
An Interface Theory for Program Verification

Dirk Beyer and Sudeep Kanav

LMU Munich, Germany

Abstract. Program verification is the problem, for a given program P
and a specification φ, of constructing a proof of correctness for the
statement “program P satisfies specification φ” (P |= φ) or a proof of
violation (P 6|= φ). Usually, a correctness proof is based on inductive
invariants, and a violation proof on a violating program trace. Verifi-
cation engineers typically expect that a verification tool exports these
proof artifacts. We propose to view the task of program verification as
constructing a behavioral interface (represented e.g. by an automaton).
We start with the interface IP of the program itself, which represents all
traces of program executions. To prove correctness, we try to construct
a more abstract interface IC of the program (overapproximation) that
satisfies the specification. This interface, if found, represents more traces
than IP that are all correct (satisfying the specification). Ultimately, we
want a compact representation of the program behavior as a correctness
interface IC in terms of inductive invariants. We can then extract a cor-
rectness witness, in standard exchange format, out of such a correctness
interface. Symmetrically, to prove violation, we try to construct a more
concrete interface IV of the program (underapproximation) that violates
the specification. This interface, if found, represents fewer traces than IP

that are all feasible (can be executed). Ultimately, we want a compact
representation of the program behavior as a violation interface IV in
terms of a violating program trace. We can then extract a violation wit-
ness, in standard exchange format, out of such a violation interface. This
viewpoint exposes the duality of these two tasks — proving correctness
and violation. It enables the decomposition of the verification process,
and its tools, into (at least!) three components: interface synthesizers,
refinement checkers, and specification checkers. We hope the reader finds
this viewpoint useful, although the underlying ideas are not novel. We
see it as a framework towards modular program verification.

Keywords: Program verification, Interface theory, Cooperative verification,
Software verification, Verification interface, Verification witness, Conditional
model checking, Tool combination, Modular verification

1 Introduction

Software verification solves the problem of finding out, for a given program P and
a behavioral specification φ, whether the program fulfills the specification, writ-

Funded in part by Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).

https://orcid.org/0000-0003-4832-7662
http://gepris.dfg.de/gepris/projekt/378803395

ten P |= φ, or not, written P 6|= φ. The problem is in general undecidable [26, 48],
but we can create verification tools that solve some practical instances of the prob-
lem with reasonable performance. The society and industry depends on correctly
working software. As often with difficult problems, there are many different heuris-
tics that lead to different verification tools with different strengths [7, 15, 37]. Soft-
ware verification is applied more and more to industry-scale software [5, 24, 29, 39].

Our motivation is to decompose the problem of software verification in such
a way that parts of the problem can be given to different verification tools,
which can be specialized to solve their part of the problem. Tools for software
verification usually work on an internal representation of the program, which
is an overapproximation (to prove correctness), or an underapproximation (to
prove violation), or neither of the two (intermediate result). We call these internal
representations verification interfaces, and we would like to make them explicit
and ideally export them to the user, such that the verification problem can be
composed into sub-problems that can be solved by different tools.

In theory, the answer to the verification problem is True or False, and early
tools only reported those answers. It became clear quickly that in practice,
the value lays not in the short answer, but in the explanation —a verification
witness— that describes the answer True or False in more detail. Thus, model
checkers started exporting counterexamples when the answer was False [28]. It
took another 20 years to make counterexamples exchangeable using a standard
XML format for violation witnesses [11]. The format was quickly adopted by
many publicly available tools for software verification 1 and got extended to
correctness witnesses later [10]. Exporting witnesses for decisions computed by
algorithms seems to be standard also in other areas [42, 50].

Contributions. As a first step towards the decomposition of verification tools, we
define interfaces, state the interface theorems (known from refinement calculus [44]
and interface automata [3]) to enable modular verification, discuss the various
proof flows, including the connection to verification witnesses, and discuss a few
approaches as we see them through the lens of interfaces.

Related Work. The insights in this paper stem from our work on capturing
the essence of the program-verification process in verification witnesses [10, 11],
which is a large project that started seven years ago [21]. The basic idea is to
summarize, materialize, and conserve the information that the verification system
uses internally for the proof of correctness or violation.

The foundational ideas that we use in this paper are well-known, such as seeing
the correctness proofs as a modular two-step approach that consists of (i) captur-
ing the semantics and deduct specification satisfaction (e.g., using a correctness
logic [34] or an incorrectness logic [45]) and (ii) base the proof on refinements [44].

The inspiration to call the objects of interest interface comes from the interface
theories for concurrent systems [3], for timed systems [4], for resources [25], for
web services [8], and for program APIs [17, 33].

1 For C programs: https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

2 Verification via Interfaces

For simplicity, we restrict our consideration to specifications of safety properties,
and to programs that contain only variables of type integer and no function
calls. The theory can be extended naturally.

2.1 Verification Interfaces

A program P is usually represented as a control-flow graph (CFA) [1, 40] or
control-flow automaton [15, 16]. A control-flow automaton P = (L, l0, G) consists
of a set L of program locations, an initial program location l0, and a set G ⊆
L×Ops × L of control-flow edges, which transfer from one program location to
another on a program operation from Ops. The program operations operate on a
set of program variables X. For defining interfaces, we use protocol automata
from the literature on verification witnesses [11, 20], in order to emphasis the
similarity of verification interfaces with verification witnesses.

A verification interface (Q,Σ, δ, qinit, F) for a program P is a nondeterministic
finite automaton and its components are defined as follows (the set Φ contains
all predicates of a given theory over the set X of variables of P):

1. The set Q ⊆ Γ × Φ is a finite set of control states, where each control
state (γ, ϕ) ∈ Q has a name γ from a set Γ of names, which can be used to
uniquely identify a control state q within Q, and an invariant ϕ ∈ Φ, which is
a predicate over program variables that evaluates to true whenever a program
path reaches a program location that is matched by this control state.2

2. The set Σ ⊆ 2G × Φ is the alphabet, in which each symbol σ ∈ Σ is a
pair (S, ψ) that comprises a finite set S ⊆ G of CFA edges and a state
condition ψ ∈ Φ.

3. The set δ ⊆ Q×Σ ×Q contains the transitions between control states,
where each transition is a triple (q, σ, q′) with a source state q ∈ Q, a target
state q′ ∈ Q, and a guard σ = (S, ψ) ∈ Σ comprising a source-code guard S
(syntax), which restricts a transition to the specific set S ⊆ G of CFA edges,
and a state-space guard ψ ∈ Φ (semantics), which restricts the state space to
be considered by an analysis that consumes the protocol automaton. We also
write q σ−→q′ for (q, σ, q′) ∈ δ.

4. The control state qinit ∈ Q is the initial control state of the automaton.
5. The subset F ⊆ Q contains the accepting control states.

For a given interface (Q,Σ, δ, qinit, F), a sequence 〈q0, . . .〉 of states from Q
is called path if it starts in the initial state, i.e., q0 = qinit, and there exists a
transition between successive control states, i.e., qi −·→ qi+1 for all i ∈ [0, n− 1].
A test vector [9] specifies the values for input variables of a program. A path p
is called P -feasible, if a test vector exists 3 for which p can be executed in P ,
2 For example, an invariant that is matched for a loop-head location is called loop

invariant of the program.
3 Note that a test vector can have length zero if no input values are necessary to
execute a path.

1 x = nondet();
2 if (x < −10)
3 exit(1);
4

5 if (x < 0)
6 x = −x;
7

8 if (x >= 0)
9 return x;

10 else
11 error();
12

Listing 1: Correct program

1 x = nondet();
2 if (x < −10)
3 exit(1);
4

5 if (x > 0)
6 x = −x;
7

8 if (x >= 0)
9 return x;

10 else
11 error();
12

Listing 2: Violating program

5

6

8

9 11

12

[x < 0]

[!(x < 0)]

[!(x >= 0)]

x = -x;

[x >= 0]

2

0

3

x = nondet();

[!(x < -10)]
[x < -10]

return x;
error();

exit(1);

Fig. 1: Program interface for Listing 1

5

6

8

9 11

12

[x > 0]

[!(x > 0)]

[!(x >= 0)]

x = -x;

[x >= 0]

2

0

3

x = nondet();

[!(x < -10)]
[x < -10]

return x;
error();

exit(1);

Fig. 2: Program interface Listing 2

otherwise the path is called P -infeasible. The semantics L(I) of a verification
interface I is defined as the set of all paths of I.

Refinement.Given two verification interfaces I1 and I2, we say that I1 refines I2,
written I1 � I2, if L(I1) ⊆ L(I2).

Program Interface. If our goal is to reason about interfaces, we need to
be able to represent the control-flow automaton of a program also as an in-
terface. For a given program P , the corresponding program interface IP =
(QP , ΣP ,−→P , (l0, true), QP) consists of the following components:

1. The set QP = L× {true} of control states represents the program locations,
where the set L models the program-counter values, and the invariant is true
for all program locations.

2. The set ΣP = GP × {true} of alphabet symbols represents the program
operations, where the set GP = {{g} | g ∈ G} models the program operations
when control flows from one location to the next, and the guard is true for
all operations. Each transition is labeled with exactly one control-flow edge
(therefore the singleton construction above).

3. The set −→P ⊆ QP ×ΣP ×QP of transitions represents the control-flow edges
of the program.

4. The initial control state (l0, true) ∈ QP consists of the program-entry location
and the invariant true.

5. The set of final control states is the set QP of all control states, which models
that the program executions can potentially end at any given time (e.g., by
termination from the operating system).

The set L(IP) of paths in IP contains (by definition) exactly the paths of P ,
in other words, each program execution corresponds to a P -feasible path of
the verification interface IP .

Example 1. We consider as example a program that is supposed to compute
the absolute value of an integer number, if the value is not smaller than -10.
The program first reads an integer value into variable x, and exits if the
value is smaller than -10. Then, if the value is smaller than zero, the value is
inverted. If the operation was successful, the new value is returned, otherwise
an error is signaled. Listings 1 and 2 show two C programs, one correct and
one with a typo as bug: in line 5, the programmer mistyped the less-than
as a larger-than. Figures 1 and 2 show the program interfaces for the two C
programs from Listings 1 and 2. We use a compact notation for a transition
label (S, ψ), where we omit the set braces for the set S of CFA edges, if S is
a singleton, we omit the source and target control states and only print the
operation, and we omit the state-space guard if it is true. The background
color of a control state indicates membership in the set F : gray for final
(accepting) and light-red for non-final (non-accepting) control states.

Specification Interface. Specifications are typically given as LTL formulas [46]
or as monitor automata [15, 47]. Since we focus on safety specifications, we
use monitor automata. In order to use a uniform formalism, we use inter-
faces here also. A specification interface Iφ = (Qφ, Σφ,−→φ, qinit, Fφ) consists
of the following components:

1. The set Qφ ⊆ Γ × {true} of control states (all state invariants are true).
2. The set Σφ = 2G × {true} of labels that match control-flow edges, where

each label has a set of control-flow edges for the matching, and the guard is
true for all transitions.

3. The set −→S ⊆ Qφ × Σφ × Qφ of transitions represents the state changes
according to the monitored control-flow edges of the program.

4. The initial control state is qinit ∈ Qφ, with the invariant true, i.e., qinit =
(·, true).

5. The set Fφ ⊆ Qφ of final control states are those control states in which the
interface accepts the path, that is, the represented specification is satisfied.

Correctness and Violation. Given a verification interface I and a specifica-
tion φ, the verification interface is correct, written as I |= φ, if L(I) ⊆ L(Iφ),
or, using the notion of refinement of verification interfaces, I � Iφ, otherwise
the verification interface is violating.

Verification Problem. Given a program P and a specification φ, verification
is the problem of finding either a correctness proof for P |= φ or a violation proof
for P 6|= φ.

Since we know that the program interface IP is path-equivalent to the
program P , and that the specification interface Iφ represents a monitor au-
tomaton for the specification φ, we can restate the verification problem in
terms of verification interfaces:

Given a program P and a specification φ, verification is the problem of finding
either a correctness proof for IP � Iφ or a violation proof for IP 6� Iφ. 4

Traditionally, the verification problem is solved in one monolithic procedure,
or in an alternating sequence of attempts to prove P |= φ or P 6|= φ. Our goal
is to decompose the proof-finding process into smaller parts.

Figure 3 illustrates the space of verification interfaces. Each node represents
an interface and each dotted line represents that the lower interface refines the
upper interface. On the very top, we have the interface I>, which accepts all
paths, and I � I> holds for all interfaces I. On the very bottom, we have the
interface I⊥, which accepts no paths, and I⊥ � I holds for all interfaces I. These
two parts of the picture are not interesting and we will not revisit them.

The program interface IP is the center of the interface space, and the ver-
ification problem is to answer the question whether it belongs to the area
of correctness interfaces (marked by |= φ, light blue) or to the area of the
violation interfaces (marked by 6|= φ, red).

The specification interface Iφ is the top-most element in the refinement
hierarchy inside the area of correctness interfaces, that is, Iφ is the most abstract
correctness interface. If IP � Iφ holds, then there exists is a refinement path
through the area of correctness interfaces from the program interface to the
specification interface. This is well-known from refinement calculus [44] and
is applied for proving correctness. There is a symmetry for proving violation,
which was not yet emphasized in the literature:

The test-vector interface IT contains one feasible violating path and is the
bottom-most element in the refinement hierarchy inside the area of violation

4 There are various ways for reasoning in order to obtain a proof, for example, strongest
post-conditions [34] are traditionally used for correctness proofs and incorrectness
logic [45] was recently proposed for violation proofs.

IP
Program
Interface IP

Iφ
Specification
Interface Iφ

I>

IT
Test-Vector
Interface IT

I⊥

IT ′

Co
rr
ec
tn
es
s
Pr
es
er
vi
ng

A
bs
tr
ac
tio

n

Re
fin

em
en
t

Fe
as
ib
ili
ty

Pr
es
er
vi
ng

Re
fin

em
en
t

A
bs
tr
ac
tio

n

IC
Correctness
Interface IC

IV
Violation
Interface IV

|= φ

6|= φ

I¬C

I¬V

Fig. 3: Space of verification interfaces

interfaces, that is, IT is the most concrete violation interface. 5 If IT � IP holds,
then there exists is a refinement path through the area of violation interfaces
from the test-vector interface to the program interface.

5 There might be several violating test-vectors for different bugs (as there might be
different specifications for the overall correctness of the program), but let us assume
for simplicity that there is only one violating test vector.

qE

qinit

error();

G\error();

G

Fig. 4: Specification
interface

12

0

2

x = nondet();
: 〈x = 5〉

error();

G\error();

Fig. 5: Feasible interface
(test vector for Listing 2)

12

0

2

x = nondet();
: 〈x = −15〉

error();

G\error();

Fig. 6: Infeasible interface
(test vector for Listing 2)

Example 2. Figure 4 shows an example specification interface (Iφ in Fig. 3)
for representing a safety specification. The specification interface starts from
an initial state qinit and transitions to the non-final (non-accepting, violating)
control state qE when it encounters a call to function error. A program
is correct if the non-accepting state is never reached during any execution,
otherwise it is said to violate the specification.

Fig. 5 shows an example interface (IT in Fig. 3) representing a test vector
for our violating example program in Listing 2. Here, the test vector assumes
that variable x was assigned the value 5 (expressed by the state-space guard
after the colon) by the call to function nondet. Note that the label of a
transition is a pair (S, ψ) and here we have S is the set {(0, x = nondet();, 2)}
and ψ is the predicate x = 5. Then, the automaton either keeps on looping in
control state 2, or transitions to the non-accepting (violating) control state 12
on a call to function error.

Figure 6 shows an example test-vector interface (IT ′ in Fig. 3) that is
infeasible for our violating example program in Listing 2. Here, the test
vector assumes that variable x was assigned the value -15 by the call to
function nondet. Then, the automaton either keeps on looping in the control
state 2, or transitions to the non-accepting (violating) control state 12 on a
call to function error. This interface is infeasible because our program would
exit (line 3 of Listing 2) if x was assigned -15.

2.2 Modular Verification using Interfaces

As illustrated in Fig. 3, there are intermediate correctness interfaces between the
program and the specification, and there are intermediate violation interfaces
between the program interface and the test-vector interface.

Theorem 1 (Refinement Preserves Correctness). Given a program P ,
a specification φ, and an interface IC , if IC |= φ and IP � IC , then P |= φ.

According to Theorem 1 [44], we can now use an intermediate correctness interface
to construct a correctness proof via the interface: Given a program P , a specifi-

5

6

8

9

12

x >= 0

x >= -10
[x < 0]

[!(x < 0)]

x = -x;

[x >= 0]

2

0

3

x = nondet();

[!(x < -10)]
[x < -10]

return x;

exit(1);

Fig. 7: Correctness interface for
correct program (Listing 1)

5

6

8

11

12

[x > 0]

[!(x > 0)]

[!(x >= 0)]

x = -x;

2

0

x = nondet();
: 〈¬(x < −10)〉

[!(x < -10)]

error();

Fig. 8: Violation interface for
violating program (Listing 2)

cation φ, and an interface IC , to prove P |= φ it is sufficient to prove (i) IC |= φ
and (ii) IP � IC . An intermediate correctness interface IC is also drawn in Fig. 3.

The requirement for constructing correctness interfaces is to represent (a) only
correct program paths (satisfying the specification) and (b) try to enlarge the
set of paths until a compact form is reached. The quality of a correctness
interface I1 is often felt better than the quality of I2, if I2 � I1, or L(I2) ⊆ L(I1).
Requirement (a) can be proven with a Hoare logic [34].

To construct an induction proof, we would like to add another requirement:
(c) all the invariants in the control states of the correctness interfaces are inductive.
Therefore, Fig. 3 has two marked areas between the program and the specification
interface: The large (light-blue) area represents all correctness interfaces, the
smaller (green) area represents all correctness interfaces whose invariants are
inductive. We use the notion of inductive invariants as used in the literature [30].

Example 3. Figure 7 shows an example correctness interface IC for the pro-
gram in Listing 1. The green rectangles at control states show the state
invariants. The paths leading to the violating program location (i.e., taking
the violating transition) in the program interface of Fig. 1 are not contained
in the correctness interface because they are infeasible.

To emphasize the symmetry between correctness and violation proofs, we
write the below text using a wording as close as possible to the above.

Theorem 2 (Abstraction Preserves Violation). Given a program P , a spec-
ification φ, and an interface IV , if IV 6|= φ and IV � IP , then P 6|= φ.

According to Theorem 2, we can now use an intermediate violation interface to
construct a violation proof via the interface: Given a program P , a specification φ,
and an interface IV , to prove P 6|= φ it is sufficient to prove (i) IV 6|= φ and
(ii) IV � IP . An intermediate violation interface IV is also drawn in Fig. 3.

The requirement for constructing violation proofs is to represent (a) only
feasible program paths (being executable) and (b) try to reduce the set of
paths until only one is left. The quality of a violation interface I1 is often felt
better than the quality of I2, if I1 � I2, or L(I1) ⊆ L(I2). Requirement (a)
can be proven with an incorrectness logic [45].

To construct a counterexample proof, we would like to add another require-
ment: (c) all the feasible paths of the violation interfaces are violating. Therefore,
Fig. 3 has two marked areas between the program and the test-vector interface:
The large (light gray) area represents all feasible interfaces, the smaller (red)
area represents all violation interfaces that contain only violating paths.

Example 4. Figure 8 shows an example violation interface IV for the program
in Listing 2. This interface only shows the paths leading to the non-accepting
(violating) control state (i.e., taking the violating transition) in Fig. 2.

Theorem 3 (Substitutivity of Interfaces). Given two verification interfaces
I1 and I2 with I1 � I2 and a specification φ, if I2 |= φ, then I1 |= φ (and if
I1 6|= φ, then I2 6|= φ).

Using Theorem 3, we can use the concept of step-wise refinement in proofs of
correctness [44] and in proofs of violation [11]. Theorem 3 lets us substitute one
interface by another one while preserving the (dis-) satisfaction of the specification.

2.3 Proof Flows using Interfaces and Witnesses

Figure 9 illustrates the possible ways to construct proofs. In the interface domain
on the left, the figure shows the program interface IP , a correctness interface IC ,
and a violation interface IV . In the domain of the software engineer, we have
the specification φ, the program P , the test vector T , and two verification
witnesses WC and WV . The correctness witness WC [10] is a representation of
the verification results if the verification tool constructed a correctness proof;
the violation witness WV [11] is a representation of the verification results if
the verification tool constructed a violation proof.

Proving Correctness. To prove the correctness P |= φ for a given program P
and a specification φ, we can use interfaces in the following way: First we embed
the program P into the interface domain by constructing IP . This is simply done
by applying the definition. The creative part of the proof construction is to come
up with the correctness interface IC that contains invariants that are inductive.
So the actual proof consists of three steps: (a) construct IC , (b) show IP � IC ,

Interface Domain Programmer Domain

IP
Program
Interface P Program

transformation

IC
Correctness
Interface WC

Correctness
Witness

φ Specification

abstraction summarization

transformation

sati
sfies

testifies

IV
Violation
Interface WV

Violation
Witness

T Test
Vector

refinement concretization

transformation

testifies

represents

Fig. 9: Proof flows using the interface domain

and (c) show IC |= φ. At the end, we can extract a correctness witness WC

in an exchange format to share with tools and users.
A correctness witness overapproximates the correctness interface that it is

extracted from. The intention of a correctness witness is to represent useful
information to help reconstructing a correctness proof [10], but it might be
overapproximating too much, that is, having invariants that are not inductive, or
even weaker than the specification. In other words, a correctness witness might
describe a set of paths that includes also violating paths, while a correctness
interface is guaranteed to represent only correct (and inductive) paths.

Proving Violation. To prove the violation P 6|= φ for a given program P and a
specification φ, we can use interfaces in the following way: First we embed the
program P into the interface domain by constructing IP . Again, this is simply
done by applying the definition. The creative part of the proof construction is

to come up with the violation interface IV that describes paths that all violate
the specification. So the actual proof consists of three steps: (a) construct IV ,
(b) show IV � IP , and (c) show IV 6|= φ. At the end, we can extract a violation
witness WV in an exchange format to share with tools and users.

A violation witness overapproximates the violation interface that it is ex-
tracted from. The intention of a violation witness is to represent useful infor-
mation to help reconstructing a violation proof [11], but it might be overap-
proximating too much, that is, including paths that are not violating, or not
even feasible. In other words, a violation witness might describe a set of paths
that includes also correct paths, while a violation interface is guaranteed to
represent only feasible (and violating) paths.

3 Decomposing Verification and Cooperative Verification

The original goal of our work is to find ways to decompose verification tasks in
such a way that several tools, written by different development teams, cooper-
ate to solve the verification task. In fact, the proof flows that were explained
in the previous section are actually used in practice, but their three steps
are usually hidden under the hood of the verification engine, and the flow is
mostly implemented in a monolithic way.

Our proposal is to make the interfaces eminent, and to explicitly separate
the steps of the overall proof. From this it follows that the steps need not
necessarily be taken care of by the same verifier. The idea is to decompose the
overall verification process into parts that can be performed by specific tools,
optimized for their part of the proof. Verification interfaces are a great tool to
make program verification compositional, involving different tools that solve the
problem together in a cooperative manner [20]. Thus, we need three kinds of tools:

• Interface synthesizers, to construct an interface
• Refinement checkers, to check I1 � I2
• Specification checkers, to check I |= φ

In the following, we put new and existing approaches to verification into the
perspective of interfaces, by motivating their existence (for new or recent ones)
and by trying to explain the internal working of some existing approaches.

3.1 Decomposed Approaches

Learning and Approximate Methods. Classically, we need approaches to
construct interfaces that are valid, that is, interfaces with inductive invariants
for correctness proofs and interfaces that are feasible and validating for violation
proofs. But given existing checkers as explained above, we can use approxi-
mate methods to construct interfaces that are not guaranteed to be helpful
for the proof construction. Since the interfaces can be checked, it is easy to
refute them or prove that they are indeed useful. Also, such interfaces might

Interface Domain Programmer Domain

IP
Program
Interface P Program

transformation

IC
Correctness
Interface WC

Correctness
Witness

φ Specification

abstracts summarization

transformation

sati
sfies

testifies

IV
Violation
Interface WV

Violation
Witness

T Test
Vector

refines concretization

transformation

testifies

represents

Fig. 10: Validation flows using the interface domain

be helpful to be further refined or abstracted to become more useful for the
proof process. Furthermore, it might be interesting to come up with violation
interfaces via learning-based testing [43].

Refiners. Besides the above-mentioned checkers, we can imagine tools that
take an interface I1 as input and refine (e.g., reduce) it in order to construct
a new interface I2 such that I2 � I1. This idea is already used in the context
of conditional model checking [18] (Reducers).

Abstracters. For the other direction, we can imagine tools that take an in-
terface I1 as input and abstract (e.g., extend, slice) it in order to construct
a new interface I2 such that I1 � I2. This is an old but effective idea and
used in program slicing [49].

Interactive Verification. The process of interactively constructing a proof in
software verification using tools like Dafny [41], KeY [2], and Why3 [31] can be

seen through the interface lens as follows: The human defines the correctness
interface, usually by injecting the invariants in the program source code using
annotations, and the verifier checks the refinement and specification satisfaction.

Witness-Based Results Validation. A validator for verification results takes
the correctness witness WC and transforms it to the internal interface represen-
tation IC , that is, the validator does not need to come up with IC (and the
contained invariants) but applies only a (syntactic) transformation. Figure 10
tries to illustrate this flow. Then, the validator tries to prove IP 4 IC and IC |= φ.
Symmetrically, for validating a violation result, the validator takes the violation
witness WV and transforms it to the internal interface representation IV , which
ideally describes an error path that it can easily replay and check for feasibility
and violation, i.e., IV 4 IP and IV 6|= φ. Regarding multi-threaded programs,
there is support for verification witnesses and their validation already [14].

k-Induction. There are verification approaches that consist of two engines,
(a) an invariant-generator and (b) an inductiveness checker [12, 13, 38]. The
former constructs the most essential parts of the correctness interface IC (the
invariants, done in parallel in an isolated separate process), while the latter
performs the checks IP 4 IC and IC |= φ, with ever increasing values for
length k of the inductive-step.

3.2 Integrated Approaches

CEGAR— Explained using Interfaces. Counterexample-guided abstraction
refinement (CEGAR) [27] is an approach that uses the following steps in a loop
until a proof of either correctness or violation is constructed:

1. construct an abstract model Ia using a given precision
2. check Ia |= φ; if it holds, terminate with answer (True,WC) (the interface Ia

corresponds to an interface IC in Fig. 3, the correctness witness WC in Fig. 9
is an abstraction of IC)

3. extract counterexample interface Ib from Ia (interface Ia corresponds to
interface I¬C in Fig. 3)

4. check Ib 6|= φ; if it holds, terminate with answer (False,WV) (the interface Ib
corresponds to an interface IV in Fig. 3, the violation witness WV in Fig. 9
is an abstraction of IV)

5. extract new facts to refine the precision (derived from the infeasibility of Ib)
and continue with step (1); (the interface Ib corresponds to an interface I¬V
in Fig. 3)

Theorems 1 and 2 explain the correctness of CEGAR-based software model
checking: The interfaces IC and IV can be used to prove the correctness and
violation, respectively, using an internal specification checker and feasibility
checker. Note that the feasibility checker in CEGAR is given by the above-
described refinement checker (all refinements of the program interface IP are

IP

Iφ

IT

I>

I⊥

IC

IV

|= φ

6|= φ

I¬C1

I¬C2
I¬C3

I¬V 1

I¬V 1

I¬V 1

refine

ab
st
ra
ct

refine

ab
st
ra
ct

Fig. 11: Explaining CEGAR using interfaces

feasible, see Fig. 3). Figure 11 illustrates the alternation of the CEGAR loop
between trying to prove correctness and trying to prove violation.

The resulting correctness interface IC (in case of outcome True) contains
predicates describing inductive invariants (overapproximation of IP), and the
resulting violation interface IV (in case of outcome False) contains (at least one)
feasible and violating path (underapproximation of IP).

Test Generation. Theorem 2 explains the process of symbolic-execution-based
test generation (as done, e.g., by Klee [23]): The approaches leverage con-
cretization mechanisms to construct a refined interface (constraints describ-
ing error paths, underapproximation) and the process must ensure feasibility,
until a violating interface is found.

Explicit-State Model Checking. In some approaches to verification, the
complete state space is exhaustively enumerated and checked [6, 19, 32, 36]. When
proving correctness of a program, those approaches operate on the same level of

abstraction as the program itself, there is neither over- nor under-approximation.
Thus, the most compact correctness interface used by such a verifier is the program
interface IP — these approaches cannot benefit from abstraction. However, when
proving violation of a program, once an error path is encountered, the verifier
can terminate the exploration and the partially explored state space can be
seen as violation interface (which represents only a subset of all paths). Similar
observations hold for SMT-based bounded model checking [22].

4 Conclusion

Software verification is a grand challenge of computer science [35]. Many powerful
tools and approaches have been developed for program verification. Different
approaches come with different strengths, and in order to join forces, we need
to investigate ways to combine approaches. We are looking into possibilities
to decompose a verification problem into smaller sub-problems in such a way
that we can assign them to different tools (cooperative verification [20]). To
achieve this, we extended the schema for proving correctness from refinement
calculus by a symmetric schema for proving violation of program specifications.
We hope that our interface-based viewpoint stimulates discussion on how we
can achieve more modularity and decomposition in software verification. As
future work, we plan to integrate compositional proofs into CoVeriTeam6 —
a tool to compose verification actors.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The key tool. Software and
System Modeling 4(1), 32–54 (2005). https://doi.org/10.1007/s10270-004-0058-x

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. FSE. pp. 109–120.
ACM (2001). https://doi.org/10.1145/503271.503226

4. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Proc. EMSOFT,
pp. 108–122. LNCS 2491, Springer (2002). https://doi.org/10.1007/3-540-45828-x_9

5. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with Slam.
Commun. ACM 54(7), 68–76 (2011). https://doi.org/10.1145/1965724.1965743

6. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai, P.,
Štill, V.: Model checking of C and C++ with Divine 4. In: Proc. ATVA. pp. 201–207.
LNCS 10482, Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_14

7. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art
and current trends. IEEE Intelligent Systems 29(1), 20–29 (2014).
https://doi.org/10.1109/MIS.2014.3

8. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Proc.
WWW. pp. 148–159. ACM (2005). https://doi.org/10.1145/1060745.1060770

6 https://gitlab.com/sosy-lab/software/coveriteam/

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1145/503271.503226
https://doi.org/10.1007/3-540-45828-x_9
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1145/1060745.1060770
https://gitlab.com/sosy-lab/software/coveriteam/

9. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

13. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifica-
tion. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

14. Beyer, D., Friedberger, K.: Violation witnesses and result validation for multi-
threaded programs. In: Proc. ISoLA. LNCS , Springer (2020)

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-
flow analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_16

16. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model
checker Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007).
https://doi.org/10.1007/s10009-007-0044-z

17. Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for interface synthesis. In: Proc.
CAV. pp. 4–19. LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-540-
73368-3_4

18. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based con-
struction of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018).
https://doi.org/10.1145/3180155.3180259

19. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

20. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA. LNCS , Springer (2020)

21. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In: Proc. SPIN. pp. 1–17. LNCS 7976,
Springer (2013). https://doi.org/10.1007/978-3-642-39176-7_1

22. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14

23. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

24. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

25. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Proc. EMSOFT. LNCS 2855, Springer (2003). https://doi.org/10.1007/978-3-
540-45212-6_9

https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-540-73368-3_4
https://doi.org/10.1007/978-3-540-73368-3_4
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9

26. Church, A.: A note on the Entscheidungsproblem. Journal of Symbolic Logic 1(1),
40–41 (1936). https://doi.org/10.2307/2269326

27. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

28. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proc. DAC. pp.
427–432. ACM (1995). https://doi.org/10.1145/217474.217565

29. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-
319-96145-3_3

30. Cousot, P.: On fixpoint/iteration/variant induction principles for proving total
correctness of programs with denotational semantics. In: Proc. LOPSTR 2019. pp.
3–18. LNCS 12042, Springer (2020). https://doi.org/10.1007/978-3-030-45260-5_1

31. Filliâtre, J.C., Paskevich, A.: Why3: Where programs meet provers.
In: Programming Languages and Systems. pp. 125–128. Springer (2013).
https://doi.org/10.1007/978-3-642-37036-6_8

32. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000)

33. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: Proc. FSE. pp.
31–40. ACM (2005). https://doi.org/10.1145/1095430.1081713

34. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

35. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1), 63–69 (2003)

36. Holzmann, G.J.: The Spin model checker. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

37. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

38. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp. 55–62.
EPTCS 72 (2011). https://doi.org/10.4204/EPTCS.72.6

39. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

40. Kildall, G.A.: A unified approach to global program optimization. In: Proc. POPL.
pp. 194–206. ACM (1973). https://doi.org/10.1145/512927.512945

41. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Proc. LPAR. pp. 348–370. LNCS 6355, Springer (2010). https://doi.org/10.1007/978-
3-642-17511-4_20

42. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certi-
fying algorithms. Computer Science Review 5(2), 119–161 (2011).
https://doi.org/10.1016/j.cosrev.2010.09.009

43. Meinke, K.: Learning-based testing: Recent progress and future prospects. In:
Machine Learning for Dynamic Software Analysis: Potentials and Limits. pp. 53–73.
LNCS 11026, Springer (2018). https://doi.org/10.1007/978-3-319-96562-8_2

44. Morris, J.M.: A theoretical basis for stepwise refinement and the programming cal-
culus. Sci. Comput. Program. 9(3), 287–306 (1987). https://doi.org/10.1016/0167-
6423(87)90011-6

45. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (2020).
https://doi.org/10.1145/3371078

https://doi.org/10.2307/2269326
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/217474.217565
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-030-45260-5_1
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/1095430.1081713
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1145/512927.512945
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/978-3-319-96562-8_2
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1145/3371078

46. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Handbook
of Model Checking, pp. 27–73. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_2

47. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

48. Turing, A.: On computable numbers, with an application to the Entscheidungsprob-
lem. In: Proc. LMS. vol. s2-42, pp. 230–265. London Mathematical Society (1937).
https://doi.org/10.1112/plms/s2-42.1.230

49. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984).
https://doi.org/10.1109/tse.1984.5010248

50. Wetzler, N., Heule, M.J.H., Jr., W.A.H.: Drat-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Proc. SAT. pp. 422–429. LNCS 8561,
Springer (2014). https://doi.org/10.1007/978-3-319-09284-3_31

https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1145/353323.353382
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/tse.1984.5010248
https://doi.org/10.1007/978-3-319-09284-3_31

	An Interface Theory for Program Verification

