity of the framework CPAchecker, only a separate call-

stack analysis knows about procedure scopes and all other analyses

assume unique identifiers across all operations. BAM also tracks

information about procedures in its stack, but it does not use this

information for detailed analysis of variables and identifiers. Each

recursive procedure entry starts a new procedure scope, where the

identifiers override existing (valid) identifiers from previous call-

stack levels. Entering a procedure and overriding existing identifiers

from the calling scope is no problem, because only the most local

version of an identifier is available (and visible) in the procedure

scope. Leaving the procedure afterwards is more complex, because

identifiers are overridden during the procedure’s traversal and have

to be restored to match the calling context.

A solution like a simple renaming of identifiers is not possible,

because each domain has its own way of representing variables.

Additionally, each domain must have a strategy for handling scoped

variables that allows a consistent use of the cache in BAM.

We solve this problem by using a new operator rebuild : E × E ×

E → E, and we show how to implement it for different domains.

The operator rebuild is applied after analyzing the procedure-exit

location (Alg. 2, line 24), i. e., after leaving the block of a (maybe re-

cursive) procedure and after the application of the operator expand.

The operator rebuild maps three abstract states (information about

the calling context from the procedure call state ecall , information

about the arguments and parameters of the called procedure from

the procedure entry state eI , and information about the return value

and the block abstraction from the procedure exit state eO) to a

new abstract state that is a successor of the procedure call and a

valid starting point for the further analysis. The operator rebuild

is defined depending on the underlying analysis.

4 APPLICATION OF
BAM INTERPROCEDURAL TO
ABSTRACT DOMAINS

In this section, we describe some component program analyses

that can be used by BAM Interprocedural to compute context-

independent block abstractions. Using the framework CPAchecker,

program analyses are composed of several component CPAs. Com-

ponent CPAs are defined and implemented for tracking the program

counter, the predecessor-successor relationship of the reachability

graph, or for combining other CPAs in a composite analysis. Thus,

we do not need to specify these aspects when defining a component

analysis, but directly specify the component analyses. In the fol-

lowing, we explain an analysis for tracking the call stack and two

analyses for analyzing variables and assignments (namely value

analysis and predicate analysis).

Callstack-CPA. The CPAwith BAM operators for call-stack analysis

C = (DC,{C,mergeC, stopC, reduceC, expandC, rebuildC) explic-

itly tracks the call stack s = [f1, · · · fn] of the program, where f1
to fn denote procedure scopes for an abstract state s .

(1) The domain DC = (C, EC, [[·]]) is based on the flat semi-

lattice EC = (S ∪ {⊤},⊑) for the set S of possible call stacks.

The expression s ⊑ s ′ is fulfilled if s = s ′ or s ′ = ⊤, [[⊤]] = C .

For all s in S , we have [[s]] = {c ∈ C | callstackOf(c) = s}.

(2) The transfer relation{C has the transfer s
д
{C s

′ for CFA

edge д and abstract states s = [f1, · · · , fn−1, fn] and s
′, if

s ′ =





[f1, · · · , fn , fn+1] if д is a procedure call to fn+1

[f1, · · · , fn−1] if д is a procedure return from fn

s otherwise

(3) The merge operator mergeC = mergesep does not combine

abstract states.

(4) The termination check stopC = stopsep returns whether

the same abstract state was already reached before.

(5) The reduce operator reduceC abstracts from a concrete call

stack and keeps only the context-relevant suffix. Therefore,

it determines the maximal range of procedure scopes of the

current block, i. e., procedure scopes that can be popped from

the current call stack [f1, ..., fi , ..., fn] during an analysis of

the current block. Let the procedure scope fi be the lowest

procedure scope on the stack that is reachable during the

block’s analysis. Then, the operator keeps only the reach-

able (most local) procedure scopes from the abstract state:

reduceC(B, [f1, ..., fi , ..., fn]) = [fi , ..., fn].

(6) The expand operator expandC restores the removed part of

the call stack:

expandC([f1, ..., fi , ..., fn],B, [fi , ..., fs]) = [f1, ..., fi , ..., fs].

(7) The call-stack analysis does not track variables, but the proce-

dure scopes themselves. Thus the rebuild operator is defined

as: rebuildC(ecall , eI , eO) = eO .

Value-CPA. The CPA with BAM operators for value analysis

E = (DE,{E,mergeE, stopE, reduceE, expandE, rebuildE) explic-

itly tracks the assignments of variables. The CPA is used as de-

scribed in previous work [12, 17] and extended by BAM operators.

(1) The domain DE = (C, EE, [[·]]) is based on the semi-lattice

EC = (V ,⊑E) for the set V = (X −→◦ Z) of partial func-

tions that model abstract variable assignments for a set X

of variables and the set Z of integer values. We use v(x)

to denote the value of a variable x ∈ X for an abstract

variable assignment v ∈ V , and we use dom(v) to denote

the set of variables for which v assigns a value, that is,

dom(v) = {x | (x , ·) ∈ v}. The partial order ⊑E ⊆ V ×V is

defined as: v ⊑ v ′ if dom(v ′) ⊆ dom(v) and v(x) = v ′(x) is

55

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

satisfied for all x ∈ dom(v ′). The top element ⊤E ∈ V (least

upper bound) denotes the abstract variable assignment with

no specific value for any variable:⊤E = {}. The join operator

⊔E : E × E → E is based on the partial order and returns

the least upper bound of its operands. The concretization

function [[·]] : V → 2C returns the meaning for an abstract

variable assignment.

(2) The transfer relation{E has the transferv
д
{E v

′ for a CFA

edge д = (·,op, ·) and two abstract variable assignments v

and v ′, if one of the following conditions is satisfied (given a

predicate p and an abstract variable assignment v , we define

ϕ(p,v) := p ∧
∧

x ∈dom(v)
x = v(x)):

(a) op = assume(p) and predicate ϕ(p,v) is satisfiable, and

v ′ is defined as follows: (x , c) ∈ v ′ if c is the only satisfying

assignment for variable x of the predicate ϕ(p,v), or

(b) op = (w := exp) and (x , c) ∈ v ′ if either (x , w and

(x , c) ∈ v) or (x = w and c is the only satisfying assignment

for variable x ′ of the predicate ϕ(x ′ = exp,v)).

(3) The merge operator mergeE = mergesep does not combine

abstract states.

(4) The termination check stopE = stopsep returns whether a

covering abstract state was already reached before.

(5) The reduce operator reduceE only keeps abstract assign-

ments of variables that are accessed in the block’s context:

reduceE(B, eI) = {(x , c) ∈ eI | x used in B}.

(6) The expand operator expandE restores the assignments that

were removed by reduceE from the initial abstract state:

expandE(eI ,B, eo) = {(x , c) ∈ eI | x not used in B} ∪ eo .

(7) For the rebuild operator rebuildE, we define global variables

as variables declared in the global scope and the rest as lo-

cal variables, i. e., variables declared in a local procedure

scope. After leaving a (recursive) procedure call, the opera-

tor rebuildE considers local variables from the calling scope,

and global variables and the return variable 1 from the exited

procedure scope: rebuildE(ecall , eI , eO) =

{(x , c) ∈ ecall | ¬isGlobal(x) ∧ ¬isReturn(x)} ∪

{(x , c) ∈ eO | isGlobal(x) ∨ isReturn(x)}.

Because global variables can be assigned during the proce-

dure’s execution, they are not reset to their assigned value

from before the procedure’s execution; their values are taken

from the abstract state eO at the procedure’s exit location.

Note that with these definitions of reduceE and expandE, the

value analysis of a procedure block is not completely detached from

the calling context, because a block abstraction for this domain

depends on the input values of variables accessed in the block. For

procedure blocks, a block abstraction for a function call can be

taken from the BAM cache whenever the function arguments and

global variables have identical values.

Predicate-CPA. The CPA with BAM operators for predicate analy-

sis P = (DP,{P, mergeP, stopP, reduceP, expandP, rebuildP) uses

predicates to track variables and their values [8, 57]. For this analy-

sis a set P of predicates is used, which can be incrementally com-

puted in a CEGAR loop [27] that is applied on top of the CPA

1Our implementation introduces an additional variable to capture the return value,
such that we are able to reference it here as well.

algorithm. In this description, we do not go into detail on how to

determine useful predicates, but assume that the predicates are

already available, e. g., by applying an existing refinement strat-

egy [10, 16]. The refinement procedure of the predicate analysis

computes interpolants that match the structure of the procedure

blocks [38] and allow an interprocedural analysis.

For each block B, we partition the set P of predicates into two

disjoint sets PB = {p ∈ P | p relevant for B} and P¬B = P \ PB .

A predicate p ∈ P is relevant for B if it contain variables that are

accessed in the block. The partition P¬B contains the rest of P.

(1) The domain DP = (C, EP, [[·]]) is based on the set C of con-

crete states, the lattice EP = (E,⊑P), and a concretization

function [[·]] : E → C . The lattice consists of abstract states

e ∈ E that are tuples (ψ , lψ ,φ) ∈ (P × (L ∪ {l⊤}) × P).

The abstraction formulaψ is a boolean combination of pred-

icates from P and has been computed at the program lo-

cation lψ . The path formula φ represents (the disjunction

of) all paths from lψ to the abstract state e . The partial

order ⊑ ⊆ E × E is defined for any two abstract states

e1 = (ψ1, l
ψ1
,φ1) and e2 = (ψ2, l

ψ2
,φ2) as: e1 ⊑ e2 if

(e2 = ⊤P) ∨ ((lψ1 = lψ2) ∧ (ψ1 ∧ φ1 ⇒ ψ2 ∧ φ2)). The

top element is ⊤P = (true, l⊤, true). The join operator ⊔ :

E × E → E is based on the partial order and returns the least

upper bound of its operands.

(2) The transfer relation {P has the transfer e
д
{P e

′ for an

edge д = (·,op, l ′) and two abstract states e = (ψ , lψ ,φ) and

e ′ = (ψ ′
, lψ

′
,φ ′), if

(ψ ′
, lψ

′
,φ ′) =

{
(true, l ′, (SPop (φ) ∧ψ)

Π) if blk(e,д)

(ψ , l ′, SPop (φ)) otherwise
,

where SPop (φ) denotes the strongest post-condition of a

given path formula φ for an operation op. The choice of

computing a boolean predicate abstraction depends on the

configurable operator blk . For our work it returns true at

least for procedure calls, procedure entries, and procedure

exits. The boolean predicate abstraction (·)Π computes the

strongest boolean combination of predicates from P.

(3) The merge operator mergeP : E × E → E combines the two

abstract states e1 = (ψ1, l
ψ1
,φ1) and e2 = (ψ2, l

ψ2
,φ2) ac-

cording to their last abstraction computation:merge(e1, e2) ={
(ψ2, l

ψ2
,φ1 ∨ φ2) if (ψ1 = ψ2) ∧ (lψ1 = lψ2)

e2 otherwise

(4) The termination check stopP = stopsep returns whether a

covering abstract state was already reached before.

(5) For an abstract state eI = (ψI , l
ψI
, true) at a block entry, the

operator reduceP computes the set P¬B := {p1, ...,pi } of

predicates that are irrelevant for the block abstraction and

removes them from the abstraction formula:

reduceP(B, eI) = ((∃p1, ...,pi : ψI), l
ψI
, true). 2

(6) The operator expandP reverts the operation reduceP, it com-

putes the set PB := {pi+1, ...,pn } of predicates, and restores

the full set of predicates P = P¬B ∪ PB for an output state

eo = (ψo , l
ψo
, true) as follows: The abstraction formula ψo

2We represent the abstraction formula ψ in a way that makes it easy to remove
elements from P in an atomic way from an abstraction formula. (We representψ as a
binary decision diagram (BDD) whose boolean variables represent predicates from P .)

56

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

is extended by the remaining part of the initial abstraction

formulaψI :

expandP(eI ,B, eo) = ((∃pi+1, ...,pn : ψI) ∧ψo , l
ψo
, true).

(7) The operator rebuildP is based on the procedure-call state

ecall = (ψcall , l
ψcall
, true), the (not reduced) procedure-

entry state eI = (ψI , l
ψI
, true), and the expanded procedure-

exit state eO = (ψO , l
ψO
, true). The path formulaφcall repre-

sents the CFA edge that is the procedure entry edge between

the program locations of the abstract states ecall and eI and

represents the encoding of all assignments of the actual ar-

guments to the formal parameter variables. The operator

rebuildP computes the predicate abstraction for the conjunc-

tion of the abstractions before and after the procedure call

and the parameter assignment:

rebuildP(B, ecall , eI , eO) = (ψcall ∧ φcall ∧ψO)
Π .

Interval-CPA. The CPA with BAM operators for interval analysis

I = (DI,{I,mergeI, stopI, reduceI, expandI, rebuildI) tracks vari-

ables and the range (interval) of their possible assigned values.

The interval analysis is similar to the value analysis, which can be

seen as a special case using intervals containing only one value.

The coverage relation between intervals is based on the inclusion

of intervals (instead of equality of values). We omit the detailed

definition here to keep the reader focused on our approach.

4.1 Soundness of Reduce and Expand Operator
for the Given Domains

For each of the described domains, the soundness criterion of the

whole interprocedural analysis is based on the soundness of the

CPA algorithm itself (which we assume as basis) as well as on the

properties of the specific operators reduce and expand. For a sound

analysis, the abstract states that would have been reached with-

out applying a block abstraction (i. e., only applying the wrapped

CPAW) need to be a subset of the states reached with an application

of the corresponding block abstraction, i. e., using block abstrac-

tions can only be less precise than a wrapped analysis, but never

cut off a reachable part of the abstract state space.

The transfer relation{BAM for an abstract state e ∈ E satisfies

the relation {e ′ ∈ E | e {W e ′} ⊆ {e ′′ ∈ E | e {BAM e ′′}.

Based on the definition of{BAM (Sect. 3.2), the interesting case

appears when applying a block abstraction. Thus, the concrete

implementation of the operators reduce and expand must satisfy

the following condition for all blocks B: {e ′ ∈ E | e {W e ′} ⊆

{expand(e,B, eo) ∈ E | reduce(B, e) {W eo }.

For the call-stack analysis, each abstract call-stack state after an

application of a block abstraction exactly matches the call-stack

state without such a block abstraction. To prove this, just extend

each call stack during the block analysis with the removed part

[f1, ..., fi−1] from the reduce operation. For the value analysis (and

based on a programming language without pointer handling), the

same proof can be applied: Removing assignments from abstract

states and restoring them later results in an abstract state that

matches the state when not applying a block abstraction computa-

tion. A detailed soundness proof for the predicate domain is given

in the literature [57]. Removing irrelevant predicates P¬B and con-

juncting those predicates when applying the block abstraction does

only make the analysis more imprecise, but does not reduce the

reachable abstract state space.

4.2 EmbeddingBAMInterprocedural inCEGAR

The framework CPAchecker defines BAM as a CPA and allows to

combine the CPA algorithmwith other algorithms, like CEGAR [27],

which allows to refine the granularity of the abstract analysis based

on information extracted from infeasible program paths. Additional

operators for the refinement step in CEGAR are also defined in

a domain-independent manner and available in the framework.

In our case, the CEGAR algorithm can wrap the CPA algorithm

and the analysis of BAM can benefit from this. Whenever BAM

finds a property violation, the reachability analysis and the fixed-

point algorithm terminates and the surrounding CEGAR algorithm

checks the error path for feasibility. If necessary, CEGAR refines

the precision, and BAM with the fixed-point algorithm is re-started

with the updated precision.

In case of the predicate analysis, the refinement procedure com-

putes tree interpolants [20, 38] according to procedure scopes, i. e.,

for each entered (and exited) procedure scope along an infeasible

error path, a new subtree for the tree interpolation problem is con-

structed. For other analyses, like value analysis, the refinement of

recursive procedures does not need special handling. In this case, a

refinement strategy for sequential error paths [17] is sufficient.

4.3 Detailed Description of the Example

In the following, we provide deeper insights for the previously given

example program (see Sect. 1) in Fig. 1, to show the control flow

of BAM with the fixed-point algorithm when using the predicate

analysis. We combine the previously defined Callstack-CPA C and

the Predicate-CPA P, i. e., the transfer relation, coverage check,

reduce, expand, and rebuild operators are applied in both domains.

Figure 5 shows the abstract states that are reached in the first

two iterations of the fixed-point algorithm, which terminates after

the second iteration. The labeling of each abstract state consists of

the program location (circled number in first line), the call stack

(second line), and the abstraction formula of the predicate anal-

ysis (third line). To keep the figure readable, we dismiss the call

stack and abstraction formula whenever there is no change in the

abstract state. Outside the upper left corner of each node, we anno-

tate ei , where index i refers to the exploration strategy and control

flow of the analysis.

The operators reduce, expand, and rebuild show their effect at

the program locations 11 and 16, which are the input and output

locations of the procedure block Bsum . For example, the operator

reduceC of the call-stack analysis removes of all procedure scopes

except the most local one from the call stack. The operator expandC
restores the whole call stack when the analysis leaves the block. The

effect of the rebuildP at program location 16will be described below.

Initialization. We assume that the initial cache and the stack of

BAM are empty and the following set of predicates is defined as

precision: P := {ret = mp + np , ret = a + b,m = mp ∧ n = np }.

The predicate analysis uses the symbolsmp , np , and ret to encode

parameter assignments at function entry and the return value. Such

predicates can be generated via an interpolation procedure from

previously found infeasible error paths in the context of CEGAR.

57

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Bmain

Bsum

Bsum

2

[main]

true

3

4

11

[main, sum]

true

11

[sum]

true

12 14

11

[sum, sum]

true

11

[sum]

true

cach
e
m
iss

16

[sum]

ret =mp + np

16

[main, sum]

ret = a + b

5

7

[main]

true

re
du
ce

reduce

ex
pa
nd

re
bu
ild

ap
p
ly

b
lo
ck

ab
stractio

n

e1

e2

e3

e4

e5

e6 e7

e8 e9 e10

e11

e12

e13

coverage (1)

(a) After first iteration; cache miss leads to second iteration

Bmain

Bsum

Bsum

2

[main]

true

3

4

11

[main, sum]

true

11

[sum]

true

12 14

11

[sum, sum]

true

11

[sum]

true

16

[sum]

ret =mp + np

16

[sum, sum]

ret =m + n

cach
e
h
it

fo
r
state

e
5

16

[sum]

ret =mp + np

16

[main, sum]

ret = a + b

15

16

[sum]

ret =mp + np

5

7

[main]

true

re
du
ce

reduce

expand

rebuild

ex
pa
nd

re
bu
ild

ap
p
ly

b
lo
ck

ab
stractio

n

ap
p
ly

b
lo
ck

ab
stractio

n

e21

e22

e23

e24

e25

e26 e27

e28 e29 e30

e8e32

e33

e34

e35

e36

e37

coverage (1)

coverage
(2)

(b) After second iteration; fixed point is reached

Figure 5: Graph of reached abstract states after the first two fixed-point iterations

For simple programs (like this example) they match the expected

procedure summary. In general, the analysis might need several iter-

ations of CEGAR to obtain a sufficient precision. In this example, we

concentrate on the rebuild operator. All predicates are relevant for

the block Bsum , i. e., PB = P, i. e., the reduce and expand operators

for predicate analysis will keep the abstraction formula unchanged.

First Iteration. The result of the first iteration of the fixed-point

loop is shown in Fig. 5a. The analysis starts with the initial abstract

state e1 at program location 2, entering the main block Bmain
and pushing e1 (as ei in Alg. 2) onto the BAM stack. The recursive

procedure block Bsum is analyzed for the first time at the procedure

call from program location 4 to program location 11, where BAM

starts a new sub-analysis with state e4 (as eI in Alg. 2) for the

block Bsum . The reduction removes the suffixmain of the call stack

and keeps the abstraction formula true . The abstract state e5 (as ei
in Alg. 2) is pushed onto the BAM stack. When the procedure

block Bsum is entered the second time (procedure call at program

location 14 for state e9), the reduced abstract state e10 is compared

with elements in the BAM stack. The coverage relation (Alg. 2,

line 2) is satisfied. BAM has no computed procedure summary in

the cache and returns an empty set of reachable abstract states

(line 6 of Alg. 2). The flag fixedpointReached is set to false in

line 7 of Alg. 2. The analysis continues with the exploration of

the non-recursive branch of the procedure. When leaving block

Bsum , the block’s summary is inserted into the cache, i. e., the block

abstraction from the abstract state e5 towards the abstract state e8
(as eO in Alg. 2) is stored for later usage in the BAM cache. For

the predicate analysis, the summary of the block is the abstraction

formula ret =mp + np , which describes the equality of the sum of

the two formal function parameters with the return value.

The rebuild operator rebuild(B, e3, e4, e8) restores information

from the calling context. Using the abstraction formulaψ3 := true ,

the parameter assignment from the procedure call φcall :=

(a = np ∧ b =mp), and the block summaryψ8 := (ret =mp + np),

the rebuild operator rebuildP computes (ψ3 ∧ φcall ∧ ψ8)
Π
=

(ret = a + b). That is, based on the given predicates for e11,Π(e11) =

{ret = a + b}, the procedure is summarized by ret = a + b, which

describes the equality of the sum of the two actual function argu-

ments with the return value. We do not describe internals of predi-

cate abstraction here, but refer to the literature [16]. No property

violation is found along the path until state e13, i. e., the branching

towards program location 6 is not satisfiable, and the fixed-point

computation continues.

Second Iteration. The initial steps of the second iteration are

similar to the first iteration. After a few steps, the stack consists

of the abstract states e21 and e25. A different control flow appears

when the analysis reaches the recursive procedure call again at state

e30, with a coverage relation for the abstract state e25 because it is

part of the BAM stack. Now we get a cache hit for the previously

computed block abstraction between state e5 and state e8 and apply

the procedure summary to skip the recursive procedure call (line 4

of Alg. 2). Using the abstraction formulaψ27 := true , the parameter

assignment from the procedure call φcall := (n = np ∧m = mp),

and the block summary ϕ8 := (ret =mp +np), the rebuild operator

rebuildP computes (ψ27 ∧ φcall ∧ ψ8)
Π
= (ret = m + n). When

leaving the procedure block, our approach (Alg. 2, line 19) checks

for new (not yet covered) abstract states. In this example, state

e34 is already covered by state e28, thus the fixed-point algorithm

terminates after this iteration. As the property violation at program

location 6 is not reachable, the program is verified.

58

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

5 EXPERIMENTAL EVALUATION

We evaluate BAM Interprocedural for several domains and show

that it is competitive with existing approaches.We divide the evalua-

tion according to three claims. For both claims, we use a benchmark

set of non-recursive and recursive programs and provide the ef-

fectivity (number of solved problems) and performance (runtime)

of our implementation, using several analyses of CPAchecker and

other verification tools.

Claim I: Domain-Independence and Modularity.We claim that

our interprocedural approach is domain-independent and can be

implemented in a modular way as described in Sect. 3, such that

the development and integration overhead for an existing anal-

ysis in the framework CPAchecker is quite small. To evaluate the

claim, we apply the approach to several abstract domains, show that

the analysis works, and compare different analyses of CPAchecker

against each other.

Claim II: Effectiveness andEfficiency (Part 1).We claim that our

approachÐdespite themodular designÐ does not cause large perfor-

mance overheads in an analysis. To evaluate the claim, we compare

benchmark results against several state-of-the-art verification tools

that are able to verify programs with recursive procedures.

Claim III: Effectiveness and Efficiency (Part 2). We claim that

our approach is comparable to intraprocedural analyses within the

same framework. To evaluate the claim, we apply different analyses

to a larger set of recursive and non-recursive benchmark tasks and

compare benchmark results from our interprocedural approach

against intraprocedural analyses with and without BAM.

5.1 Benchmark Programs and Setup

Weuse verification tasks from the SV-COMP ’20 [5] benchmark set 3,

including tasks with and without recursive function calls from cate-

gories Reachsafety-Bitvectors, Reachsafety-ControlFlow, Reachsafety-

Loops, Reachsafety-ProductLines, and Reachsafety-Recursive. Most

recursive programs are generic and allow to easily scale the pro-

grams to deeper recursion; they include recursive algorithms, e. g.,

Fibonacci, Ackermann, Towers of Hanoi, and McCarthy91. The

non-recursive programs use integer arithmetics and avoid heap-

related data-structures.

All experiments were performed on machines with a 3.4GHz

Quad Core CPU and 33GB of RAM. The operating system was

Ubuntu 20.04 (64 bit) with Linux 5.4.0. A CPU time limit of 15min

and a memory limit of 15GB were used, which is the established

standard from SV-COMP. Measurements and resource limits were

managed by BenchExec [18].

5.2 Results and Discussion

Claim I. We implemented our domain-independent approach in

CPAchecker for several domains, including value analysis, predicate

analysis, and interval analysis. In addition, we evaluated a reduced

product [14, 32] of value and predicate analysis.We used CPAchecker

in version 1.9, which also participated in SV-COMP ’20. CPAchecker

3https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

Table 1: Results for the comparison of BAM Interprocedural

combined with different abstract domains in CPAchecker on

category Reachsafety-Recursive of SV-COMP

Domain CPU time (s) Proofs Bugs

Value 924 31 37

Predicate 3 440 29 37

Interval 849 36 38

Value + Predicate 1 690 37 43

Table 2: Results for the comparison of different verifiers on

category Reachsafety-Recursive of SV-COMP

Verifier CPU time (s) Proofs Bugs

Cbmc 662 32 47

CPAchecker (SV-COMP ’20) 2 180 37 46

Divine 1 190 32 42

Esbmc 941 33 47

Map2Check 23 600 34 37

PeSCo 3 130 37 46

Pinaka 237 31 31

Symbiotic 138 33 45

UAutomizer 2 160 41 37

UKojak 1 010 19 28

UTaipan 6 210 42 37

VeriAbs 7 630 41 46

VeriFuzz 1 960 0 45

was chosen as the implementation platform because it has a config-

urable and modular design that is easy to extend by new concepts,

has a considerable user base, and is well maintained.4

Table 1 compares BAM Interprocedural for four domains (one

of them being a product), by providing the CPU time (in seconds,

with three significant digits) needed by the verifiers for all correctly

solved verification tasks and the number of correctly solved tasks,

divided into proofs and bugs found in the category Reachsafety-

Recursive of SV-COMP.

Claim II. We provide the results of state-of-the-art software veri-

fiers, which participated in SV-COMP ’20 [5] 5. We compare 13 ver-

ifiers that participated successfully in the category Reachsafety-

Recursive of SV-COMP. This includes the predicate-based verifiers

CPAchecker [35, 56], PeSCo [34, 49] and Ultimate Automizer [37, 39],

the bounded model checkers Cbmc [29, 42] and Esbmc [36, 45], the

symbolic-execution tool Symbiotic [24, 25], as well as the SMT-

based tool Map2Check [51, 52]. The binary archives of all verifiers

are publicly available.6 The data are extracted from the published

SV-COMP ’20 results [6].

Table 2 provides the sum of CPU time needed by the verifiers for

all correctly solved verification tasks, and the number of correctly

solved tasks, divided into proofs and bugs found. The configuration

used by verifier CPAchecker (SV-COMP ’20) combines value analysis

and predicate analysis within our interprocedural approach (same

configuration as in the last entry of Table 1), which is automatically

selected as the strategy to verify recursive programs [7]. The perfor-

mance of the tool with our approach (CPAchecker) also shows that

4https://www.openhub.net/p/cpachecker
5https://sv-comp.sosy-lab.org/2020/systems.php
6https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20

59

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-BitVectors.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-ControlFlow.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-Loops.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-Loops.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-ProductLines.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-Recursive.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/Fibonacci01-1.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/Ackermann01-2.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/recHanoi01.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/McCarthy91-1.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://www.openhub.net/p/cpachecker
https://sv-comp.sosy-lab.org/2020/systems.php
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Predicate Value Interval Value+Predicate
0

20
40
60
80

Reachsafety-Recursive

#C
o
rr
ec
t
R
es
u
lt
s

Predicate Value Interval Value+Predicate
0

20

40

Reachsafety-Bitvectors

#C
o
rr
ec
t
R
es
u
lt
s

Predicate Value Interval Value+Predicate
0

20

40

60

Reachsafety-ControlFlow

#C
o
rr
ec
t
R
es
u
lt
s

Predicate Value Interval Value+Predicate
0

50

100

Reachsafety-Loops

#C
o
rr
ec
t
R
es
u
lt
s

Predicate Value Interval Value+Predicate
0

200

400

Reachsafety-ProductLines

#C
o
rr
ec
t
R
es
u
lt
s

Proofs and Bugs found without BAM

Proofs and Bugs found with BAM Intraprocedural

Proofs and Bugs found with BAM Interprocedural

Figure 6: Results for different benchmark categories for

the comparison of different abstract domains without BAM,

with BAM Intraprocedural, and with BAM Interprocedural

in CPAchecker

although modular and domain-independent, it is competitive with

completely different tools and approaches in terms of effectiveness

and efficiency: BAM Interprocedural solves about as many tasks

as the other tools within reasonable CPU time. None of the tools

managed to verify all tasks, and there are several tasks in the given

benchmark set that could not be solved by any verifier.

Claim III. As CPAchecker is the configurable program analysis

framework, different domain-independent intraprocedural anal-

yses based on the CPA concept are available, such as the default

analysis without BAM and its combination with BAM. Figure 6

compares those algorithms with our new approach of BAM Inter-

procedural. Each analysis is combined with four different domains

(one of them being a product). We provide the number of correctly

solved tasks, divided into proofs and bugs found. Each category

of SV-COMP ’20 is given separately, such that the strengths of the

algorithms are visible. In contrast to the existing intraprocedural

approaches without and with BAM, the new approach supports

the interprocedural analysis of recursive procedures for all three

domains separately as well as for a combination of domains and

leads to good results in the category Reachsafety-Recursive. For all

other categories, the results are comparable over all approaches.

Only for the predicate domain, the result for the tasks in category

Reachsafety-ProductLines is worse. The reason for the result in this

single category is caused by a valid, but unfitting refinement step

(i. e., a suboptimal heuristic in the SMT solver), that causes expen-

sive unrolling of the program. As many tasks in this category are

similar, most results are affected. For value analysis, interval analy-

sis, and also for the analysis based on value and predicate domain

together, the new approach performs approximately as good as the

existing approaches without or with BAM.

6 CONCLUSION

We have presented BAM Interprocedural, a novel approach to inter-

procedural program analysis. The new approach ismodular and

domain-independent, because it is not integrated in a specific

program analysis but wraps an existing analysis. In other words,

given an arbitrary abstract domain for intra-procedural data-flow

analysis, we can turn it into an inter-procedural analysis without

much (a) development work and (b) performance overhead. We

have illustrated in detail how to make predicate analysis and value

analysis interprocedural. Our implementation and experiments

show that BAM Interprocedural works well for four different pro-

gram analyses. The new approach supports recursive procedures,

because it is not bounded to a fixed number of procedure scopes.

We showed the effectiveness on the benchmark set of recursive

programs from SV-COMP ’20: the approach is able to successfully

verify recursive procedures. The new approach is efficient, because

it is integrated into BAM and does not add much overhead on top

of the wrapped abstract domain. Compared to other software veri-

fiers, the new implementation is competitive. Due to the modular

approach, the effectiveness and efficiency heavily depends on the

wrapped program analysis. Our results are promising and there is

potential for optimization in our implementation. We plan to spec-

ify the operator rebuild for further domains like binary decision

diagrams, symbolic memory graphs, or octagons, e. g., to analyze

more difficult memory-accesses in recursive programs.

We hope that other researchers and developers of verification

tools can benefit from our approach because it separates the concern

of making an analysis interprocedural from the actual work on

implementing and improving abstract domains.

Data Availability Statement.All benchmark tasks for evaluation,

configuration files, a ready-to-run version of our implementation,

and tables with detailed results are available in our reproduction

package [11]. The source code of our extensions to the open-source

verification framework CPAchecker [15] is available in the project

repository; see https://cpachecker.sosy-lab.org.

60

https://cpachecker.sosy-lab.org

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

REFERENCES
[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. 2012. Whale: An Interpolation-

Based Algorithm for Inter-procedural Verification. In Proc. VMCAI (LNCS 7148).
Springer, 39ś55. https://doi.org/10.1007/978-3-642-27940-9_4

[2] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. 2004. Slam and Static Driver
Verifier: Technology Transfer of Formal Methods inside Microsoft. In Proc. IFM
(LNCS 2999). Springer, 1ś20. https://doi.org/10.1007/978-3-540-24756-2_1

[3] T. Ball, V. Levin, and S. K. Rajamani. 2011. A Decade of Software Model Checking
with Slam. Commun. ACM 54, 7 (2011), 68ś76. https://doi.org/10.1145/1965724.
1965743

[4] T. Ball and S. K. Rajamani. 2000. Bebop: A Symbolic Model Checker for Boolean
Programs. In Proc. SPIN (LNCS 1885). Springer, 113ś130. https://doi.org/10.1007/
10722468_7

[5] D. Beyer. 2020. Advances in Automatic Software Verification: SV-COMP 2020. In
Proc. TACAS (2) (LNCS 12079). Springer, 347ś367. https://doi.org/10.1007/978-3-
030-45237-7_21

[6] D. Beyer. 2020. Results of the 9th International Competition on Software Verifi-
cation (SV-COMP 2020). Zenodo. https://doi.org/10.5281/zenodo.3630205

[7] D. Beyer andM. Dangl. 2018. Strategy Selection for Software Verification Based on
Boolean Features: A Simple but Effective Approach. In Proc. ISoLA (LNCS 11245).
Springer, 144ś159. https://doi.org/10.1007/978-3-030-03421-4_11

[8] D. Beyer, M. Dangl, and P. Wendler. 2018. A Unifying View on SMT-Based
Software Verification. J. Autom. Reasoning 60, 3 (2018), 299ś335. https://doi.org/
10.1007/s10817-017-9432-6

[9] D. Beyer and K. Friedberger. 2018. Domain-Independent Multi-threaded Software
Model Checking. In Proc. ASE. ACM, 634ś644. https://doi.org/10.1145/3238147.
3238195

[10] D. Beyer and K. Friedberger. 2018. In-Place vs. Copy-on-Write CEGAR Refinement
for Block Summarization with Caching. In Proc. ISoLA (LNCS 11245). Springer,
197ś215. https://doi.org/10.1007/978-3-030-03421-4_14

[11] D. Beyer and K. Friedberger. 2020. Reproduction Package for Article ‘Domain-
Independent Interprocedural Program Analysis using Block-Abstraction Memo-
ization’ in Proc. ESEC/FSE 2020. Zenodo. https://doi.org/10.5281/zenodo.4024268

[12] D. Beyer, S. Gulwani, and D. Schmidt. 2018. Combining Model Checking and
Data-Flow Analysis. In Handbook of Model Checking. Springer, 493ś540. https:
//doi.org/10.1007/978-3-319-10575-8_16

[13] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software Verifi-
cation: Concretizing the Convergence of Model Checking and Program Analysis.
In Proc. CAV (LNCS 4590). Springer, 504ś518. https://doi.org/10.1007/978-3-540-
73368-3_51

[14] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program Analysis with
Dynamic Precision Adjustment. In Proc. ASE. IEEE, 29ś38. https://doi.org/10.
1109/ASE.2008.13

[15] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184ś190. https:
//doi.org/10.1007/978-3-642-22110-1_16

[16] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Ab-
straction with Adjustable-Block Encoding. In Proc. FMCAD. FMCAD,
189ś197. https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_
Abstraction_with_Adjustable-Block_Encoding.pdf

[17] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking Based
on CEGAR and Interpolation. In Proc. FASE (LNCS 7793). Springer, 146ś162.
https://doi.org/10.1007/978-3-642-37057-1_11

[18] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer 21, 1 (2019), 1ś29. https:
//doi.org/10.1007/s10009-017-0469-y

[19] D. Beyer and A. K. Petrenko. 2012. Linux Driver Verification. In Proc. ISoLA
(LNCS 7610). Springer, 1ś6. https://doi.org/10.1007/978-3-642-34032-1_1

[20] R. Blanc, A. Gupta, L. Kovács, and B. Kragl. 2013. Tree Interpolation in Vampire.
In Proc. LPAR (LNCS 8312). Springer, 173ś181. https://doi.org/10.1007/978-3-642-
45221-5_13

[21] O. Burkart and B. Steffen. 1992. Model Checking for Context-Free Processes.
In Proc. CONCUR (LNCS 630). Springer, 123ś137. https://doi.org/10.1007/
BFb0084787

[22] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W.
O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. 2015. Moving Fast
with Software Verification. In Proc. NFM (LNCS 9058). Springer, 3ś11. https:
//doi.org/10.1007/978-3-319-17524-9_1

[23] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. 2011. Compositional
Shape Analysis by Means of Bi-Abduction. ACM 58, 6 (2011), 26:1ś26:66. https:
//doi.org/10.1145/2049697.2049700

[24] M. Chalupa, J. Strejcek, and M. Vitovská. 2018. Joint Forces for Memory Safety
Checking. In Proc. SPIN. Springer, 115ś132. https://doi.org/10.1007/978-3-319-
94111-0_7

[25] M. Chalupa, M. Vitovská, M. Jonás, J. Slaby, and J. Strejcek. 2017. Symbiotic 4:
Beyond Reachability (Competition Contribution). In Proc. TACAS (LNCS 10206).
Springer, 385ś389. https://doi.org/10.1007/978-3-662-54580-5_28

[26] Y.-F. Chen, C. Hsieh, M.-H. Tsai, B.-Y. Wang, and F. Wang. 2014. Verifying
Recursive Programs Using Intraprocedural Analyzers. In Proc. SAS (LNCS 8723).
Springer, 118ś133. https://doi.org/10.1007/978-3-319-10936-7_8

[27] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752ś794. https://doi.org/10.1145/876638.876643

[28] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. 2018. Handbook of Model
Checking. Springer. ISBN: 978-3-319-10574-1 https://doi.org/10.1007/978-3-319-
10575-8

[29] E. M. Clarke, D. Kröning, and F. Lerda. 2004. A Tool for Checking ANSI-C
Programs. In Proc. TACAS (LNCS 2988). Springer, 168ś176. https://doi.org/10.
1007/978-3-540-24730-2_15

[30] B. Cook. 2018. Formal Reasoning About the Security of Amazon Web Services.
In Proc. CAV (2) (LNCS 10981). Springer, 38ś47. https://doi.org/10.1007/978-3-
319-96145-3_3

[31] P. Cousot and R. Cousot. 1977. Static Determination of Dynamic Properties
of Recursive Procedures. In Formal Description of Programming Concepts: Proc.
of the IFIP Working Conference on Formal Description of Programming Concepts.
North-Holland, 237ś278.

[32] P. Cousot and R. Cousot. 1979. Systematic design of program-analysis frameworks.
In Proc. POPL. ACM, 269ś282. https://doi.org/10.1145/567752.567778

[33] W. Craig. 1957. Linear Reasoning. ANew Form of theHerbrand-Gentzen Theorem.
J. Symb. Log. 22, 3 (1957), 250ś268. https://doi.org/10.2307/2963593

[34] M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. 2017. Predicting
Rankings of Software Verification Tools. In Proc. SWAN. ACM, 23ś26. https:
//doi.org/10.1145/3121257.3121262

[35] M. Dangl, S. Löwe, and P.Wendler. 2015. CPAcheckerwith Support for Recursive
Programs and Floating-Point Arithmetic (Competition Contribution). In Proc.
TACAS (LNCS 9035). Springer, 423ś425. https://doi.org/10.1007/978-3-662-46681-
0_34

[36] M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A. Nicole.
2018. ESBMC 5.0: An Industrial-Strength C Model Checker. In Proc. ASE. ACM,
888ś891. https://doi.org/10.1145/3238147.3240481

[37] M. Heizmann, D. Dietsch, J. Leike, B. Musa, and A. Podelski. 2015. Ultimate
Automizer with Array Interpolation. In Proc. TACAS (LNCS 9035). Springer,
455ś457. https://doi.org/10.1007/978-3-662-46681-0_43

[38] M. Heizmann, J. Hoenicke, and A. Podelski. 2010. Nested interpolants. In Proc.
POPL. ACM, 471ś482. https://doi.org/10.1145/1706299.1706353

[39] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software Model Checking
for People Who Love Automata. In Proc. CAV (LNCS 8044). Springer, 36ś52.
https://doi.org/10.1007/978-3-642-39799-8_2

[40] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. 2009. Estab-
lishing Linux Driver Verification Process. In Proc. Ershov Memorial Conference
(LNCS 5947). Springer, 165ś176. https://doi.org/10.1007/978-3-642-11486-1_14

[41] J. Knoop, O. Rüthing, and B. Steffen. 1996. Towards a tool kit for the automatic
generation of interprocedural data-flow analyses. J. Program. Lang. 4, 4 (1996),
211ś246.

[42] D. Kröning and M. Tautschnig. 2014. Cbmc: C Bounded Model Checker (Com-
petition Contribution). In Proc. TACAS (LNCS 8413). Springer, 389ś391. https:
//doi.org/10.1007/978-3-642-54862-8_26

[43] K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc. CAV
(LNCS 2725). Springer, 1ś13. https://doi.org/10.1007/978-3-540-45069-6_1

[44] K. L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. CAV
(LNCS 4144). Springer, 123ś136. https://doi.org/10.1007/11817963_14

[45] J. Morse, M. Ramalho, L. C. Cordeiro, D. Nicole, and B. Fischer. 2014. Esbmc

1.22 (Competition Contribution). In Proc. TACAS (LNCS 8413). Springer, 405ś407.
https://doi.org/10.1007/978-3-642-54862-8_31

[46] P. Müller and T. Vojnar. 2014. CPAlien: Shape Analyzer for CPAchecker

(Competition Contribution). In Proc. TACAS (LNCS 8413). Springer, 395ś397.
https://doi.org/10.1007/978-3-642-54862-8_28

[47] Z. Rakamarić and M. Emmi. 2014. SMACK: Decoupling Source Language Details
from Verifier Implementations. In Proc. CAV (LNCS 8559). Springer, 106ś113.
https://doi.org/10.1007/978-3-319-08867-9_7

[48] T. W. Reps, S. Horwitz, and M. Sagiv. 1995. Precise Interprocedural Data-Flow
Analysis via Graph Reachability. In Proc. POPL. ACM, 49ś61. https://doi.org/10.
1145/199448.199462

[49] C. Richter and H.Wehrheim. 2019. PeSCo: Predicting Sequential Combinations of
Verifiers (Competition Contribution). In Proc. TACAS (3) (LNCS 11429). Springer,
229ś233. https://doi.org/10.1007/978-3-030-17502-3_19

[50] N. Rinetzky, M. Sagiv, and E. Yahav. 2005. Interprocedural Shape Analysis for
Cutpoint-Free Programs. In Proc. SAS (LNCS 3672). Springer, 284ś302. https:
//doi.org/10.1007/11547662_20

[51] H. O. Rocha, R. Barreto, and L. C. Cordeiro. 2016. Hunting Memory Bugs in C Pro-
grams with Map2Check (Competition Contribution). In Proc. TACAS (LNCS 9636).
Springer, 934ś937. https://doi.org/10.1007/978-3-662-49674-9_64

[52] H. O. Rocha, R. S. Barreto, and L. C. Cordeiro. 2015. Memory Management Test-
Case Generation of C Programs Using Bounded Model Checking. In Proc. SEFM
(LNCS 9276). Springer, 251ś267. https://doi.org/10.1007/978-3-319-22969-0_18

61

https://doi.org/10.1007/978-3-642-27940-9_4
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3630205
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1007/978-3-030-03421-4_14
https://doi.org/10.5281/zenodo.4024268
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-34032-1_1
https://doi.org/10.1007/978-3-642-45221-5_13
https://doi.org/10.1007/978-3-642-45221-5_13
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-319-10936-7_8
https://doi.org/10.1145/876638.876643
https://www.worldcat.org/isbn/978-3-319-10574-1
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/567752.567778
https://doi.org/10.2307/2963593
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/978-3-662-46681-0_43
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-54862-8_31
https://doi.org/10.1007/978-3-642-54862-8_28
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/11547662_20
https://doi.org/10.1007/11547662_20
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/978-3-319-22969-0_18

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[53] O. Sery, G. Fedyukovich, and N. Sharygina. 2011. Interpolation-Based Function
Summaries in Bounded Model Checking. In Proc. HVC (LNCS 7261). Springer,
160ś175. https://doi.org/10.1007/978-3-642-34188-5_15

[54] O. Sery, G. Fedyukovich, and N. Sharygina. 2015. Function Summarization-Based
Bounded Model Checking. In Validation of Evolving Software. Springer, 37ś53.
https://doi.org/10.1007/978-3-319-10623-6_5

[55] M. Sharir and A. Pnueli. 1981. Two approaches to interprocedural data-flow
analysis. In Program Flow Analysis: Theory and Applications. Prentice-Hall, 189ś
233. ISBN: 978-0-137-29681-1

[56] D. Wonisch. 2012. Block Abstraction Memoization for CPAchecker (Competition
Contribution). In Proc. TACAS (LNCS 7214). Springer, 531ś533. https://doi.org/
10.1007/978-3-642-28756-5_41

[57] D. Wonisch and H. Wehrheim. 2012. Predicate Analysis with Block-Abstraction
Memoization. In Proc. ICFEM (LNCS 7635). Springer, 332ś347. https://doi.org/10.
1007/978-3-642-34281-3_24

62

https://doi.org/10.1007/978-3-642-34188-5_15
https://doi.org/10.1007/978-3-319-10623-6_5
https://www.worldcat.org/isbn/978-0-137-29681-1
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24

	Abstract
	1 Introduction
	2 Background
	2.1 Programs
	2.2 Blocks in a Program
	2.3 CPA and CPA Algorithm

	3 BAM for Interprocedural Analysis
	3.1 Operators of BAM
	3.2 BAM as CPA
	3.3 Fixed-Point Algorithm for Unbounded Recursion
	3.4 Soundness of BAM for Recursion
	3.5 Block-Abstraction Computation with Operators

	4 Application of BAM Interprocedural to Abstract Domains
	4.1 Soundness of Reduce and Expand Operator for the Given Domains
	4.2 Embedding BAM Interprocedural in CEGAR
	4.3 Detailed Description of the Example

	5 Experimental Evaluation
	5.1 Benchmark Programs and Setup
	5.2 Results and Discussion

	6 Conclusion
	References

