
Available

Artifact

Violation Witnesses and Result Validation
for Multi-Threaded Programs

Implementation and Evaluation with CPAchecker

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

Abstract. Invariants and error traces are important results of a program
analysis, and therefore, a standardized exchange format for verification
witnesses is used by many program analyzers to store and share those
results. This way, information about program traces and variable assign-
ments can be shared across tools, e.g., to validate verification results,
or provided to users, e.g., to visualize and explore the results in or-
der to fix bugs or understand the reason for a program’s correctness.
The standard format for correctness and violation witnesses that was
used by SV-COMP for several years was only applicable to sequential
(single-threaded) programs. To enable the validation of results for multi-
threaded programs, we extend the existing standard exchange format by
adding information about thread management and thread interleaving.
We contribute a reference implementation of a validator for violation
witnesses in the new format, which we implemented as component of the
software-verification framework CPAchecker. We experimentally evalu-
ate the format and validator on a large set of violation witnesses. The
outcome is promising: several verification tools already produce violation
witnesses that help validating the verification results, and our witness
validator can re-verify most of the produced witnesses.

Keywords: Verification Witness, Result Validation, Software Verification, Proof
Format, Program Analysis, Violation Witness, Counterexample, CPAchecker

1 Introduction

Reliable and correct software is a basic dependency of today’s society and industry.
For proving programs correct as well as for finding errors in programs, formal ver-
ification is a powerful technique. Given a program and a specification, a software
verifier either finds an error path through the program that exposes the specifica-
tion violation or proves that the specification is satisfied by the program. In most
cases, the analysis produces some kind of data that is valuable for the user and can

Replication package available on Zenodo [14].
Funded in part by Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).

https://doi.org/10.5281/zenodo.3885694
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7624-654X
http://gepris.dfg.de/gepris/projekt/378803395

be used in further applications. Several tool chains support the direct reuse of ver-
ification results [5, 6, 25]. In general, information about the program analysis can
be provided in form of a verification witness, either as correctness witness [10] (e.g.,
describing invariants from the correctness proof) or as violation witness [11, 12]
(e.g., representing an abstract counterexample towards a property violation).

The standard witness exchange format was specified and continuously im-
proved by the verification community (especially SV-COMP) over the last
years.1 The specification was first supporting only sequential programs (since SV-
COMP 2015 [4, 11]), and we later extended it to multi-threaded programs as well
(SV-COMP 2018–2020). In this paper, we describe the necessary extensions to the
witness format and provide evidence that violation witnesses for concurrent tasks
are not only produced by many verification tools (in SV-COMP 2020: Cbmc [29],
CPAchecker [18], CPAlockator [1], Dartagnan [33], Divine [3], Esbmc [32],
Lazy-CSeq [39], PeSCo [31], Ultimate Automizer [37], Ultimate Taipan [35],
Yogar-Cbmc [40]), but that most of the violation witnesses for concurrent
programs can also be validated by our implementation of a validation tool.

Contributions. The paper makes the following contributions:

• Extension of the existing violation witness format by additional hints on
thread management: (i) thread interleavings are represented using thread-ids
at all edges and (ii) thread creation is added to the witness.

• Implementation of an approach for validation of violation witnesses for multi-
threaded programs in the verification framework CPAchecker and make the
source code available as reference implementation for others.2

• Experimental evaluation of the new format and validator on a large number
of verification tasks with violation witnesses from several verifiers to show
that the approach is effective and helps validating the existence of error traces
in multi-threaded programs.

• Availability of all experimental results, including raw data, tables, experiment
setup, etc. (see Sect. 6).

Related Work. As we extend an existing standardized witness format and valida-
tion technology, this work is based on a number of existing ideas, which we outline
in the following.

Verification Artifacts. Many program-analysis techniques are efficient at discov-
ering proofs or failures. However, it is often difficult to evaluate results, such
as program paths towards property violations. Artifacts [24] from verifier ex-
ecutions are valuable for users [2, 28, 36]. The standard exchange format for
verification witnesses [11] is the basis of our work; we describe and extend
it in this paper and apply it in our evaluation.

1 https://github.com/sosy-lab/sv-witnesses
2 https://cpachecker.sosy-lab.org

https://github.com/sosy-lab/sv-witnesses
https://cpachecker.sosy-lab.org

Test Execution and Harnesses. While it is comparatively simple to create an
executable harness for a sequential program [12, 27, 30, 34], the situation for
multi-threaded programs is more complex. Simple test cases can not capture
the difficulty of nondeterministically interleaved threads and can only be used
to heuristically execute a sample of all possible program traces. The schedul-
ing of threads needs to be encoded into the harness in such a way that all
statements are interleaved in the correct ordering.

Sequentialization. Tools like Lazy-CSeq [38, 39] apply sequentialization tech-
niques before verification and can thus provide data about multi-threaded
counterexample traces via a sequentialized program. However, the mapping
from a sequentialized program (and the found counterexample path in it) back
to its multi-threaded origin needs to be supported.

2 Background

We provide only a short overview of some basic concepts and definitions that we
use to describe our approach, including the program representation, the format
for violation witnesses, and the multi-threaded program analysis in CPAchecker.

2.1 Program Representation

For presentation, we restrict our programs to a simple imperative programming
language that contains only assignments, assumptions, declarations, function
calls, and function returns. The language supports simple thread management via
the calls of pthread_create and pthread_join, and assumes that each statement
in the code is atomic on its own, i.e., uses a strong memory model providing
sequential consistency, such that an update of a shared variable is immediately
visible to all threads and the verification approach does not need to care about
asynchronous memory accesses like simultaneously updating the same memory
cell from multiple threads or unit-local caching of values that might happen on
hardware level. This is not a theoretical restriction, as each statement could
be decomposed into a sequence of reading and writing statements, where each
statement involves at most one shared variable. For simplicity and generality, the
witnesses ignore further thread-management methods like mutex locks, wait, and
cancel operations, as well as interrupts. In violation witnesses such operations
do not need to be specified for the validation tool.

The violation witnesses for multi-threaded programs that are produced by
the verifiers all support the C programming language as input language and
may support a wider range of thread-management operations. We will analyze
the quality of those witnesses in the evaluation (Sect. 5).

A program is represented by a control-flow automaton (CFA) (L, linit, G),
which consists of a set L of program locations (modeling the program counter),
a set G ⊆ L × Ops × L of control-flow edges (modeling the control flow with
assignment and assumption operations as well as declarations and function calls

1 int NUM = 4 , FIB = 55 ;
2 int i = 1 , j = 1 ;
3

4 void ∗ t1 () {
5 for (int k = 0 ; k < NUM; k++) {
6 i += j ;
7 }
8 pthread_exit (0) ;
9 }

10

11 void ∗ t2 () {
12 for (int k = 0 ; k < NUM; k++) {
13 j += i ;
14 }
15 pthread_exit (0) ;
16 }
17

18 int main () {
19 pthread_t id1 , id2 ;
20 pthread_create(&id1 , 0 , t1 , 0) ;
21 pthread_create(&id2 , 0 , t2 , 0) ;
22 i f (i >= FIB | | j >= FIB) {
23 __VERIFIER_error () ;
24 }
25 return 0 ;
26 }

1

2

18

19

20

21

22

23

25

26

int NUM=4, FIB=55

int i=1, j=1

main()

pthread_t id1, id2

pthread_create(&id1, 0, t1, 0)

pthread_create(&id2, 0, t2, 0)

![i ≥ FIB
|| j ≥ FIB]

[i ≥ FIB || j ≥ FIB]

__VERIFIER_error()

return 0

5

5a

6

78

9

int k=0

[k<NUM]

i += j
k++![k<NUM]

pthread_exit(0)

12

12a

13

1415

16

int k=0

[k<NUM]

j += i
k++![k<NUM]

pthread_exit(0)

Fig. 1: Source code and CFAs for multi-threaded example program, adopted from
program https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/fib_bench-2.c

and returns from Ops), and a program-entry location linit ∈ L. A sequence
<g1, g2, ..., gn> of CFA edges from G is called program path if it starts from
the program-entry location (i.e., g1 = (linit, ·, ·)). As we analyze multi-threaded
programs, this sequence consists of potentially interleaved edges from different
threads, e.g., there is no need that the end location l of a CFA edge gi = (·, ·, l)
is identical with the start location l′ of its directly succeeding CFA edge gi+1 =
(l′, ·, ·), but the next CFA edge along the sequence from the same thread must
start with program location l. At the program entry and at each thread entry,
there is no matching previous program location in a valid program path.

The example in Fig. 1 shows a short multi-threaded program and the corre-
sponding CFAs. The program is build around the Fibonacci sequence, even if
the source itself does not directly reveal this. We will later examine this example
and find a sequence of operations such that fib(10) = 55 was computed (this
is modeled as a violation of the specification G ! call(__VERIFIER_error())
i.e., a call to function __VERIFIER_error is not reachable).

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/fib_bench-2.c

2.2 Violation Witnesses

Witnesses in software verification are based on the concept of protocol au-
tomata [11] that are matched against a CFA for validation. A protocol automaton
consists of control states with invariants and edges between control states that
represent program transitions. An edge contains a source guard, which restricts
the transition to a specific set S ⊆ G of edges from the CFA, and a state-space
guard, which restricts the state space by giving additional constraints on variables.

For exporting a violation witness to a file, the protocol automaton is converted
into GraphML [26], enriched with additional meta-data (like a hash of the analyzed
program). When importing a violation witness from a file, the GraphML data
structure is transformed into a protocol automaton, such that it can be used
internally in parallel to any of CPAchecker’s program analyses.

2.3 Analysis of Multi-Threaded Programs in CPAchecker

CPAchecker is based on the concept of configurable program analysis (CPA)
[15, 16]. Different concerns of a program are analyzed by different components
(denoted as CPAs). To track variables and their assigned values, we can choose
from a predicate-abstraction analysis [19], an explicit-value analysis [21], a BDD-
based analysis [23], a symbolic execution [20], and several more. For the analysis
of program locations in multi-threaded programs, the multi-threading analy-
sis [13] explores the state space, computes possible thread interleavings on-the-fly,
and maintains abstract states, where each abstract state consists of several
program locations (one per thread) together with their call stacks (also one
per thread). Additional optimizations like partial-order reduction are available
in the implementation, but not considered here.

To avoid collisions of identifiers during a program analysis, e.g., as it might
happen if the same function is called in two different threads at the same
time, CPAchecker uses different function names for parallel running threads.
If necessary, we use several copies of the CFA for a function of the program,
using indexed names. For exporting a violation witness, the indexes are re-
moved, because changed function names are not compatible across different
tools. When using an existing violation witness for validating a multi-threaded
program, we reintroduce a matching of available thread identifiers in the wit-
ness and indexed function copies of the CFAs.

3 Detailed Example

In the following, we explain an example step by step. First we start a verifier
to verify an example program and produce a witness, and second we start a
validator to validate the verification result using the produced witness.

3.1 Producing a Violation Witness

The program from Fig. 1 creates two threads id1 and id2, which run in par-
allel and increase the value of the variables i and j. If any of the variables i

Program Path Operation Scheduling Variable Values Line
main id1 id2 i j kt1 kt2

(1, ., 2),(2, ., 18),(18, ., 19),(19, ., 20) i=1, j=1 1 1 2
(20, ., 21),(5, ., 5a) kt1 = 0 0 5
(5a, ., 6),(6, ., 7) i+=j 2 6
(7, ., 5a) kt1++ 1 5
(21, ., 22),(12, ., 12a) kt2 = 0 0 12
(12a, ., 13),(13, ., 14) j+=i 3 13
(14, ., 12a) kt2++ 1 12
(5a, ., 6),(6, ., 7) i+=j 5 6
(12a, ., 13),(13, ., 14) j+=i 8 13
(14, ., 12a) kt2++ 2 12
(7, ., 5a) kt1++ 2 5
(5a, ., 6),(6, ., 7) i+=j 13 6
(12a, ., 13),(13, ., 14) j+=i 21 13
(14, ., 12a) kt2++ 3 12
(7, ., 5a) kt1++ 3 5
(5a, ., 6),(6, ., 7) i+=j 34 6
(12a, ., 13),(13, ., 14) j+=i 55 13
(22, ., 23) j >= FIB 22

Fig. 2: Counterexample trace represented by program path, scheduling of opera-
tions, data state as variable assignment, and line number as reference

or j reaches their limit (which is fib(10)), then function __VERIFIER_error
is reached and a standard verifier can check this by using the specification
G ! call(__VERIFIER_error()) and let it produce a counterexample path. This
case can happen if the assignments i+=j and j+=i in the two threads id1 and id2
are executed in alternating order for all iterations of the loops. The rest of the
loop statements in both threads, i. e., checking the loop bound, can be executed
in arbitrary ordering here and allows a wide range of possible thread interleaving.

The following command line runs CPAchecker as a verifier, configured to
use an explicit-value-based analysis for verifying multi-threaded programs:

scripts/cpa.sh \
-outputpath verification \
-setprop counterexample.export.graphml=witness.graphml \
-setprop counterexample.export.compressWitness=false \
-spec config/properties/unreach-call.prp \
-valueAnalysis-concurrency \
fib.c

This command specifies the directory for all output (including the witness
file), the name of the witness file (without compressing it), the specification
(which searches for the function call __VERIFIER_error), the domain-specific
analysis for the verification process, and the subject program.

A1
entry=true

A2
threadId=0 , startline=18, enterFunction=main

A3
threadId=0 , startline=20, createThread=1

A4
threadId=1 , startline=20, enterFunction=t1

A5
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==0;"

A6
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==0; NUM==4;"

A7
threadId=1 , startline=6, scope=t1, assumption="i==2;"

A8
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==1;"

A9
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==1; NUM==4;"

A10
threadId=0 , startline=21, createThread=2

A11
threadId=2 , startline=21, enterFunction=t2

A12
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==0;"

A13
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==0; NUM==4;"

A14
threadId=2 , startline=13, scope=t2, assumption="j==3;"

A15
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==1;"

A16
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==1; NUM==4;"

A17
threadId=1 , startline=6, scope=t1, assumption="i==5;"

A18
threadId=2 , startline=13, scope=t2, assumption="j==8;"

A19
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==2;"

A20
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==2; NUM==4;"

A21
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==2;"

A22
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==2; NUM==4;"

A23
threadId=1 , startline=6, scope=t1, assumption="i==13;"

A24
threadId=2 , startline=13, scope=t2, assumption="j==21;"

A25
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==3;"

A26
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==3; NUM==4;"

A27
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==3;"

A28
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==3; NUM==4;"

A29
threadId=1 , startline=6, scope=t1, assumption="i==34;"

A30
threadId=2 , startline=13, scope=t2, assumption="j==55;"

A31
violation=true

threadId=0 , startline=22, scope=main, control=condition-true, assumption="j==55; FIB==55;"

Fig. 3: Graphical representation of a violation witness and the available data

The verification process starts the analysis at the program entry and explores
the reachable state space. In this example, it finds and reports an error trace
as a program path (first column of Fig. 2) and provides the violation witness
in Fig. 3, which is written into the file verification/witness.graphml.gz.
Both, the counterexample trace and the violation witness specify the inter-
leaved thread execution and variable assignments, such that a user or a wit-
ness validator can directly follow the path until reaching the property vio-
lation in the program. We highlight the information that is relevant for the
thread interleaving. The violation witness uses sink nodes for branches or
thread interleavings that do not follow the counterexample path. For simplic-
ity, we avoid them in the graphical representation.

Using the explicit-value domain allows us to export detailed data about the
counterexample trace, such as assignments for all variables at many program
locations. The verification witness is enriched with these assignments, such that
the validator can use them as additional constraints.

The information about which thread is executed, and how the interleaving
looks like, is important for the user (and also for the validator). In a pro-
gram with threads created from the same function (that is, with identical line
numbers), the thread identifier is the only way to distinguish between differ-
ent contexts. Therefore, a witness must contain a thread identifier for every
transition (edge) in the witness. In this example, the executed threads have
different function scopes (t1 and t2) which makes it easier for the reader to
find the correct trace towards the property violation.

3.2 Validating Results Based on a Violation Witness

In order to validate the information from the witness, the violation witness
is matched against the program source code. As the violation witness de-
scribes a limited set of paths (best case: exactly one path), the validation
process is expected to be efficient and to only analyze a small portion of
the reachable state space of the whole program.

The following command line runs CPAchecker as a validator based on the
provided violation witness for the multi-threaded program:

scripts/cpa.sh \
-outputpath validation \
-spec config/properties/unreach-call.prp \
-witnessValidation \
-witness verification/witness.graphml \
fib.c

This command specifies the directory for all output (including the newly
generated witness file), the specification (which searches for the function call
__VERIFIER_error), the validation analysis that will select the strategy to
analyze multi-threaded programs, the witness that will be used for the vali-
dation (as second, parallel specification), and the subject program. Figure 4

Witness

Specification

Source Code Validation
Result

CFA
Builder

CPA
Algorithm

Automaton
CPA

Threading
CPA

BDD
CPA

Witness Validator

Fig. 4: Overview of CPAchecker’s control flow for violation witness validation
for multi-threaded programs

shows the architecture of CPAchecker for the witness validation for multi-
threaded programs. The program is parsed into a CFA and then given to an
analysis based on the CPA concept [17]. The property specification and the
violation witness are used as protocol automata.

The validation proceeds with the following steps: The witness validator
CPAchecker converts the GraphML file (from Fig. 3) into its internal protocol
automaton [11], which includes the constraints of the witness. The analysis then
runs this automaton in parallel to the default analysis (reduced product) and
strengthens the transition relation of the analysis with the additional constraints
from the witness. The analysis starts with an initial abstract state built from the
program-entry location in the CFA and the entry node in the witness automaton.
Then it computes successors for each state and follows a strategy that aims
at getting as deep as possible into the witness automaton. This corresponds
with strict guidance from the protocol automaton.

By the definition of the witness and the CFA, it is guaranteed that each
step through the violation witness matches one or more edges in the program’s
CFA. The witness structure guides the search towards the property violation
in the program. The validator only confirms a property violation from a vio-
lation witness, if both the witness automaton and the program location refer
to a property violation according to the specification.

For the example, the validation process reports a property violation and
confirms the violation witness. The framework reports the validated counterex-
ample trace in form of a new violation witness, which looks quite similar to
the existing one. As our validation process uses the BDD-based domain, inter-
mediate steps can be different and more precise than with the previously used
explicit-value analysis. However, exporting data from BDDs is more difficult and
CPAchecker does not (yet) support it for the witness export.

4 Violation Witnesses for Multi-threaded Programs

This section gives some details about the extension of the witness format to
multi-threaded programs and the implementation of a validator. We used the
most obvious way to model traces in multi-threaded programs: specify which
thread executes which statement at which point in the trace.

4.1 Extending the Existing Format

A violation witness should contain sufficient information about the verification
task, such that a validator can efficiently replay the property violation, that is,
without re-analyzing the whole state space of the program. This means that for
guiding the validator towards a certain property violation, the witness needs to
contain sufficient information about all branching choices. While branching points
are obvious in sequential programs —just mark all if-then-else statements—,
the situation in a multi-threaded program is more complex. The difficulty is
to determine the correct ordering of thread interleavings along the counterex-
ample trace. A detailed look provides us insights about the encoding of thread
interleavings in CPAchecker: Each program state represents multiple program
counters (i.e., one program location per thread) and thus allows the execution of
the follower statement from any available thread. We identified only one single
information that is critical for the validator to successfully validate a violation
witness for a multi-threaded program: a unique thread identifier to identify the
actual thread that executes a statement given in the witness. Along a violation
witness, the thread identifier is required for two different steps:

• Whenever a new thread is started via a control-flow edge calling
pthread_create, we insert the information createThread=<ID>, where ID
is a new thread identifier for the new thread. Using these hints on thread
creation, the validator can register a new thread and follow its control flow.
• The thread interleaving is encoded with the thread identifier that is given

for each statement in the witness. The information threadId=<ID> is added
to all control-flow edges in the witness, where the thread <ID> executes the
statement along the control-flow edge.

To keep the witness format as simple as possible, our extension of the witness
format consists of only the two above pieces of information (and even those
two are optional, i.e., just act as hints for the validator to find the property
violation faster). Overall, this allows verification tools that already have support
for exporting violation witness and can analyze concurrent programs to directly
export violation witnesses for concurrent programs without larger changes to their
code base. We considered to include an explicit notion of thread exit or thread join
into the set of critical information, but it turned out that none of these actually
helped or improved the performance of the validator. In other words, terminating
a single thread is unimportant and the validator can automatically infer such
information, whenever a single thread reaches the end of its control flow.

Limitations of the Format. The current witness format does not support
assumptions using thread-local scopes of identifiers, such as x from thread 1
is larger than x from thread 2. The validator could in principle overcome this
limitation by heuristically choosing which thread is responsible for which identifier.
This could make validation slow due to a potentially large overhead. Alternatively,
we could extend the assumption format, which are currently plain C statements,
with fully qualified names. However, that requires several changes to the syntax
(parser and exporter) of the assumptions in both producer and consumer of
the witness format. Thus, our validator currently ignores assumptions for which
it can not deterministically assign the corresponding thread.

The current witness format does not support quantifiers. For a possibly
unbounded number of threads in the program, a correctness witness has to
provide information (invariants) over all threads, i.e., uses quantifiers such
as forall threads: property violation can not happen.

4.2 Implementation of the Validator in CPAchecker

CPAchecker transforms a given GraphML-based witness into its internal au-
tomaton format, which is then applied along the program analysis to restrict
the reachable state space. Additional assumptions over program variables that
are given in the witness can be used to strengthen domain-specific transfer
relations or cut off the state-space exploration, e. g., if an assumption about
a program variable does not satisfy its current assignment.

The validator uses the information from the violation witness for two different
features: (1) The state-space exploration is configured to prioritize the search in
the direction of the violation witness, i.e., as soon as any control-flow edge from
the witness is matching, CPAchecker directly follows that direction. This does
not exclude other traces of the program, as they will just be scheduled later in the
exploration algorithm. (2) If an assumption is available in the witness, the valida-
tor applies strengthening and allows to exchange of information between CPAs.

Matching Thread Identifiers. The validator needs to combine the infor-
mation provided in the witness automaton with its own thread model. The
important information for multi-threading is provided as an (optional) thread
identifier for each single control-flow edge. The validator assumes that the iden-
tifier is unique for any particular state in the witness, and we allow to reuse
a thread identifier if its previous usage is out of scope, i.e., the correspond-
ing thread has already exited and was joined.

Our internal thread model uses indices to refer to threads in an abstract state.
When validating the violation witness, we create a mapping of the thread identifier
from the witness to a possible thread index of our own thread model. This allows
the validator to be independent from any concrete representation of a thread identi-
fier in the witness.

Analyses in CPAchecker with Support for Multi-threaded Programs.
The validation for violation witnesses uses the default CPA algorithm [17], which
provides an efficient state-space exploration and can be combined with CEGAR.

With the CPA concept, we combine independent analyses (CPAs) that work for
different aspects of the program analysis. The automaton analysis handles the
matching against the specification automaton and the witness automaton, The
threading analysis [13] manages the thread scheduling and interleaving. Additional
CPAs like an explicit-value analysis [21], a BDD-based [23], or interval-based
analysis allow to reason about assignments of variables.

For validation of violation witnesses, we additionally strengthen the abstract
threading state with information provided in the witness automaton, in or-
der to track the mapping of thread identifiers and thread indices, and to cut
off irrelevant branches in the state space eagerly.

Limitations of the Validator. There are some conceptional or implementation-
defined limitations of the current implementation of the validator. We discuss these
limitations to encourage developers of future validators for multi-threaded pro-
grams to improve the approach in our tool, to extend other validators for sequential
programs by support for multi-threaded tasks, or to provide new validators.

Based on the requirement to prepare a CFA for each thread of a multi-
threaded program, there is a fixed upper bound in the number of threads (default
value is 5). The validator ignores traces that use more than the given number
of threads, which is an unsound approximation. Note that this is no general
limitation of the witness format or the validator. Each concrete error trace for
a violation witness has a bounded length and thus can only use a bounded
number of thread interleavings. (For example, the number of threads could be
added to the metadata of the violation witness and the limit value could be
set appropriately.) For the evaluated verification tasks, the default limit was
sufficient. If the violation witness is to imprecise and the program allows to create
more threads than given in the violation witness, the validator can of course also
apply the analysis for more threads. Due to our simple threading analysis, we
can only track threads with simple thread-identifier assignments, i.e., where the
thread itself is not assigned to an array element or complex pointer structure.

CPAchecker currently supports two domains concretely for analyzing multi-
threaded programs, which are explicit-value analysis and BDD-based analysis.
The default is to use the BDD-based approach, as it can also handle symbolic
values. The validator inherits the limitations of those domains, e.g., it has only
limited support for heap-related data structures, such that we need to ignore
most array- or pointer-related operations, which can make the validation process
imprecise and in some cases even unsound (in case of pointer assignments). This
leads to two general cases in which a validator can be wrong: (a) there could be a
perfectly valid violation witness but the validator cannot replay it and rejects it
due to missing feature support and (b) there could be an invalid violation witness
(does not describe a feasible error path) but the validator still finds a different
feasible counterexample itself and accepts it due to imprecise information in the
witness. There were a few such cases in SV-COMP 2020. The following examples
are extracted from the results of SV-COMP 2020 by manual investigation, to give
an impression for unsupported features and how they show up in the results 3:
3 SV-COMP published all referenced witnesses [9] and verification tasks [8].

• Cbmc provides a valid (rather short) violation witness 4 for the task
tls_destructor_worker.yml 5. The validator with BDD-based analysis can
not confirm this witness due to missing support for pthread_create_key and
pointer operations.

• Esbmc provides a valid violation witness 6 for the task
race-2_3-container_of.yml 7, which the validator with BDD-based analy-
sis can not confirm due to missing support for structs.

• Yogar-CBMC provides a valid violation witness 8 for the task bigshot_p.yml 9,
for which the validator aborts due to an unexpected assignment of a thread
identifier into an array element.

So far, the presented validator is the only validator for multi-threaded pro-
grams, and it participated already three years in the competition of software verifi-
cation (since SV-COMP 2018).

5 Experimental Evaluation

We perform an experimental evaluation on violation witnesses for multi-threaded
programs to provide qualitative and quantitative insights on how well the result
validation based on violation witnesses for multi-threaded programs works.

5.1 Evaluation Questions

We split our experimental evaluation into the following evaluation questions:

Q1: Which verifiers already support the export of violation witnesses for multi-
threaded programs after a successful verification run and what kind of
information about the counterexample trace is provided within the witness.

Q2: Is the format sufficient and concrete enough for the validator to re-verify
the counterexample trace?

Q3: Is the validation process faster than the verification process?
4 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.
graphml

5 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/
pthread-divine/tls_destructor_worker.yml

6 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.
graphml

7 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/
race-2_3-container_of.yml

8 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.
graphml

9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/
bigshot_p.yml

https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread-divine/tls_destructor_worker.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread-divine/tls_destructor_worker.yml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/race-2_3-container_of.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/race-2_3-container_of.yml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/bigshot_p.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/bigshot_p.yml

5.2 Benchmark Set

We evaluate the witness format and the validator on a large set of verification tasks,
which is taken from the SV-Benchmarks collection [8]10, in the same version as
used for SV-COMP 2020. We limit the benchmark set to the subset of verification
tasks that exactly matches the category ConcurrencySafety in SV-COMP 2020,
i.e., multi-threaded programs with a reachability property as specification.

5.3 Setup

Our experiments were executed on computers with Intel Xeon E3-1230 v5 CPUs,
3.40GHz CPU frequency, and 33GB of RAM. We limited the CPU time to 15min
and the memory to 15GB.

We evaluated our validator on violation witnesses from SV-COMP [9] that
were produced by several different software verifiers. We selected those verifiers
that participated in SV-COMP 2020 [7], support violation witnesses (produced
more than 100 such witnesses that were confirmed), and have publicly available
archives on GitLab 11. Those verifiers are the following seven: Cbmc, CPA-Seq,
Divine, Esbmc, Lazy-CSeq, PeSCo, and Yogar-CBMC. In addition to the
witnesses that we took from SV-COMP [9], we also used an updated version of
CPAchecker (revision r33531) to produce witnesses, where a small extension
for the export of violation witnesses was applied (add all beneficial informa-
tion about thread identifiers to the violation witness and consider more thread
interleavings). We include this additional verifier to show that a small and
inexpensive extension can lead to a significant improvement of the validation
results. The CPU time and memory consumption for each verification run was
measured by SV-COMP using BenchExec [22], and the number of nodes and
transitions was counted using the GraphML witness files.

Currently, there is only one validator available for violation witnesses of multi-
threaded programs, which is the validator explained in Sect. 4.2 and implemented
in the CPAchecker framework 2. We use revision r33531 for the experiments.

5.4 Results and Discussion

Q1: Verifier Support and Available Information. All verifiers that we considered
in our experiments support (1) the verification of multi-threaded programs
and (2) the export of violation witnesses. Some tools include the beneficial
information about thread interleaving in the violation witness. That specific
feature was already requested in SV-COMP 2018, when the organizers extended
the validation of violation witnesses to the category of concurrent tasks. This
shows that our extension was already adopted to other verification tools. However,
the availability and the quality of the integration differs between the tools.

10 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
11 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

Table 1: Statistical description of the generated witnesses for the verifiers
Number of states Number of transitions

Verifier Median Mean Max Sum Median Mean Max Sum

Cbmc 6.00 6.05 10 4 790 4.00 4.05 8 3 210
CPA-Seq 48.0 48.7 662 38 700 82.0 84.4 744 67 000
CPAchecker (r33531) 141 140 1 480 112 000 207 202 1 620 161 000
Divine 3.00 3.05 5 1 820 2.00 2.05 4 1 220
Esbmc 3.00 5.19 30 4 140 2.00 4.19 29 3 340
Lazy-CSeq 66.0 64.1 156 52 100 64.0 62.1 154 50 500
PeSCo 51.0 49.5 662 38 600 83.0 85.9 744 67 000
Yogar-CBMC 86.0 84.7 188 68 300 84.0 82.7 186 66 700

Table 2: Properties of the exported violation witnesses
Verifier thread id thread creation all thread interleavings

Cbmc 3

CPA-Seq 3 3

CPAchecker (r33531) 3 3 3

Divine

Esbmc

Lazy-CSeq 3 3 3

PeSCo 3 3

Yogar-CBMC 3 3 3

Table 1 gives a statistical overview of the provided violation witnesses
and shows how many states and transitions are available in the violation wit-
nesses. Figure 5a shows the distribution of sizes of the violation witnesses for
different verifiers. As most tasks have roughly equal difficulty and length of
the counterexample trace, the sizes of the violation witnesses are in a cer-
tain range. The noticeable difference comes with the tools themselves, i.e.,
some tools export more details than others.

We also inspected the witnesses for the kind of information they contain.
Table 2 shows the different kinds of information available in the witnesses produced
by the verifiers. We analyzed whether the violation witnesses contain the thread id
for every transition, information about thread creation for newly started threads
during the counterexample trace, and information about thread interleaving.
Cbmc, Divine, and Esbmc only export the main thread of the multi-threaded
program, which is not suitable for a counterexample trace with interleaving
thread statements, because all information about other threads is missing.

Q2: Validation Results. The validation results for the produced violation witnesses
show whether the information from the violation witness was sufficient to guide
the validator towards confirming the given counterexample trace. Overall, the
performance of the validation run is determined by two factors: first, how well the
violation witness itself guides the state-space exploration and defines the thread

0 200 400 600 800
1

10

100

1 000

n-th largest witness

N
um

be
r
of

st
at
es

Cbmc
CPA-Seq

CPAchecker (r33531)
Divine
Esbmc

Lazy-CSeq
PeSCo

Yogar-CBMC

(a) Size of witnesses

0 100 200 300 400 500 600 700 800

10

100

1 000

n-th fastest correct validation result

C
P
U

ti
m
e
(s
)

(b) Runtime of validation of witnesses

Fig. 5: Quantile plots for violation witnesses from different verifiers

scheduling, and second, how precise the data in the violation witness are. The
less information is provided in the violation witness, the more work is left to the
validator with its heuristics to recover the error trace. In other words, more precise
violation witnesses are often validated faster than less precise witnesses. Figure 5b
shows the CPU time of the validator for violation witnesses from different verifi-
cation tools. Comparing the results with the annotations exported by the tools
(Table 2) leads us to a first conclusion: exporting thread interleavings is critical for
finding a concrete counterexample path through the program during validation.

As Cbmc, Divine, and Esbmc produce violation witnesses that contain only
a minimal set of nodes and transitions, especially only consisting of the main
function of the program and ignoring any additional threads, the validation
can not follow the given trace sufficiently and performs worse than for other
violation witnesses. CPA-Seq and PeSCo use the same underlying analysis,
i.e., both tools apply CPAchecker’s BDD-based concurrency analyzer with
nearly identical options. Thus, they produce nearly identical violation witnesses
which also results in similar validation performance.

For the three tools that export thread interleavings in the violation witness,
the validation is fast and precise for most of the available verification tasks.
Apart from the startup time of the validator (due to starting the Java VM), the

.1 1 10 100 1 000

10

100

1 000

Verification Cbmc (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification CPA-Seq (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification CPAchecker (r33531) (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Divine (s)
V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Esbmc (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Lazy-CSeq (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification PeSCo (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Yogar-CBMC (s)

V
al
id
at
io
n
(s
)

Fig. 6: Scatter plot showing the CPU time of the verification process of several
tools against the CPU time of the validation process

runtime of the validation itself is negligible. The violation witness guides the
validator in the right direction, i.e., all scheduling information is available and
nearly no overhead from unimportant program traces appears in the validation
process. Only some validation tasks suffer from a high runtime, but these cases
also suffer from a rather long and complex to find counterexample trace, such
that the violation witness itself contains several thousands of nodes. Note that
depending on the verifier, a different path might have been determined, resulting
in violation witnesses of different length for each verification task.

Q3: Performance of Validation Compared to Verification. Based on the CPU time
consumed by the verifiers and the CPU time consumed by the validator, we can
compare the performance of the validation with the performance of the verification
per verifier. Figure 6 shows several scatter plots, each comparing for a given verifier
the CPU times for successful validation runs against the corresponding verification
runs. Each data point in the scatter plots represents a verification task that was
verified and the resulting violation witness was then successfully validated. The
three diagonal lines indicate the factors of 0.1, 1, and 10 between the coordinates.

The overall picture for all scatter plots is as follows: The validator (as part of
CPAchecker) is written in Java and has a large startup overhead. This makes it
difficult to see a clear performance difference for the small and fast verification
tasks. For Cbmc and Esbmc, which are tools with only very imprecise witnesses,
the validation usually needs much more CPU time than the actual verification
took, i.e., the validator needed much more time to find a counterexample trace
matching the rudimentary information in the violation witness. Divine not
only has quite imprecise witnesses, but also requires more CPU time for the
verification process; thus the difference to the time required for the validation is
smaller. For more precise witnesses, as produced by Lazy-CSeq, Yogar-CBMC,
and CPAchecker (r33531), the validation process is often faster, or at least
requires mostly a nearly constant time (about 10 s).

5.5 Threats to Validity

The validity of our experiments is limited by certain choices that we made in the ex-
periment setup.

External Validity. The verifiers are all state-of-the-art and seven of them are
taken from SV-COMP 2020. We applied the same options and a similar en-
vironment that was used in the competition execution, and collected the vi-
olation witnesses from the selected verifiers.

There exists only a single validator for multi-threaded violation witnesses, and
it might be possible that our results (sufficient information in the witness format)
does not apply to other, future validators for multi-threaded programs. We based
our validator on the verification framework CPAchecker, because mechanisms for
witness export and validation was already integrated. The configuration using a
BDD-based analysis is currently the most performant approach for multi-threaded

programs in the framework. The heuristics for exploring the abstract state space
are tuned to match witnesses from a broad range of verifiers.

The community-based SV-Benchmarks repository is a largest and most divers
collection of verification tasks for the language C. We used all verification tasks
that were also used by the most recent competition: category ConcurrencySafety.

Internal Validity. The validator might contain programming bugs, but we based
our validator on the infrastructure that is used by the verifier CPA-Seq, which
performed extremely well in the recent competitions. Thus, we believe that
the implementation has a high quality. Also, previous versions of our valida-
tor participated in the competition since SV-COMP 2018. Limitations of the
validator were discussed in depth in Sect. 4.2.

The execution of the verification and validation runs was done with
BenchExec [22], the (only available) state-of-the-art benchmarking tool, which
is also used by the StarExec competition infrastructure and competitions like
SV-COMP and Test-Comp. BenchExec is used to enforce the limits and collect
measurements for the consumed resources (CPU time and memory).

6 Conclusion

While validation of verification results for sequential programs has been thoroughly
described in 2015, validation support for multi-threaded programs was not yet
described in the literature. This paper closes this gap by describing the (only avail-
able) validator for multi-threaded programs, which was already used three times
as validator in the competition on software verification (SV-COMP 2018-2020).

In our evaluation, we report the available features that the witnesses produced
by several verifiers expose to the validator, and we report the performance. The
results are promising, but it would be better for the verification community
to have more such validators available: There are six validators for violation
witnesses for sequential programs, but only one for multi-threaded programs.

Data Availability Statement. We make the violation witnesses, a ready-to-
run archive of CPAchecker, and all experimental results (including raw data,
tables, and plots) available on a supplementary web site 12 and in a Zenodo
archive [14]. The verifiers that participated in SV-COMP 2020 have publicly
available archives in a GitLab repository.11 More witnesses and results from
SV-COMP can be found in the archives mentioned in the report [7] (Table 4).

References

1. Andrianov, P., Mutilin, V., Khoroshilov, A.: Predicate abstraction based config-
urable method for data race detection in Linux kernel. In: Proc. TMPA. CCIS 779,
Springer (2018). https://doi.org/10.1007/978-3-319-71734-0_2

12 https://www.sosy-lab.org/research/witnesses-concurrency

https://doi.org/10.1007/978-3-319-71734-0_2
https://www.sosy-lab.org/research/witnesses-concurrency

2. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent pro-
gram executions. In: Proc. COMPSAC. pp. 541–546. IEEE (2007).
https://doi.org/10.1109/COMPSAC.2007.236

3. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai, P.,
Štill, V.: Model checking of C and C++ with Divine 4. In: Proc. ATVA. pp. 201–207.
LNCS 10482, Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_14

4. Beyer, D.: Software verification and verifiable witnesses (Report on SV-
COMP 2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_31

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS. pp. 887–904. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

6. Beyer, D.: Software verification with validation of results (Report on SV-
COMP 2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_20

7. Beyer, D.: Advances in automatic software verification: SV-COMP
2020. In: Proc. TACAS (2). pp. 347–367. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_21

8. Beyer, D.: SV-Benchmarks: Benchmark set of 9th Intl. Competition on Software Ver-
ification (SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3633334

9. Beyer, D.: Verification witnesses from SV-COMP 2020 verification tools. Zenodo
(2020). https://doi.org/10.5281/zenodo.3630188

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

13. Beyer, D., Friedberger, K.: A light-weight approach for verifying multi-threaded
programs with CPAchecker. In: Proc. MEMICS. vol. 233, pp. 61–71. EPTCS
(2016). https://doi.org/10.4204/EPTCS.233.6

14. Beyer, D., Friedberger, K.: Replication package for article ‘Violation wit-
nesses and result validation for multi-threaded programs’. Zenodo (2020).
https://doi.org/10.5281/zenodo.3885694

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-
flow analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_16

16. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-
540-73368-3_51

17. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dy-
namic precision adjustment. In: Proc. ASE. pp. 29–38. IEEE (2008).
https://doi.org/10.1109/ASE.2008.13

18. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3630188
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-22110-1_16

19. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

20. Beyer, D., Lemberger, T.: CPA-SymExec: Efficient symbolic exe-
cution in CPAchecker. In: Proc. ASE. pp. 900–903. ACM (2018).
https://doi.org/10.1145/3238147.3240478

21. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

22. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

23. Beyer, D., Stahlbauer, A.: BDD-based software verification: Applications to event-
condition-action systems. Int. J. Softw. Tools Technol. Transfer 16(5), 507–518
(2014). https://doi.org/10.1007/s10009-014-0334-1

24. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. arXiv/CoRR 1905(08505) (May 2019), https:
//arxiv.org/abs/1905.08505

25. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In: Proc. SPIN. pp. 1–17. LNCS 7976,
Springer (2013). https://doi.org/10.1007/978-3-642-39176-7_1

26. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report. In: Graph Drawing. pp. 501–512. LNCS 2265, Springer (2001).
https://doi.org/10.1007/3-540-45848-4_59

27. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Auto-
matically generating inputs of death. In: Proc. CCS. pp. 322–335. ACM (2006).
https://doi.org/10.1145/1180405.1180445

28. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model
checker execution reports. In: Proc. ASE. pp. 200–205. IEEE (2017).
https://doi.org/10.1109/ASE.2017.8115633

29. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc.
TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.1007/978-3-
540-24730-2_15

30. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: Combining static
checking and testing. In: Proc. ICSE. pp. 422–431. ACM (2005).
https://doi.org/10.1145/1062455.1062533

31. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rank-
ings of software verification tools. In: Proc. SWAN. pp. 23–26. ACM (2017).
https://doi.org/10.1145/3121257.3121262

32. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (Feb 2017). https://doi.org/10.1007/s10009-015-0407-9

33. Gavrilenko, N., Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Proc.
CAV. pp. 355–365. LNCS 11561, Springer (2019). https://doi.org/10.1007/978-3-
030-25540-4_19

34. Gennari, J., Gurfinkel, A., Kahsai, T., Navas, J.A., Schwartz, E.J.: Executable coun-
terexamples in software model checking. In: Proc. VSTTE. pp. 17–37. LNCS 11294,
Springer (2018). https://doi.org/10.1007/978-3-030-03592-1_2

35. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples. In:
Proc. SAS. pp. 128–147. LNCS 10422, Springer (2017). https://doi.org/10.1007/978-
3-319-66706-5_7

https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-014-0334-1
https://arxiv.org/abs/1905.08505
https://arxiv.org/abs/1905.08505
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-03592-1_2
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7

36. Gunter, E.L., Peled, D.A.: Path exploration tool. In: Proc. TACAS. pp. 405–419.
LNCS 1579, Springer (1999). https://doi.org/10.1007/3-540-49059-0_28

37. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

38. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A lazy
sequentialization tool for C (competition contribution). In: Proc. TACAS. pp. 398–
401. LNCS 8413, Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_29

39. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: Proc. PPoPP. ACM (2020)

40. Yin, L., Dong, W., Liu, W., Wang, J.: On scheduling constraint abstrac-
tion for multi-threaded program verification. IEEE Trans. Softw. Eng. (2018).
https://doi.org/10.1109/TSE.2018.2864122

https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1109/TSE.2018.2864122

	Violation Witnesses and Result Validation for Multi-Threaded Programs

