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Abstract. The goal of cooperative verification is to combine verification
approaches in such a way that they work together to verify a system model.
In particular, cooperative verifiers provide exchangeable information
(verification artifacts) to other verifiers or consume such information from
other verifiers with the goal of increasing the overall effectiveness and
efficiency of the verification process.
This paper first gives an overview over approaches for leveraging strengths
of different techniques, algorithms, and tools in order to increase the
power and abilities of the state of the art in software verification. To limit
the scope, we restrict our overview to tools and approaches for automatic
program analysis. Second, we specifically outline cooperative verification
approaches and discuss their employed verification artifacts. Third, we
formalize all artifacts in a uniform way, thereby fixing their semantics and
providing verifiers with a precise meaning of the exchanged information.
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1 Introduction

The area of software verification studies methods and constructs tools for au-
tomatically proving program properties. The recent past has seen an enormous
improvement in this area, in particular with respect to scalability, precision,
and the handling of different programming-language features. Today’s software-
verification tools employ a variety of different techniques, ranging from data-flow
analysis [69] over symbolic execution [70] to SAT-based approaches [16, 33]. As
all these techniques have their particular strengths and weaknesses, a number of
tools tightly integrate different —usually two— approaches into one tool (see [17]
for an overview). For instance, the integration of techniques that under- and
over-approximate the state space of the program is a frequent combination. Such
combinations typically improve over pure approaches. However, such conceptual
integrations also require new tool implementations for every additional integration
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of techniques. Portfolio combinations loosely integrate different tools: There is
no communication between the approaches and the resulting combination can be
composed from off-the-shelf components. Algorithm selection combines different
approaches into one by first analyzing the input problem and then choosing the
approach that will most likely (according to some heuristics) succeed.

In contrast to these extremely tight or extremely loose combinations, coop-
erative verification is a combination of approaches that cooperate, that is, work
together to achieve the verification goal, but leave the existing tools (mostly)
untouched. Cooperative verifiers communicate with each other in order to max-
imize the common strength, in particular, by exchanging information about
intermediate results. In a framework for cooperative verification, the integration
of a new technique might require some implementation to make it understand
the communication, viz. be able to use intermediate results, but it can avoid
a new re-implementation of the combination — from the conceptual as well as
from the practical viewpoint. If the intermediate results come in a format already
accepted by the tool (e.g. as a program), the tool can even be employed as is.

In this paper, we provide a classification of verification approaches according
to the interface and type of combination employed; we briefly survey combination
approaches, for portfolio, selection, cooperative, and conceptual combination
of verification approaches. We then discuss a number of aspects relevant to
cooperative verification, in particular its objectives and prerequisites.

2 Classification of Verification Approaches
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Fig. 1: Formal verification

In the following, we provide a classification of verifica-
tion approaches according to their way of interfacing
and combining verification components. By the term
“verification approach” we understand an automatic
or automatable formal method for solving verification
tasks, i.e., for evaluating the proposition “Program p
satisfies behavioral specification ϕb” and returning a result r, which can be
true (p |= ϕb), false (p 6|= ϕb), or unknown, and an (optional) witness ω,
which contains proof hints, as depicted in Fig. 1.

2.1 Overview over Interfaces
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Fig. 2: Output Interfaces

Output. The goal of a verification tool is to
solve a verification task and to deliver the
computed results to either a verification en-
gineer for manual inspection or to a machine
for further automated processing (Fig. 2). De-
pending on how the results are consumed (by
human or by machine), the tool needs to use different formats.

While researchers mainly concentrated on improving the (internal) verification
algorithms during the past two decades, it is understood since recently that it



is (at least) equally important to provide not only true/false answers, but
more details about the reasoning and the process of the verification.

Human. Almost all verification tools provide some kind of statistics to the
user, for example, about the number of iterations, of number of proof facts, or
consumed resources. Execution reports [34] present an underapproximation of
the successfully verified state space to the user. There are also approaches to
support interactive inspection of verification results, e.g., by visualization of
error paths [81] and verification-aided debugging [11].

Machine. In order to make it possible to validate verification results in an au-
tomated way, verification witnesses were introduced [8, 31], a machine-readable
exchange format (XML based). Verification witnesses make it possible to inde-
pendently re-verify the program based on knowledge that another verifier has
produced. This can increase trust in the results, can spread the risk of verification
errors, and can help making internal knowledge from the verification engine
accessible for the user (error paths, program invariants). Violation witnesses [14]
enhance the answer false by a description of the state space that contains an
error path (a program path that violates the specification), while correctness
witnesses [13] enhance the answer true by a description of program invariants
that are helpful to prove that the program satisfies the specification. It is known
since 15 years that test cases can be derived from error paths [9, 96], but this
approach was rarely used in practice and only since recently it is possible to
output and exchange this kind of information via a standard format.

While the previous approaches, as the name indicates, witness the verification
result, it is also important to make intermediate results and partial results
accessible to further processing. Conditional model checking [19] reads as input
and writes as output a description of the already verified state space. That is, a
conditional verifier outputs a condition that describes the work already done, i.e,
the parts of the state space that are already verified. Another kind of intermediate
output for machines to later reuse is the abstraction precision [23, 29, 86]. In
CEGAR-based approaches [38] an abstract model is automatically constructed by
finding abstraction facts in refinement steps which are added to the precision of
the analysis (the more abstraction facts are added to the precision, the finer the
abstract model). Full abstract models can be used as certificate of correctness [66]
or in order to speed up later verification runs for different versions of the same
program during regression verification [60].
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Fig. 3: Input Interfaces

Input. Similar to the output, there are dif-
ferent interfaces for the kind of input that
is given to the verification tools, some from
users, some from machines, see Fig. 3.

Human. From the very beginning of program-
ming, assertions were added to programs [94]
in order to make it easier to prove correctness. Nowadays, assertions, invariants,



pre- and post-conditions, are annotated in programs in a way that machines (inter-
active verifiers) can read [5, 59]. There are several languages and tools that support
this, and a nice overview over such tools and their application opportunities are
given in the annual competition on interactive software verification VerifyThis [49].

There were also attempts to support the splitting of specifications and pro-
grams into modular parts, in order to make the verification task for the model
checkers easier, such as in the Blast query language [10, 87]. There are also
testing and analysis tools which ask the user for help [98]. Last not least, and
this is one of the most difficult parts, each verifier expects a set of parameters
that the user has to set, in order to choose how the verifier should solve its
task. However, finding the right parameters is a challenging task, which could
use tool support itself (such as SMAC [64] or Tuner [92]).
Machine. A classic approach to make additional information available to a tool
is by transforming the original input, e.g., by simplification or enhancement. The
advantage is that there is no additional input (no extra parser, no need to imple-
ment additional features). For example, the first software model checkers did not
have a specification language, but the specification was weaved into the program
in a preprocessing step (as was done for the Slam [3] specification language Slic [2]
and the Blast [18] query language [10]). Even programs were made simpler [78].

Verification witnesses and conditions were discussed already above as example
implementations for output interfaces. Verification witnesses can be taken as input
by validation tools that re-establish the verification result using independent tech-
nology. Also, the error path described by the violation witness can be replayed and
a test case can be derived from the path constraints along the found error path [15].

Conditional model checking is not widespread yet because it was considered
difficult to extend a verifier such that it understands conditions as input and
reduces the state space accordingly before running the verification engine. This
problem was solved by the reducer-based construction of conditional verifiers:
Reducers [25, 45] can be used to construct (without implementation effort) condi-
tional model checkers from off-the-shelf verifiers that do not understand conditions
themselves, by reducing the original input program to a residual program that
contains all the behavior that is not yet covered by the condition and removes
as much as possible from the already-verified state space.

2.2 Overview over Combinations
In the early days of automatic program verification, tools implemented a single
technique for verification (e.g., explicit enumeration of state space or data-
flow analysis using a fixed abstract domain). In our classification (see Fig. 4)
these are represented as Basic. Later, the tools implementing these techniques
were considerably generalized, for instance by allowing abstract domains to
be flexibly set via tool parameters. Still, during one verification run a sin-
gle basic technique was employed.

It soon turned out that a single verification technique may work well for
some verification tasks, but fail for others. This immediately triggered the ap-
plication of Combination techniques, in order to benefit from the different
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Fig. 4: Hierarchy of verification approaches (using UML notation)

strengths. Combinations can come in two sorts: A combination either treats
techniques or tools as Black Box objects and runs them (mainly) as they are
without implementation-specific integrations for which it matters what’s inside
the box, or a combination views a component as White Box, conceptually
integrating two or more techniques within a new tool. We distinguish three
forms of black-box combinations, without and with communication, and classify
all white-box approaches into one category.
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Fig. 5: Portfolio approaches
(top: sequential, bottom: parallel)

Portfolio combinations are motivated by
the portfolio idea from economics [63], which
is a means for distributing the risk: if one
investment (here: of computational resources
in a certain technique) fails, there are other
investments (techniques) that will be success-
ful. A portfolio combination has a number of
approaches available, and on a given verifica-
tion task executes the approaches in a fixed
order sequentially (Fig. 5, top), or runs all
approaches in parallel (Fig. 5, bottom). The
overall approach terminates if one component
analysis was successful in obtaining the result.
The big advantage of this approach is that it requires no knowledge about the
components and there is almost no effort for implementing the combination.
Therefore, we placed this most loosely coupled approach on the very left in the
bottom row of Fig. 4. The big disadvantage of portfolio approaches is that the
resources invested on unsuccessful tools or approaches are lost.

Algorithm Selection [85] is a solution to the problem of wasted resources of
portfolio approaches: Algorithm-selection approaches have a number of approaches
available, and on a given verification task choose one and execute it (Fig. 6).
That is, before starting an approach, a selection model is extracted from the
input, based on which a selector function predicts which approach would be best,
and only the potentially best approach is selected and executed. This requires
some knowledge about the (black box) characterization of the components, but
does not require any change of the implementation of the components.
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Fig. 6: Algorithm selection

Portfolio and selection approaches run the component tools independently
from each other, without any form of information exchange between the ap-
proaches. The goal of combining strengths of different approaches and at the
same time avoiding to waste resources inspired the development of cooperative
combinations of verification approaches.

Cooperation approaches enable the possibility of solving the problem to-
gether. Typically, tools exchange intermediate results (e.g., the state space which
has already been searched) in order to achieve a division of labor. Such co-
operative combinations range from two or more basic techniques running in
parallel and combining the information obtained for certain program locations
(e.g., combining partial verification results to proof witnesses [67]) to approaches
executing different tools in turns with each specializing to specific tasks (e.g., a
testing tool trying to achieve coverage together with a model checker constructing
counter examples to non-reachability [46]).

Conceptual Integration is the most intensively coupled approach and there-
fore put on the very right end of the bottom row in Fig. 4. The components are not
communicating via clear interfaces, but are tightly integrated and exchange data
structures via procedure calls and not via interfaces that could be externalized [17].

In the following subsections, we describe some forms of non-cooperative
verification approaches in more detail. In the next section we explain some
examples for cooperative verification approaches.

2.3 Examples for Portfolio Combinations

While it seems obvious that portfolio combinations of verification techniques
have a large potential, the topic has not yet been systematically investigated for
software verification, although it is used in other areas since many years [63].

Sequential Combinations. Examples of sequential combinations are SDV and
CPAchecker. The static driver verification (SDV) [4] tool chain at Microsoft
used a sequential combination (described in [93]) which first runs Corral [71]
for up to 1 400 s and then Yogi [80]. CPAchecker [26] won the competition
on software verification 2013 (SV-COMP’13, [7]) using a sequential combina-
tion [97] that started with explicit-state model checking for up to 100 s and
then switched to a predicate analysis [27].



Parallel Combinations. Examples of parallel combinations are the verifiers Ufo [57]
and PredatorHP [77], which start several different strategies simultaneously and
take the result from the approach that terminates first.

2.4 Examples for Algorithm Selection

Algorithm selection [85] first extracts a selection model from the input. In the
case of software verification, the input is the verification task (program and
its specification). The selection model describes some characteristics of the
verification task, for example, feature vectors (measurement values for certain
measures that map verification tasks to values). Based on the selection model, the
strategy selector chooses one strategy from a set of given verification strategies.

Approaches without Machine Learning. Strategy selection can be very simple and
yet effective. For example, a recent work has shown that it is possible with a few
boolean features to effectively improve the overall verification progress [12]. The
disadvantage is that the strategy selector needs to be explicitly defined by the
developer or user. This leads to approaches that use machine learning, in order
to automatically learn the strategy selector from training instances.

Machine-Learning-Based Approaches. The technique MUX [93] can be used to
synthesize a strategy selector for a set of features of the input program and a given
number of strategies. The strategies are verification tools in this case, and the
feature values for the selection model are statically extracted from the source code
of the input program. Later, a technique that uses more sophisticated features
was proposed [47, 48]. While the above techniques use explicit features (defined
by measures on the source code), a more recently developed technique [44] leaves
it up to the machine learning to obtain insights from the input program. The
advantage is that there is no need to define the features: the learner is given the
control-flow graph, the data-dependency graph, and the abstract syntax tree,
and automatically derives internally the characteristics that it needs. Also, the
technique predicts a ranking, that is, the strategy selector is not a function that
maps verification tasks to a strategy, but to a sequence of strategies.

2.5 Examples for Conceptual Integrations

Conceptual integrations tightly combine two or more approaches into a new
tool, typically re-implementing the basic techniques. A frequent combination
of this type is integrating an overapproximating (static) may-analysis with an
underapproximating (dynamic) must-analysis. The tool SMASH [54] at the
same time maintains an over- and an under-approximation of the state space of
programs. Building on the same idea, Yogi [6] (first proposal of the algorithm
was under the name Synergy [55]) in addition specifically employs testing to
derive alias information which is costly to precisely compute by a static analysis.

A second form of conceptual integration is offered by tools running different
analysis in parallel in a form of “product” construction. For example, the ver-
ification framework CPAchecker [26] provides the possibility of specifying and



running composite analyses. A composite analysis could for instance combine two
sorts of data-flow analyses (e.g., an interval analysis and an available-expression
analysis). The analyses are then jointly run and jointly derive analysis informa-
tion for program locations. The same idea was classically hard-coded as reduced
product [40] and further improved [22, 39, 43, 50, 56, 72].

All those combinations have in common that they exchange information, but
they are configured, intertwined, or even hardcoded combinations, rather than
interface-based black-box combinations. More approaches are described in the
Handbook on Model Checking, in the chapters on combining model checking with
data-flow analysis [17], with deductive verification [88], and with testing [53].

2.6 Verification as a Web Service

Orthogonally to the above combinations, approaches can be combined by provid-
ing them as web services. The Electronic Tools Integration platform (ETI) [91]
was developed for experimenting with, presenting, evaluating, conserving, and
coordinating tools. Later, the approach was extended to make it possible to use
the tools via a web site [74, 75, 76], such that the user does not need to install
any software. ETI uses LTL as specification language, and the systems to be
verified can be software systems or models of systems (e.g., times automata).
The central point of information of ETI is important, as otherwise, it is time-
consuming to collect the URLs of web services to different tool providers, such
as, for example, CPAchecker 1, Dafny 2, and Ultimate 3. It is even more difficult
to get them to cooperate if the tools are distributed, using different interfaces.
Unfortunately, the ETI initiative was discontinued, according to Steffen [90]
because of the manual integration effort at the ETI site in Dortmund and because
tool providers hesitated to provide their tools.

3 Cooperative Verification Approaches

In the following, we discuss approaches for cooperative verification, structured
according to the kind of information objects that are exchanged, and then
explain a few applications and their effects.

3.1 Exchangeable Objects for Communication and
Information Transfer

We now classify the approaches for cooperative verification according to the kinds
of communication interfaces that they use. While our text always refers to software
verification for concrete examples, cooperative verification is in no way limited to
software.
1 https://vcloud.sosy-lab.org/cpachecker/webclient/run/
2 https://rise4fun.com/Dafny/
3 https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/
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Fig. 7: Witness-based results validation

Conditions and Residual Programs. Conditional model checking (CMC) [19]
means to produce a condition as output that describes the state-space that
was successfully verified. The (temporal) condition can be represented as an
automaton. This information can be passed on to another verifier as input,
instructing this verifier to not verify again those parts of the state space that are
covered by the condition. Using a reducer [25], a program can be reduced to those
parts of its state space that still has to be verified; the result is called residual
program. Symbiotic [36] can be seen as reducer-based cooperation (slicer + Klee).
Inspired by CMC, comprehensive failure characterization (CFC) [51] computes a
condition that represents failure paths, using several tools that cooperate on the
task. Alternating conditional analysis (implemented in the tool ALPACA [52] 4) is
a generalization of CFC and involves a portfolio of 14 tools for program analysis.

Witnesses. Exchangeable witnesses serve as envelopes for error paths and in-
variants in a way that makes it possible to exchange the information between
different tools. A violation witness [8, 14, 31] explains the specification violation,
by describing a path through the program that violates the specification. A cor-
rectness witness [13] explains why the program satisfied the specification, by
describing invariants that are useful to have in a correctness proof. Figure 7
illustrates the process: The first analyzer verifies the program p according to
specification ϕb, and produces a result r and a witness ω. The second ana-
lyzer (re-)verifies the same program and specification using information from the
witness. If the result r matches the result r’, then the result is confirmed.

Precisions. Verification approaches that are based on counterexample-guided
abstraction refinement (CEGAR) [38] iteratively construct an abstract model
of the system. The “abstraction facts” that define the level of abstraction are
often formalized and expressed as precision [23, 29, 31, 86]. The precision can
be exported as output, such that later verification runs can start from such
a given definition of the abstraction level.

Abstract States / Certificates. Extreme model checking [60] dumps the ab-
stract reachability graph (ARG) to a file when the verification process terminates.
Configurable certificates [66] are sets of abstract states that cover all reachable
states of the system. ARGs and configurable certificates can be used by a different
verifier to check their validity (completeness and soundness).

Path Programs and Path Invariants. Path programs [21] are programs (for
example, written in the same programming language as the input program) that
4 https://bitbucket.org/mgerrard/alpaca/src/master/
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were invented to incorporate external invariant generators into CEGAR-based
approaches and are produced after a verifier has found an infeasible error path
(often called infeasible counterexample). The path program contains that path in
question, but usually also longer paths that use the same program operations,
that is, unrollings of a certain loop. The path program can now be given to a
tool for invariant synthesis (e.g., [20]) in order to obtain path invariants [21],
which are invariants for the whole path program, but in particular also for the
original path. The path invariants can then be fed back into the CEGAR-based
approach that was encountering the original path.

Taint-Analysis Queries and Answers. Taint analyses perform a specific sort
of software verification. They do not look at the satisfaction of behavioral specifi-
cations, but at the flow of information (typically within smartphone applications)
from private sources to public sinks. In this area of software analysis, numerous
tools with complementary strengths exist which has already lead to the proposal
of a cooperative taint-analysis tool [83]. Information exchange among tools is
therein performed via the AQL (Android-App Analysis Query Language [82])
which allows to state task queries as well as answers to these queries.

Evidential Tool Bus. The evidential tool bus [41, 42] is a tool-integration
framework, which is based on a variant of Datalog [1, 35] as a meta language.
Artifacts like claims, rules, and evidence are described in this language, as well
as verification workflows. The idea is to compose assurance claims (certificates)
based on evidence artifacts contributed by different tools, which interact in the
evidential tool bus using scripts, queries, and evidence artifacts. Artifacts for
models and programs are stored together with evidence artifacts. The intended
application area is not only software verification, but the verification of systems
in general (that is, models of systems).

Program Annotations. Assertions [94] and other information about the behav-
ior of the program can be added to the program as annotations [5]. An overview
over behavioral interface specification languages can be found in the literature [59].

3.2 Objectives and Applications

Having exchangeable objects about (partial) verification results [32] available
is important to overcome a variety of practical problems. In the following, we
highlight a few of the objectives and applications that we can aim for.

Improvement of Effectiveness and Efficiency. Storing intermediate results
can be used to improve the effectiveness and efficiency of the verification process.

Stateful Verification and Reuse. Storing (exchangeable) objects that contain
information about intermediate verification results can be considered as a state
of the verification process, i.e., making the verification process stateful.

Precisions that are stored and in later verification runs read and reused can
significantly improve the performance of regression verification [29, 86]. The setup
of this strategy is the following: the first version of a module is verified and at the



end, the precision is written to a file. When the i-th version is verified, then the
verifier reads the precision that the verification run for version i−1 has written, in
order to save time discovering the right abstraction level for the abstract model.

Configurable certificates [66] can reduce the validation time, because the
verifier that performs the validation of the certificate “only” needs to check
for the set of abstract states that all initial states are contained and that the
set is closed under successor transitions.

Also caching-based approaches to improve the efficiency can be seen as a
stateful way of performing computation. For example, Green [95] makes symbolic
execution more efficient by caching previous intermediate results.
Stateless Verification and Parallelization. The previous argument was based on
having a state that contains the intermediate results. It is also possible to speed up
verification processes in a stateless way. The technique of conditional model check-
ing is used to split programs into parts that can be independently verified [89].
Improvement of Precision and Confidence. Witness-based results valida-
tion [13, 14] can be used to increase the confidence in the results of verification
tools, because it is possible to take a witness-based results validator to “replay” the
verification. That is, for a violation witness, the validator tries to find and confirm
the error path that the witness describes, and for a correctness witness, the valida-
tor tries to use the invariants in the witness to re-establish the proof of correctness.

Execution-based results validation [15] extracts a test case from a violation
witness and executes it, in order to confirm that the specification violation is
observable in the executed program as well.
Explainability. The existence and availability of exchangeable objects with infor-
mation about the verification process makes it possible to develop approaches for
explaining what the verification process did and why the user should be more confi-
dent about the verification result. There are preliminary results on explaining and
visualizing counterexamples, e.g., for SPIN models [73] and for C programs [11, 81],
but due to the exchangeable witness format, many more approaches are possible.

4 Verification Artifacts

This section outlines a construction framework for cooperation. We study verifi-
cation artifacts, classify several verification tools as verification actors according
to their usage of artifacts, and define the semantics of some important artifacts.

4.1 Artifacts of Verification Tools

Verification artifacts are central to cooperation as they provide the means of
information exchange. A number of artifacts exist already, most notably of course
the programs themselves. We identified the following artifacts:

Program p. Defines the implemented behavior of the system. Syntax: C pro-
gramming language (for example). We represent programs as control-flow
automata in Sect. 4.3.



Behavior Specification ϕb. Defines requirements that all executions of a given
program have to satisfy, often as conjunction of several properties. Syntax:
The competition SV-COMP established a minimal set of properties that
participants of the competition have to support 5, which is based on LTL [84],
but some tools also support monitor automata as specification. We represent
properties by property automata in Sect. 4.3.

Test Specification ϕt. Defines requirements that a given test suite has to
satisfy. Syntax: The competition Test-Comp established a minimal set of
coverage criteria that participants of the competition have to support 6, which
is based on FQL [61, 62]; some tools offer parameters for hard-coded coverage
criteria. We represent coverage criteria by test-goal automata in Sect. 4.3.

Verification Result r. Verification tools return an evaluation of the statement
“Program p satisfies specification ϕb.” as answer. Syntax: The answer is from
the set {true, false,unknown}.

Witness ω. Verification witnesses are used to witness an outcome of a veri-
fication run, and thus can come in the form of violation and correctness
witnesses. Syntax: XML-based witness format 7 that is supported by all
available validators of verification results.

Test case t. Defines a sequence of values for all calls of external functions,
i.e., inputs for the program. Syntax: XML-based test-case format 8 that is
supported by all test-case generators that participate in Test-Comp.

Condition ψ. Defines the part of the program behavior that does not need to
be further explored. For verification, ψ describes the already verified parts.
For testing, ψ describes the parts of the program that are already covered by
an existing test suite. Syntax: Condition automata using a notation similar
to the Blast query lang. [10] for verification and test-goal sets for testing [28].

We use the corresponding capital letters to denote the types (i.e., sets of artifacts
of a kind), for example, the type P is the set of all C programs. Many tools
generate different forms of verification artifacts, but currently only very few
understand more than the artifact “program” as input.

4.2 Classification of Verification Tools as Actors

Based on the identified artifacts, we classify existing tools according to their
usage of artifacts into three sorts of verification actors:

Analyzers. Produce new knowledge about programs, for example verification
results or test suites.

Transformers. Translate one artifact into another, in order to implement a
certain feature or support cooperation.

Presenters. Prepare information from artifacts such that it can be presented
in a human-readable form.

5 https://sv-comp.sosy-lab.org/2019/rules.php
6 https://test-comp.sosy-lab.org/2019/rules.php
7 https://github.com/sosy-lab/sv-witnesses
8 https://gitlab.com/sosy-lab/software/test-format
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Fig. 8: Graphical visualization of the component framework

To convey a better understanding of these concepts, consider the following
examples: A verifier is an analyzer of type P ×Φb → R×Ω, which takes as input
a program p and a behavior specification ϕb, and produces as output a result r
and a witness ω 9. A conditional verifier is of type P × Φb × Ψ → R × Ω × Ψ ,
i.e., a verifier that supports also input and output conditions. A validator is
of type P × Φb × Ω → R × Ω, i.e., a verifier that takes as input in addition a
witness. A test-case generator is also an analyzer, but of type P × Φt → 2T ,
which takes as input a program p and a test specification ϕt, and produces
as output a set ts ∈ 2T of test cases.

Transformers are largely lacking today, only a few exist already [15, 25, 58, 79].
Transformers are, however, key to cooperation: only if a transformer can bring
the artifact into a form understandable by the next tool without implementing an
extension of this tool, cooperation can be put into practice. A test-case extractor
is a transformer of type P×Φb×Ω → T , which translates a program, specification,
and violation witness to a test case. The identity function is also a transformer
(for any given type). A reducer is a transformer of type P × Ψ → P , which takes
a program and a condition as input, and transforms it to a residual program.

Presenters form the interface to the user. A test-case executor is a presenter of
type P × T → {}, which takes a program p and a test case t as input, and shows
a particular program execution (perhaps with a crash) to the software engineer.

Now we can construct, for example, a conditional verifier from a reducer red
and an off-the-shelf verifier ver by composition. For inputs p, ϕb, and ψ, the expres-
sion ver(red(p, ψ), ϕb) runs the construction. For a verification with an execution-
based result validation based on a given verifier ver , test extractor wit2test,
9 All verifiers that participate in the competition SV-COMP are analyzers of this form.



and test executor exec, we can write exec(p,wit2test(p, ϕb, ver(p, ϕb).ω)). Fig-
ure 8 shows a graphical visualization of the individual components and the
two mentioned constructions.

With our construction framework, it is possible to identify the gaps of meaning-
ful transformers, and propose solutions to close these gaps, as far as needed for co-
operation.

4.3 Semantics of Verification Artifacts

We now develop the theoretical foundations of artifacts and actors. Artifacts
describe some information about a program (or a program itself), and for sound
cooperation we need to define the semantics of artifacts. For instance, a viola-
tion witness of a program describes a path of the program on which a specific
specification is violated, a condition describes a set of paths of a program which
have (or have not been) inspected by an analyzer. When employing cooperation
as a means for sharing the work load of validation, the cooperating tools need to
agree on the meaning of the exchanged artifacts. Without this, cooperation might
easily get unsound, e.g., returning a result true for a program and specification
although the combined usage of tools has failed to inspect the whole state space
of the program. By defining the semantics of artifacts, we also implicitly define
the desired semantics of the various actors operating on artifacts.

All of the artifacts given below are a variation of finite-state automata. The
reasons for choosing automata as our formalization are twofold: First, artifacts
arising in software verification naturally incorporate the sequencing of actions
or events as specifiable via automata (e.g., programs have control flow, paths or
counterexamples are sequences of operations), and second, a number of verification
tools already accept or produce artifacts which are some sort of automata
(e.g., violation or correctness witnesses).
We start the formalization of artifacts with the definition of programs, our prime
artifact. We denote the set of all program locations by Loc. Formally, a program p
is described by a control-flow automaton (CFA) Ap = (L, `0, G) that consists of
a set of locations L ⊆ Loc, an initial location `0 ∈ L, and a set of control-flow
edges G ⊆ L×Ops× L, where Ops is the set of operations. Operations can be
(a) assignments, (b) assume statements (arising out of branches), and (c) calls
to functions retrieving inputs. Here, we assume to have a single such function,
called input. We let G = L × Ops × L be the set of all control-flow edges.

We letX be the set of variables occurring in the operations Ops. For simplicity,
we restrict the type of variables to integers. A concrete data state c : X −→◦ Z
is thus a partial mapping from X to Z. In the left of Fig. 9 we see our running
example of the simple program p and its control-flow automaton on the right.
The program starts by retrieving an input for variable x, sets variables a and b
to 0, and then increments both while the value of a is less than that of x.

A concrete program path of a program Ap = (L, `0, G) is a sequence
(c0, `0) −g1−→ . . . −gn−→ (cn, `n), where the initial concrete data state c0 = ∅ assigns
no value, gi = (`i−1, opi, `i) ∈ G, and ci−1 −opi−→ ci, i.e., (a) in case of assume



0: int x = input();
1: int a = 0;
2: int b = 0;
3: while (a < x) {
4: a++;
5: b++; // later elided

}
6:

(a) Example program p

0 1

2

3

4

5

6

(0,int x = input(), 1)

(1,int a=0, 2)

(2, int b=0, 3)

(3, a<x, 4) (3, !(a<x), 6)

(4, a++, 5) (5, b++, 3)

(b) Control-flow automaton Ap

Fig. 9: Example program and its control-flow automaton

operations, ci−1 |= opi (opi is a boolean condition) and ci−1 = ci, (b) in case of
assignments, ci = SPopi

(ci−1), where SP is the strongest-post operator of the op-
erational semantics, and (c) in case of inputs of the form x = input(), ci(x) ∈ Z
(nondeterministic choice of input) and ci(y) = ci−1(y) for all y 6= x. An edge g is
contained in a concrete program path π = (c0, `0) −g1−→ . . . −gn−→ (cn, `n) if g = gi
for some i ∈ [1, n]. We let paths(Ap) be the set of all concrete program paths.

We allow artifacts to state assumptions and invariants on program variables.
These are given as state conditions (from a set Φ of predicates over a certain
theory). We write c |= ψ and c |= ϕ to say that a concrete state c satisfies an
assumption ψ ∈ Φ and an invariant ϕ ∈ Φ, respectively.

Artifacts on a program p are represented by protocol automata [14]:

Definition 1. A protocol automaton A = (Q,Σ, δ, q0, F ) for a program CFA
Ap = (L, `0, G) consists of

– a finite set Q ⊆ Ω×Φ of states, each being a pair of a name and an invariant,
and an initial state q0 ∈ Q,

– an alphabet Σ ⊆ 2G × Φ,
– a transition relation δ ⊆ Q×Σ ×Q, and
– a set F ⊆ Q of final states.

We write q −(D,ψ)−−−→ q′ for (q, (D,ψ), q′) ∈ δ. In figures, we often elide invariants
at states and assumptions at edges when they are true. We furthermore elide
the set notation when the element of 2G is a singleton.

Protocol automata describe paths of a program.10 Depending on the sort of
protocol automaton, these could for instance be paths allowed or disallowed by a
specification, or paths already checked by a verifier. A path of the program can
be accepted (if the automaton reaches a final state) or covered by the automaton.
10 Note: Each CFA (L, `0, G) induces a protocol automaton (where > denotes true)(

L× {>}, {({g},>) | g∈G}, {(l, ({g},>), l′) | g=(l, op, l′) ∈ G}, (`0,>), L× {>}
)
.



q0

qe

o/w

(3, !(a<x), 6), a!=b

(a) Property automaton A¬ϕb

q0

qf

o/w

(3, (a<x), 4), true

(b) Test-goal automaton Aϕt

Fig. 10: Automata for a property and a test-goal specification

Definition 2. A protocol automaton A = (Q,Σ, δ, q0, F ) matches a path π =
(c0, `0) −g1−→ . . . −gn−→ (cn, `n) if there is a run ρ = q0 −(G1,ψ1)−−−−→ . . . −(Gk,ψk)−−−−−→ qk in A,
with k ∈ [0, n], s.t.

1. ∀i ∈ [1, k] : gi ∈ Gi,
2. ∀i ∈ [0, k] : ci |= ϕ, for qi = (·, ϕ) and
3. ∀i ∈ [1, k] : ci |= ψi.

The protocol automaton A accepts the path π if A matches π and qk ∈ F , and
A covers π if A matches π and k = n.

We let L(A) be the set of paths accepted by the automaton A (its lan-
guage) and paths(A) be the set of paths covered by A. As we will see below,
some protocol automata might have an empty set of final states and just des-
cribe a set of paths that they cover.

Protocol Automata as Representation of Artifacts. We consider different
specializations of protocol automata and use the notation As to denote the
automaton that represents the syntactical object s.

(1) A property automaton (or, observer automaton) A¬ϕb
= (Q,Σ, δ, q0, F )

is a protocol automaton that satisfies the following conditions:

1. ∀(·, ϕ) ∈ Q : ϕ = true ,
2. ∀q ∈ Q \ F,∀g ∈ G :

∨{
ψ | ∃ q −(D,ψ)−−−→ q′ ∈ δ : g ∈ D

}
= true

(assuming
∨
∅ = false).

Condition 2 ensures that property automata only observe the state of the program
(when running in parallel with the program). They do not block, except for the
case when the final state is reached where blocking is allowed. Final states denote
the reaching of property violations (or, targets).

(2) A test-goal automaton Aϕt = (Q,Σ, δ, q0, F ) is a protocol automaton
that has only trivial state invariants, i.e., ∀(·, ϕ) ∈ Q : ϕ = true. If a final
state is reached, the test goal is fulfilled.

Figure 10 shows two specification automata: In Fig. 10a we see a property
automaton specifying that variables a and b have to be equal when the loop
terminates, i.e., the error state is reached if there is a transition from location
3 to 6 at which a 6= b. The label o/w (otherwise) denotes all transitions other



q0 true

q1 true

q2 a = 0

q3 a = b

q4a = b

q5a− 1 = b

q6 a = b

(0,int x=input(), 1)

(1,int a=0, 2)

(2, int b=0, 3)

(3, a<x, 4) (3, !(a<x), 6)

(4, a++, 5) (5, b++, 3)

(a) Correctness-witness automaton Aω

q0

q0

q1

q2

q3

q4

qe

(0,int x=input(), 1), x ≥ 1

(1,int a=0, 2)

(2, int b=0, 3)

(3, a<x, 4)

(4, a++, 3)

(3, !(a<x), 6)

(b) Violation-witness automaton Aω

Fig. 11: Automata for a correctness witness for program p and a violation witness
for p without line 5, both wrt. behavior specification ϕb of Fig. 10a

than the ones explicitly depicted. Figure 10b depicts a test-goal automaton
for the branch condition entering the loop.

(3) A violation-witness automaton Aω = (Q,Σ, δ, q0, F ) is a protocol au-
tomaton with trivial state invariants only, i.e., ∀(·, ϕ) ∈ Q : ϕ = true.

Violation witnesses are used to describe the part of a program’s state space
which contains the error. The final state is reached if an error is detected. Coun-
terexamples are a specific form of violation witnesses which describe a single path.

(4) A correctness-witness automaton Aω = (Q,Σ, δ, q0, F ) is a protocol
automaton that has only trivial transition assumptions, that is,
∀(q, (D,ψ), q′) ∈ δ : ψ = true , and all states are final states ( F = Q ).
A correctness witness typically gives information about the state space of the
program (like a loop invariant) in order to facilitate its verification.

In Fig. 11 we see both a correctness and a violation witness. The correctness
witness belongs to program p and, e.g., certifies that at location 3 variables a and
b are equal (via the invariant for q3). The violation witness on the right belongs
to program p with line 5 removed, i.e., a program which does not satisfy the
property stated in Fig. 10a. The violation witness states that an input value of x
being greater or equal to 1 is needed for directing the verifier towards the error.

(5) A condition automaton Aψ = (Q,Σ, δ, q0, F ) is a protocol automaton that
satisfies

1. ∀(·, ϕ) ∈ Q : ϕ = true (no invariants at states) and
2. ¬∃(qf , ·, q) ∈ δ with qf ∈ F (no transitions leaving final states).



q0

q1

(0,int x=input(),1), x ≤ 0

(a) Condition automaton Aψ

q0

q1

o/w

(*, χ = input(), *), χ = 4

o/w

(b) Test-case automaton At
Fig. 12: Automata for a condition and a test case

A condition is typically used to describe parts of the state space of a program,
e.g., the part already explored during verification. Final states are thus used
to fix which paths have already been explored.

A test case is a sequence of input values consecutively supplied to the calls
of function input. Such a test case is encoded as protocol automaton using a
special template variable χ that can be instantiated with every program variable.

(6) A test-case automaton At = (Q,Σ, δ, q0, F ) for a test case 〈z1, . . . , zn〉
is a protocol automaton with the following components:
Q = {q0, . . . , qn}, qi−1 −((∗,χ=input(),∗),χ=zi)−−−−−−−−−−−−−−→ qi, q0 −o/w−→ q0, qi −o/w−→ qi (i ∈ [1, n])
and F = Q . For matching these special transitions (Gi, ψi) =(
(·, χ = input(), ·), χ = z

)
with program paths, the program transitions gi

have to be of the form (`, x = input(), `′) and the next state needs to satisfy
ci(x) = z, ci(y) = ci−1(y) for y 6= x.

Figure 12a gives a condition stating the exploration of the state space for
inputs less or equal to 0. This could for instance be the output of a verifier
having checked that the property holds for inputs x ≤ 0. Figure 12b is the
test-case automaton for the test case 〈4〉.

Semantics of Protocol Automata. The above definitions fix the syntactical
structure of protocol automata. In addition, we need to state their seman-
tics, i.e., the meaning of particular artifacts for a given program. In the fol-
lowing, we let Ap = (L, `0, G) be the CFA for a program p and A¬ϕb

, Aω,
and Aϕt

be protocol automata.

(i) The program p fulfills a property specification ϕb if paths(Ap) ∩ L(A¬ϕb
) = ∅ .

Our running example p fulfills the property of Fig. 10a.

(ii) A correctness witness ω is valid for a program p and property specification ϕb
if paths(Ap) ⊆ paths(Aω) ∧ paths(Ap) ∩ L(A¬ϕb

) = ∅ . We see here that a cor-
rectness witnesses can thus be used to facilitate verification: when we run program,
property, and correctness witness in parallel in order to check the emptiness of
paths(Ap)∩L(A¬ϕb

), the correctness witness helps in proving the program correct.
The correctness witness in Fig. 11a is valid for p and the property in Fig. 10a.

(iii) A violation witness ω is valid for a program p and a property specification ϕb
if paths(Ap) ∩ L(Aω) ∩ L(A¬ϕb

) 6= ∅ . During verification, violation witnesses
can thus steer the state-space exploration towards the property violation. Looking
again at the running example: If we elide the statement in location 5 of our



program, the automaton in Fig. 11b is a valid violation witness. It restricts the
state-space exploration to inputs for variable x which are greater or equal to 1.

(iv) A condition ψ is correct for a program p and property ϕb if
paths(Ap) ∩ L(Aψ) ∩ L(A¬ϕb

) = ∅ . All program paths accepted by the con-
dition fulfill the specification given by the property automaton. The condition in
Fig. 12a describes all paths of the program p which initially started with input x
less or equal to 0. This condition is correct for p and the property automaton in
Fig. 10a.

(v) A test-case t for a program p covers a goal of a test-goal specification ϕt
if paths(Ap) ∩ paths(At) ∩ L(Aϕt

) 6= ∅ . Basically, we require that the inputs
provided by the test case guarantee the program execution to reach (at least
one) test goal. If there are more than one final state in the test-goal automaton
(or the final state can be reached via different paths), the test-goal automa-
ton specifies several test goals. In this case, the test case covers only some
of these goals. The test-case automaton in Fig. 12b for p covers the (single)
goal of the test-goal automaton in Fig. 10b.

5 Conclusion

Different verification approaches have different strengths, and the only way
to benefit from a variety of approaches is to combine them. The two classic
approaches of combining approaches either in white-box manner via a tight
conceptual integration or in black-bock manner via loosely coupled combinations,
such as portfolio or selection, are both insufficient.

We propose that cooperation is the right direction to go: a loosely-coupled
combination of tools that interact via clear interfaces and exchange formats,
in order to achieve the verification goal together. To this end, we provide a
classification and an overview of existing techniques, which we briefly describe,
while giving most importance to cooperative approaches. We add definitions
of several useful artifacts, actors, and their semantics.

As future work we see the development of tool combinations putting the
outlined cooperation approach into practice. Since a number of tools already
generate some of the discussed artifacts, they are “ready for cooperation”. Ulti-
mately, we aim at assembling a pool of actors which can be combined in various
ways and where some combination can be easily defined by users, e.g., with
the help of a domain-specific combination language.
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