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Abstract. There are many hard verification problems that are currently
only solvable by applying several verifiers that are based on comple-
menting technologies. Conditional model checking (CMC) is a successful
solution for cooperation between verification tools. In CMC, the first
verifier outputs a condition describing the state space that it successfully
verified. The second verifier uses the condition to focus its verification
on the unverified state space. To use arbitrary second verifiers, we re-
cently proposed a reducer-based approach. One can use the reducer-based
approach to construct a conditional verifier from a reducer and a (non-
conditional) verifier: the reducer translates the condition into a residual
program that describes the unverified state space and the verifier can be
any off-the-shelf verifier (that does not need to understand conditions).
Until now, only one reducer was available. But for a systematic investiga-
tion of the reducer concept, we need several reducers. To fill this gap, we
developed FRed, a Framework for exploring different REDucers. Given
an existing reducer, FRed allows us to derive various new reducers, which
differ in their trade-off between size and precision of the residual program.
For our experiments, we derived seven different reducers. Our evaluation
on the largest and most diverse public collection of verification problems
shows that we need all seven reducers to solve hard verification tasks that
were not solvable before with the considered verifiers.

1 Introduction

Due to the undecidability of software verification, even after more than 40 years
of research on automatic software verification [31], some hard verification tasks
cannot be solved by a single verifier alone. To increase the number of solvable
tasks, one needs to combine the strengths of distinct verifiers. Several combina-
tions [3, 8, 9, 20, 23, 25, 32, 33, 37] were proposed in the literature. One promising
combination is conditional model checking (CMC) [9], which unlike others does
not modify the programs nor let the combined techniques know each other.
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Fig. 1: Reducer-based CMC configuration (v2 ◦ r) ◦ v1 with FRed

CMC works as follows: If the first verifier gives up on the verification task, it
outputs a condition that describes the state space that it successfully verified.
The (conditional) second verifier uses the condition of the first verifier to focus its
work on the still-unverified state space. Note that one can easily extend the CMC
approach to more than two verifiers by letting all verifiers generate conditions.

To easily construct conditional verifiers (i.e., verifiers that understand con-
ditions) from existing off-the-shelf verifiers, a recent work proposed the concept
of reducer-based CMC [13]. Instead of making a verifier aware of conditions,
reducer-based CMC constructs a conditional verifier from an existing verifier by
plugging a reducer in front of the verifier. The reducer is a preprocessor that
given the original program and the condition as input, translates the condition
into a (residual) program, a format that is understandable by classic verifiers.

The construction of a reducer, especially proving its soundness, is complex
and so far there exists only one reducer. However, this reducer’s translation is
very precise, and therefore, may construct programs that are orders of magnitudes
larger than the original program. To solve this problem, and to support systematic
experimentation with different reducers, we propose the formal framework FRed,
which streamlines and simplifies the construction of new reducers from existing
ones. Its underlying idea is to construct a new reducer r = F ◦ R, a so-called
fold reducer, by sequentially composing an existing reducer R with a folder F .
A folder uses a heuristic that specifies how to modify the program constructed by
the existing reducer. More concretely, a folder defines which program locations of
the program constructed by the existing reducer are collapsed into a new location
and, thus, specifies how to coarsen the program. However, to avoid false alarms,
the specified coarsening must not add new program behavior.

New conditional verifiers CV can be constructed with FRed according to
the equation CV = V ◦ (F ◦R), where r = (F ◦R) is the fold-reducer composed
of the existing reducer R and a folder F , V is an arbitrary verifier, and ◦ is
the sequential composition operator. Figure 1 illustrates this construction in the
context of reducer-based CMC. We used this construction to build 49 conditional
verifiers, which use the already existing reducer, one of seven folders, and one of
seven verifiers. Our large experimental study revealed that using several reducers
(with different folders) can make the overall verification more effective.
Contributions. We make the following contributions:

– We introduce FRed, a framework for the composition of new reducers from
existing reducers and folding heuristics.
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Fig. 2: Example program absPow, its CFA, and a condition for our example
absPow with accepting state qf and assumptions elided (all true)

– We prove that FRed derives valid reducers in case the existing reducer is
valid and the folding heuristic adheres to a correctness constraint.

– We use our framework FRed to derive seven new reducers from the existing
reducer ParComp [13] and use them in various conditional verifiers.

– We experimentally show that the overall effectiveness of reducer-based CMC
can be increased using various reducers.

– Our reducers and all experimental data are available for replication and to
construct further conditional model checkers (see Sect. 6).

2 Background

Program Representation. Following the literature [8, 10], we model a program
by a control-flow automaton (CFA) C = (L, `0, G) consisting of a set L of locations,
an initial location `0 ∈ L, and a set of control-flow edges G ⊆ L×Ops× L. The
set Ops describes all possible operations. In our presentation, we only consider
operations on integer variables that are either boolean expressions (so called
assume operations) or assignments. However, our implementation supports C
programs. In the following, we use L for the superset of all location sets and C

for the set of all CFAs. A CFA C = (L, `0, G) is deterministic (i.e., representable
as a C program) if for all control-flow edges (`, op1, `1), (`, op2, `2) ∈ G either
op1 = op2 and `1 = `2, or op1 and op2 are assume operations with op1 ≡ ¬op2.

The left of Fig. 2 shows our example program absPow, which computes
f(N) = 2dlog2 |N |e for N 6= 0 and e.g., ensures the property f(N) 6= 0. Next
to program absPow, its deterministic CFA is shown, which contains one edge
per assignment and two edges for each condition of an if- or while-statement.
The two edges per if- or while-statement are labeled with the condition and its
negation and represent the two evaluations of the condition.
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Program Semantics. We use an operational semantics and represent a pro-
gram’s state by a pair of location ` (the value of the program counter) and
concrete data state c. In our representation, a concrete data state is a map-
ping from the program variables into the set of integer values. Now, a concrete
path π of a CFA C = (L, `0, G) is a sequence (`0, c0)

g1→ · · · gn→ (`n, cn) such
that for all 1 ≤ i ≤ n : gi = (`i−1, opi, `i) ∈ G and ci−1

opi→ ci, i.e., (a) in case
of assume operations, ci−1 |= opi and ci−1 = ci or (b) in case of assignments,
ci = SPopi(ci−1) and SP is the strongest-post operator of the semantics. We let
paths(C) be the set of all concrete paths of a CFA C. Given a concrete path
π = (`0, c0)

g1→ · · · gn→ (`n, cn), we derive its execution ex(π) = c0c1 . . . cn. Finally,
we define ex(C) := {ex(π) | π ∈ paths(C)} to be the executions of a CFA C.
Condition. After an (incomplete) verification run, a condition sums up which
concrete paths of a program have been explored [9]. We model the condition as
an automaton describing the syntactical program paths that have been verified
and the assumptions that have been made on these paths (i.e., which concrete
data states were included). Thus, the condition’s edges are labeled by pairs of
program edges and assumptions. We model assumptions as state conditions,
letting Φ denote the set of all state conditions. Accepting states subsume explored
paths, i.e., if a path’s prefix is accepted by the condition, the path has been
explored. Non-explored paths either end in a non-accepting state or more often
have a prefix that ends in a state q from which no further transition is applicable.
Typically, the latter means that the verifier did not explore beyond the prefix.

The automaton on the right of Fig. 2 shows a condition for our example
program absPow. For the sake of presentation, we left out the assumptions,
which are all true. The condition states that the else-branch of the outermost
if-statement was explored and that the verifier performed a BFS alike exploration
of the if-branch, which split the exploration of the inner if-branch and which is
interrupted after one loop unrolling. Formally, a condition is defined as follows.3

Definition 1. A condition A = (Q,Σ, δ, q0, F ) consists of

– a finite set Q of states, an initial state q0 ∈ Q, and accepting states F ⊆ Q,
– an alphabet Σ ⊆ 2G × Φ, and
– a transition relation δ ⊆ Q×Σ ×Q with ¬∃(qf , ·, q) ∈ δ : qf ∈ F ∧ q /∈ F .

We let A be the set of conditions.

As already said, a condition describes which paths of a program have been looked
at. The following definition formalizes this coverage property. Note that we use
c |= ϕ to describe that a concrete data state c satisfies a state condition ϕ.

Definition 2. A condition A = (Q,Σ, δ, q0, F ) covers a concrete path π =

(`0, c0)
g1→ · · · gn→ (`n, cn) if there exists a run ρ = q0

(G1,ϕ1)−−−−−→ . . .
(Gk,ϕk)−−−−−→ qk in A

such that (a) 0 ≤ k ≤ n, (b) qk ∈ F , and (c) ∀1 ≤ i ≤ k : gi ∈ Gi ∧ (ci |= ϕi).
3 This paper considers only conditions that are represented as automata, while CMC
in general [9] is not restricted to a particular representation.
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Reducer. The CMC approach suggests that after an incomplete verification run,
a second verifier should use the produced condition to explore only the uncovered
paths. However, many verifiers do not understand conditions. To overcome this
problem, reducer-based CMC [13] suggests to extend verifiers with a preprocessing
step that translates the condition into a residual program. A residual program
may overapproximate those program paths that are not covered by the condition,
but must not introduce additional program behavior. We follow reducer-based
CMC [13] and use reducers to compute residual programs.

Definition 3. A reducer is a function red : C×A→ C satisfying the residual
property: ∀C∈C,∀A∈A : ex(C) \ {ex(π) |A covers π} ⊆ ex(red(C,A)) ⊆ ex(C).

First, a reducer for a specific class of conditions was proposed [26]. Then, reducer-
based CMC [13] generalized the first approach to use a reducer, named ParComp,
which supports all kinds of conditions, and showed that it is indeed a reducer [13].
To compute a residual program, the reducer ParComp performs a parallel
composition of the program and the condition. Starting in the initial location
and initial condition state, it matches CFA edges with condition transitions that
subsume the respective CFA edge. If no matching condition transition exists,
ParComp switches to consider CFA edges only. Additionally, it stops exploring
states containing a final state q ∈ F since the condition covers all longer paths.

However, the reducer ParComp has one drawback. Verifiers often unfold
the program, e.g., unroll loops or inspect branches separately. Due to partially
explored paths, some of the unfoldings become part of the condition and will
be encoded in the residual program generated by ParComp. Thus, the residual
program constructed by ParComp may become orders of magnitudes larger
than the original program resulting in increased parsing costs for the second
verifier. Additionally, a verifier v2 analyzing the residual program generated by
ParComp is forced to apply the same unfoldings on the non-covered paths as the
condition-generating verifier v1. However, it might be more effective or efficient
if verifier v2 would less often (or never) unfold certain program structures of the
original program. To tackle this problem, we present the framework FRed that
extends reducers like ParComp to let them compute smaller residual programs
with fewer unfoldings at the cost of adding more explored paths to the residual
program, i.e., computing less precise residual programs.

3 FRed: Fold-Reducers from Reducers

To assist a systematic exploration of the reducer design space, we present the
framework FRed. With FRed one can methodically derive new reducers from
existing ones, thereby controlling the precision and size of the produced residual
programs. One only needs to define how to compress the residual programs
computed by the original reducer. Currently, FRed is limited to the class of
path-preserving reducers. Path-preserving reducers have the advantage that they
keep the reference to the original program within the syntactical structure of
the residual program, i.e., except for location renaming they encode a subset
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of the syntactical paths of the original program. This makes it easier to derive
new reducers from them. Next, we formally define a path-preserving reducer,
where U is the universe of location markers (e.g., condition states).

Definition 4. A reducer ppr is path-preserving if for any generated residual
program ppr((L, `0, G), A) = (Lr, `0,r, Gr) it is valid that (a) Lr ⊆ L × U for
some U, (b) `0,r = (`0, ·), and (c) ∀((`, u), op, (`′, u′)) ∈ Gr : ∃(`, op, `′) ∈ G.

Given a path-preserving reducer like ParComp, the goal of FRed is to derive
new reducers that produce smaller, less precise residual programs. Our idea is that
the new reducers aggregate certain similar behavior of the residual program Cr

produced by the given path-preserving reducer. So far, the framework FRed
supports syntactical aggregations that unite location states of the program Cr.
These aggregations can be used to revert loop-unfoldings or separation of branches,
the main cause for large residual programs. Additionally, these aggregations are
simple to compute. One needs to define only a partitioning of Cr’s location states
into equivalence classes. However, to get proper reducers, the derived reducers
must not introduce new program behavior. Transferred to our aggregations, this
means that we must not combine location states of Cr that refer to different
locations of the original program. We introduce the concept of a location-consistent
partitioner that computes partitions respecting this requirement.

Definition 5. A location-consistent partitioner is a function p that maps a set
Lr ⊆ L× U to a partition {L1, . . . , Ln} of Lr s.t. ∀1 ≤ i ≤ n : |{` | (`, ·) ∈ Li}|
= 1. We use P for the set of all location-consistent partitioners.

As examples, we consider the two extreme location-consistent partitioners cfa
and sep as defined in the following. Partitioner cfa groups all elements with
the same location and sep never groups elements.

cfa(Lr) =
{
{(`, u)∈Lr | ` = `′}

∣∣∃(`′, ·)∈Lr

}
sep(Lr) =

{
{(`, u)}

∣∣ (`, u)∈Lr

}
All remaining location-consistent partitioners group subsets of elements with
same locations. Often, they are context dependent, i.e., they take into account
the structure of the original program or the program Cr generated by the path-
preserving reducer. For instance, we use the following partitioner that combines
locations referring to the same loop head in the original program. The partitioner
is parameterized by the loop heads L′ of the original program.

lhL′(Lr) = cfa
(
{(`, u) ∈ Lr | ` ∈ L′}

)
∪ sep

(
{(`, u) ∈ Lr | ` /∈ L′}

)
A partioning of the nodes of a graph, e.g., a CFA, induces a coarser graph. Each
set of nodes becomes a node of the new graph and there exists an edge between
two sets of nodes if there exists an edge between two nodes in the original graph,
one in each set. A folder applies this principle to compress a residual program
computed by a path-preserving reducer. A location-consistent partitioner defines
the partitioning of location states. Furthermore, the new initial program location
is the set of location states that contains the original initial location. Due to
the partitioner’s properties, exactly one such set exists.
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0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 while(i<N)
5 i=i+i;

(a) CFA

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;

else
4 i=1;
5 while(i<N)
6 i=i+i;

(b) LH, LHC

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 if(i<N)
5 i=i+i;
6 while(i<N)
7 i=i+i;

(c) NLH

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;

else
4 i=1;
5 if(i<N)
6 i=i+i;
7 while(i<N)
8 i=i+i;

(d) LHB

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 if(i<N)
5 i=i+i;

else
7 i=1;
8 if(i<N)
9 i=i+i;
10 while(i<N)
11 i=i+i;

(e) LHBC, SEP

Fig. 3: Five residual programs with increasing program sizes and varying program
structure, constructed by the seven fold-reducers considered in the evaluation

Definition 6. A folder fold : C× P→ C compresses a CFA Cr = (Lr, `0,r, Gr)
with a location-consistent partitioner p such that

fold((Lr, `0,r, Gr), p) = (p(Lr), `0,p, Gp) with

`0,r∈`0,p and Gp =
{
(`p, op, `

′
p)

∣∣ `p, `′p ∈ p(Lr)∧∃(`, op, `′)∈Gr : `∈`p ∧ `′∈`′p
}
.

We use folders to construct so called fold-reducers from an existing path-preserving
reducer. To this end, we concatenate the path-preserving reducer with a folder.

Definition 7. Let p be a location-consistent partitioner and ppr a path-preserving
reducer. The fold-reducer for p and ppr is FoldRedppr

p (C,A) := fold(ppr(C,A), p).

Figure 3 shows five residual programs constructed from program absPow (Fig. 2,
left) and the condition for it (Fig. 2, right). The residual programs differ in
their program size and structure. They were constructed by the seven different
fold-reducers used in the evaluation, all of them using the reducer ParComp [13],
but we converted them into a better readable form using proper if- and while-
statements instead of gotos. Note that for this example, some fold-reducers
constructed the same residual program. To construct the residual programs in
Figs. 3a and 3e, the partitioners cfa and sep could be used, respectively. For
the residual program in Fig. 3b, we used partitioner lhL′ with L′ = {`4}. The
partitioner used to construct the program in Fig. 3c undoes unfoldings of if-
statements but keeps loop-unfoldings. Finally, the program in Fig. 3d is generated
with a partitioner that allows loop-unfoldings up to a given bound of ten and
then folds them. However, loop heads of the same iteration are always combined.

Above, we used fold-reducers to compute residual programs. In general, we
plan to use fold-reducers in the construction of conditional verifiers. Thus, we
must show that fold-reducers are reducers. Syntactically, fold-reducers look like
reducers. It remains to be shown that fold-reducers fulfill the residual property.
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Theorem 1. Every fold-reducer FoldRedppr
p is a reducer.

Proof. We need to show that ex(C)\{ex(π) | A covers π} ⊆ ex(FoldRedppr
p (C,A))

⊆ ex(C). Since ppr is reducer, ex(C) \ {ex(π) | A covers π} ⊆ ex(ppr(C,A)).
Thus, it suffices to show that ex(ppr(C,A)) ⊆ ex(FoldRedppr

p (C,A)) ⊆ ex(C).
In the following, let C = (Lo, `0,o, Go), ppr(C,A)) = (Lr, `0,r, Gr), and

FoldRedppr
p (C,A) = (Lf , `0,f , Gf ). Due to the requirements on p and the

definition of the fold-reducer, there exists a unique function h : Lr → Lf with
∀`r ∈ Lr : `r ∈ h(`r) and h(`0,r) = `0,f .

Part I) ex(ppr(C,A)) ⊆ ex(FoldRedppr
p (C,A)):

c0c1 . . . cn ∈ ex(ppr(C,A))

⇒ there exists πr = (`0,r, c0)
gr
1→ · · · g

r
n→ (`n,r, cn) s.t.

∀1 ≤ i ≤ n : gri = (`i−1,r, opi, `i,r) ∈ Gr ∧ ci−1
opi→ ci

⇒ ∀1 ≤ i ≤ n : ∃gfi = (h(`i−1,r), opi, h(`i,r)) ∈ Gf

⇒ πf = (h(`0,r), c0)
gf
1→ · · · g

f
n→ (h(`n,r), cn) is a concrete path

of FoldRedppr
p (C,A)

⇒ c0c1 . . . cn ∈ ex(FoldRedppr
p (C,A))

Part II) ex(FoldRedppr
p (C,A)) ⊆ ex(C):

c0c1 . . . cn ∈ ex(FoldRedppr
p (C,A))

⇒ there exists πf = (`0,f , c0)
gf
1→ · · · g

f
n→ (`n,f , cn) s.t.

∀1 ≤ i ≤ n : gfi = (`i−1,f , opi, `i,f ) ∈ Gf ∧ ci−1
opi→ ci

⇒ ∀1 ≤ i ≤ n there exists gri = (`i,r, opi, `
′
i,r) ∈ Gr

with `i,r ∈ `i−1,f ∧ `′i,r ∈ `i,f
⇒ ∀1 ≤ i ≤ n there exists gi,o = (`i,o, opi, `

′
i,o) ∈ Go

with `i,r = (`i,o, ·) ∧ `′i,r = (`′i,o, ·)
⇒ ∀1 ≤ i ≤ n : (i = 1 ∨ `i,o = `′i−1,o) ∧ `1,o = `0,o

(since `′i,r, `i+1,r ∈ `i,f , `1,r ∈ `0,f , p location-consistent)
⇒ (`1,o, c0)

g1,o→ (`′1,o, c1)
g2,o→ · · · gn,o→ (`′n,o, cn) ∈ path(C)

⇒ c0c1 . . . cn ∈ ex(C)

In practice, arbitrary fold-reducers are unsatisfactory since they may produce non-
deterministic CFAs, which cannot be translated to C programs. Figure 4 shows an
example of a non-deterministic CFA generated by a fold-reducer. In the example,
the non-determinism is caused by the partitioner lh{`4}, which only combines
loop heads. Generally, also the condition may cause non-determinism.4 To solve
the non-determinism problem, we transform a fold-reducer into a deterministic
fold-reducer that generates deterministic residual programs from deterministic,
input programs. The basic idea is to adapt the partitioner to compute a coarser
4 Theoretically, the non-determinism may also be caused by a non-deterministic, original
program. However, we assume that the original program is deterministic.
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Fig. 4: Nondeterministic residual program built from program absPow, the condi-
tion from Fig. 2, and a fold-reducer using reducer ParComp and partitioner lh{`4}

Algorithm 1 det
Input: CFA Cr = (Lr, `0,r, Gr), p // residual program, location-consistent parti-

tioner
Output: part // location-consistent partition of Lr

1: oldPart:=∅; part:=p(Lr);
2: while oldPart 6= part do
3: oldPart:=part;
4: for each (Li, Lj , Lk) ∈ oldPart × part × part do
5: if Li ∈ part ∧Li 6= Lj ∧ ∃(`k, op, `i), (`′k, op, `j) ∈ Gr :

`k, `
′
k ∈ Lk ∧ `i ∈ Li ∧ `j ∈ Lj then

6: part:=(part\{Li, Lj}) ∪ {Li ∪ Lj};
7: return part

partitioning. The coarser partitioning combines all partition elements of the
original partition that would cause the residual program to be non-deterministic.

Algorithm 1 shows how to compute such a coarser partitioning from the
original partitioning. Starting with the original partitioning, it combines partitions
of its current partitioning as long as there exist two CFA edges causing non-
determinism, i.e., they consider the same operation and start in the same partition
element, but end in different partition elements.

Attentive readers already noticed that Alg. 1 uses the program Cr generated
by the path-preserving reducer to adapt the partitioning. Since multiple programs
may consider the same set of location states but different control-flow edges,
it is impossible to adapt the partitioner without knowledge of Cr. Thus, a
deterministic fold-reducer must use different adaptions of the partitioner p. The
correct adaption depends on the input program and the path-preserving reducer.
We use the following adaption, which depends on the original program and the
path-preserving reducer ppr used by the fold-reducer.

detppr(C,A),p(L) :=

{
det(ppr(C,A), p) if ppr(C,A) = (L, ·, ·) ∧ C deterministic

p(L) else
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The adapted partitioner returns the partitioning computed by the original par-
titioner except for one case. When the original program C is deterministic and
the adapted partitioner is given the location states of the program computed
by the path-preserving reducer, the partition is adapted with Alg. 1. Note that
we neglect to apply Alg. 1 for non-deterministic original programs, because it
then may combine partitions considering different location states of the original
program, thus, resulting in a location-inconsistent partitioner. However, to use
the adapted partitioner in a fold-reducer, it must remain location-consistent.

Lemma 1. For a given CFA C, condition A, path-preserving reducer ppr, location-
consistent partitioner p, function detppr(C,A),p is a location-consistent partitioner.

Knowing that the adapted partitioner remains location-consistent, we explain
how to derive a deterministic fold-reducer from a fold-reducer. The idea is simple.
The deterministic fold-reducer uses for each input program a dedicated variant
of the original fold-reducer. This dedicated variant uses the prescribed adaption
det(ppr(C,A), p) of the original partitioner to the original program.

Definition 8. Let FoldRedppr
p be a fold-reducer. We define the deterministic

fold-reducer to be FoldReddet
p,ppr (C,A) := FoldRedppr

detppr(C,A),p
(C,A).

We already showed that the proposed adaption of the location-consistent parti-
tioner results in a location-consistent partitioner. Now, we can easily conclude
that deterministic fold-reducers guarantee the residual property and, thus, can
be used to construct conditional verifiers.

Corollary 1. Every deterministic fold-reducer FoldReddet
p,ppr is a reducer.

While the previous property is mandatory, we build deterministic fold-reducers
to produce deterministic programs when given deterministic programs. The
subsequent proposition certifies this property of deterministic fold-reducers.

Proposition 1. Given a deterministic fold-reducer FoldReddet
p,ppr, a determin-

istic CFA C, and a condition A, then the residual program FoldReddet
p,ppr (C,A)

is deterministic.

4 Evaluation

The main goals of our experiments are to systematically investigate different
(fold-)reducers and to find out whether fold-reducers can overcome the prob-
lem that reducer ParComp sometimes generates too large and precise residual
programs. Since ParComp was the only available reducer our goal was to
counteract on its weaknesses (i.e., the sometimes large residual programs), in-
vestigating whether one needs to settle for ParComp’s weakness is beyond the
scope of this evaluation. Another goal of our evaluation is to compare CMC
with fold-reducers against non-cooperative combinations, especially sequential
combinations. This leads us to three research questions:
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RQ 1. Do distinct fold-reducers generate different residual programs?
RQ 2. Can fold-reducer be better than reducer ParComp and is there a reducer

that dominates the others?
RQ 3. Can reducer-based CMC replace non-cooperative verifier combinations?

4.1 Experimental Setup

CMC Configurations. A reducer-based CMC configuration consists of (1) a
condition-generating verifier v1, (2) a reducer r, and (3) a second verifier v2
(cf. Fig. 1). For components v1 and r, we use CPAchecker [14] in revision r32965
since it already provides condition-generating verifiers and reducer ParComp [13].

As in other works [9, 13], we use a predicate analysis [15] and a value analy-
sis [16], both using a time limit of 100 s5, as condition-generating verifiers. If they
do not succeed within 100 s, they give up and output a condition. For verifier v2, we
use the three tools CPA-Seq [29], ESBMC [34], and VeriAbs [30] that performed
best on the reachability categories of SV-COMP 20206 as well as Symbiotic,
which performed best in the SoftwareSystems category of SV-COMP 2020. For
all four tools, we use their version submitted to SV-COMP 2020. Additionally, we
used three well-maintained analyses, kInduction [7], predicate analysis [15], and
value analysis [16], which are part of the award-winning sequential composition
of CPAchecker [29]. For them, we also use CPAchecker revision r32965.

We investigated seven fold-reducers r, which we implemented in the FRed
plug-in for CPAchecker. All fold-reducers inline functions and typically use the
deterministic fold-reducer variant of the reducers described in Sect. 3. Only the
CFA and the SEP reducers already generate deterministic, residual programs
and do not need to use the deterministic variant. The seven fold-reducers are:

CFA Fold-reducer that uses partitioner cfa, i.e., it combines elements with same
location states and, thus, reconstructs those parts of the original CFA that
have not been fully explored.

LH Fold-reducer that is based on partitioner lhL′ and undoes loop-unfoldings.
It combines all elements with the same loop-head location state from L′.

LHC Fold-reducer that also aims at reverting loop-unfoldings, but avoids to
combine loop executions started in different contexts, i.e., reached on different
syntactical paths ignoring finished loops.

LHB Fold-reducer that limits loop-unfoldings, i.e., keeps loop-unfoldings up to
a given bound (we use 10) and afterwards collapse the unfoldings.

LHBC Fold-reducer that like LHB limits loop-unfoldings up to a bound of 10,
but additionally separates loop executions with different contexts like LHC.

NLH Fold-reducer that undoes branch- but not loop-unfoldings (keeps different
loop iterations separated).

SEP Fold-reducer that never combines elements, uses partitioner sep (same as
ParComp [13]).

5 We chose a time limit of 100 s because a large proportion of the solvable tasks (> 86%)
were solved in less than 100 s.

6 https://sv-comp.sosy-lab.org/2020/systems.php.

https://sv-comp.sosy-lab.org/2020/systems.php
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Combining each fold-reducer r with all second verifiers v2 we obtain 49 con-
ditional verifiers v2 ◦ r. Combining the conditional verifiers with the condition-
generating verifier gives us 84 reducer-based CMC configurations.7

Tasks. For our evaluation, we considered the well-established benchmark
set8 from the competition on software verification [4]. We focused on the 6 907
tasks of the ReachSafety categories, because all considered analyses can verify
the property “no call to function __VERIFIER_error() is reachable”. For each
condition-generating verifier v1, we created a task set that excludes all tasks for
which all reducers reported an error (≈11%) as well as all easy tasks (≈45%).
A task is considered easy if it does not require CMC because it can be solved in
100 s by v1 or in 1 000 s9 by all verifiers v2. Thus, we only look at tasks for which
CMC can contribute additional value (2 949 tasks for CMC with v1=predicate
analysis and 3 046 tasks for CMC with v1=value analysis).

Execution Framework. We performed our experiments on machines with
33GB of memory and an Intel Xeon E3-1230 v5 CPU (8 processing units and a
frequency of 3.4GHz). The machines run a Ubuntu 18.04 operating system (Linux
kernel 4.15). We use BenchExec [17] to run our experiments. To ensure that all
CMC configurations with the same verifier v1 use the same conditions, we run
the condition-generating verifiers v1 once with a runtime limit of 100 s10 and a
memory limit of 15GB. The generated conditions are then used when running the
conditional verifiers with a runtime limit of 900 s and a memory limit of 15GB.
Replication Support. Our experimental data are available online (see Sect. 6).

4.2 Experimental Results

RQ 1 (Different residual programs?) Already our example (Fig. 3) shows
that residual programs generated by different reducers can significantly differ in
the program size and the branching structure. To further investigate the difference
of residual programs, we searched our tasks for programs for which all seven
reducers generated residual programs with different numbers of program locations,
and selected the program sqrt_Householder_interval.c. Figure 5 shows graph
shapes of the CFAs of the residual programs generated by the seven fold-reducers.
In a graph shape, the width of line i is proportional to the number of CFA nodes
with a shortest path of length i from the initial location. We observe that the
graph shapes differ in their height and width. Thus, residual programs differ in
their branching structure. Finally, we looked at the size increase of the residual
programs, i.e., number of locations of residual program (|Lresidual|) divided by
number of locations of original program (|Loriginal|). Figure 6 shows boxplots
7 We excluded the 14 combinations in which verifiers v1 and v2 are identical because
they do not describe a cooperation between different verifiers, but are basically
identical to a verification with a single verifier with some additional overhead.

8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
9 We grant CMC 1 000 s. We use a a standard time limit of 900 s for the conditional
verifier and, as already explained, 100 s for the condition-generating verifier v1.

10 To not interrupt condition writing, we applied the limit to the verification algorithm.
Imprecise enforcement or condition writing may result in runtimes larger than 100 s.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/float-benchs/sqrt_Householder_interval.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
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Fig. 5: Shape graphs (indicating structure)
of residual programs constructed from
program sqrt_Householder_interval.c
by respective fold-reducer
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Table 1: Number of verification tasks solved correctly by each CMC configuration
that uses the predicate analysis (upper part) or the value analysis (lower part)
for condition generation; last column combines the previous columns

Verifier v2
r +CPASeq +ESBMC +Symbiotic +VeriAbs +kInd. +Val. +All

2949 1636 2949 1773 2949 1983 2949 730 2949 1928 2949 2082 2949 433

CFA 946 28 397 165 541 41 397 24 762 62 296 17 1342 38
LH 951 30 397 165 542 42 391 24 764 64 295 17 1342 38
LHC 949 30 397 165 541 41 395 24 761 63 295 17 1338 37
LHB 700 29 413 189 510 43 365 20 624 68 172 17 1129 41
LHBC 699 30 412 189 509 43 366 20 623 68 169 17 1122 41
NLH 722 27 447 212 508 42 367 22 634 78 169 17 1155 41
SEP 662 29 500 226 570 43 397 22 614 75 132 16 1195 42

All 997 41 558 277 609 46 479 26 783 76 298 17 1501 54

ID 1269 0 1003 0 709 0 2166 0 860 0 657 0 2446 0

Verifier v2
r +CPASeq +ESBMC +Symbiotic +VeriAbs +kInd. +Pred. +All

3046 1713 3046 1800 3046 2112 3046 758 3046 1610 3046 2123 3046 434

CFA 1018 51 492 178 536 70 600 41 937 78 697 114 1452 52
LH 955 49 481 176 515 72 573 41 870 77 682 115 1411 52
LHC 940 51 481 176 512 72 568 42 860 78 683 115 1402 52
LHB 822 44 458 143 511 75 503 41 761 73 677 147 1348 44
LHBC 824 45 458 143 508 75 499 41 754 75 674 144 1342 44
NLH 940 51 401 90 460 72 549 39 859 81 715 146 1310 44
SEP 610 43 488 123 410 75 440 36 588 70 509 124 957 35

All 1041 64 650 273 548 75 623 45 944 84 772 177 1525 61

ID 1228 0 1045 0 734 0 2210 0 1121 0 673 0 2482 0

depicting for each reducer the distribution of the size increases of its residual
programs. We observe that the boxes differ in size, the median (middle line) and
the whiskers, which supports that residual programs from distinct reducers differ.
RQ 2 (Better than ParComp and existence of dominating reducer?)
To answer this research question, we study the number of tasks solved correctly

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/float-benchs/sqrt_Householder_interval.c
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by the CMC configurations. We focus on correctly solved tasks and exclude
incorrectly solved tasks, which are an unreliable source of information caused by
an unsound CMC configuration, e.g., due to an unsound verifier or a bug in one
of the CMC configurations. For each CMC configuration, we report the numbers
for the full task set11 and for a restricted task set that only considers those tasks
that cannot be solved by the two verifiers in the CMC configuration and, thus,
requires cooperation, e.g., via CMC. Table 1 shows the numbers for the CMC
configurations using the predicate analysis (upper part) and the value analysis
(lower part) for the condition-generating verifier v1. The total number of tasks
considered in each column are reported at the top. The CMC configurations are
fixed by the reducer (row) and the verifier v2 (columns). Column ‘+All’ displays
the numbers of correctly solved tasks by CMC configurations with any verifier v2,
but excluding tasks that one of the CMC configurations solved incorrectly.12
Similarly, row ‘All’ uses any reducer. The last row is discussed later.

Looking at Table 1, we first observe that there exist verifier combinations
for which the CMC configurations using the SEP reducer, which is identical to
reducer ParComp, does not solve the most tasks (bold numbers). We also observe
that for some CMC configurations the best reducer differs when considering the
full or the restricted task set. Also, the best reducers differ when changing the
condition-generating verifier. Hence, the best reducer depends on (1) the task set,
and (2) the verifier combination. Additionally, we observe that the numbers in
row ‘All’ are often larger than in the previous rows. Thus, we are more effective
when using different reducers. Moreover, our raw data revealed that for all seven
reducers there exist tasks that can only be solved by a verifier combination when
using this particular reducer. Therefore, we need all seven reducers.
RQ 3 (Replacement for non-cooperative verifier combinations?) To
answer this question, we compare CMC with fold-reducers against a combination
that executes verifier v1 and v2 in sequence using the same program for both
verifiers and without exchanging any information. This combination is identical to
CMC with the identity reducer ID, which returns the input program. Row ID in
Table 1 shows the number of tasks solved correctly by the sequential composition.
Obviously, the sequential composition does not solve any task in the restricted
task set, which only contains tasks that cannot be solved by v1 and v2. To solve
these tasks, one needs cooperation approaches like reducer-based CMC. For the
full task set, we observe that except for one case row ID solves more tasks than the
other rows. Hence, reducer-based CMC should only be used for hard verification
tasks that cannot be solved by single verifiers and, thus, need cooperation.

4.3 Threats to Validity

In theory, our reducers fulfill the residual condition. However, in practice our
reducer implementation might contain bugs that lead to residual programs that

11 Remember that the full task set depends on the condition-generating verifier v1
because we only look at tasks for which CMC can contribute additional value.

12 For +All, the tasks in the restricted set are neither solved by v1 nor any verifier v2.
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add or miss program behavior, i.e., violate the residual condition. In principle,
such bugs can lead to residual programs fulfilling the same property as the original
program, but that are easier to verify. Hence, some of the correctly solved tasks
might come from such bugs. Furthermore, our results concerning the reducers
may not generalize. First, we considered a subset of the SV-COMP tasks and
analyses that are run in SV-COMP. The analyses are likely trained on the tasks.
However, also CMC configurations that unfold the original program a lot, and
thus generate residual programs that look differently from the original program,
solved many tasks. We are confident that our results apply to other programs.
Second, we used specific time limits for the condition-generating verifier v1 and
the conditional verifier (reducer plus verifier v2). While we chose common time
limits, our results may look differently when using different limits.

5 Related Work

Our work is based on the idea of conditional model checking (CMC) [9], which
combines analyses via condition passing. The early conditional model check-
ers [9] used the condition to directly steer the exploration of the second analysis.
Translating the condition into a residual program was first proposed in 2015 [26].
Besides slicing, they construct the residual program from a parallel combination
of condition and program. Recently, reducer-based CMC [13] generalized the
idea of residual programs and introduced the concept of a reducer. The proposed
reducer was similar to the earlier parallel combination [26]. In this paper, we
construct multiple, new reducers from the original reducer [13].

Combination of Analyses. One type of combination testifies verifica-
tion results. These combinations try to confirm alarms [18, 25, 28, 35, 44, 47]
or proofs [1, 39, 41, 45], possibly excluding unconfirmed results. Violation and
correctness witnesses [5, 6] provide a tool-independent exchange format for alarms
and proofs, enabling other tools to check a verifier’s result. Further combinations
join forces of different analyses. On the one hand, analysis domains are inte-
grated [8, 10, 23, 24, 33] to get more precise domains than the pure product. On
the other hand, interleavings of analysis algorithms are proposed [3, 27, 36, 37]
to benefit from (intermediate) results of other algorithms. A third class of com-
binations distributes the verification effort among different tools. CMC [9] and
reducer-based CMC [13], which we apply, belong to this class. Often, the program
parts that could not be verified by the first analyzer are encoded with programs.
Sometimes annotations (assertions) are added [19, 20, 21, 46], while program
trimming [32] adds assume statements to the original program. Reducer-based
CMC [13] and program partitioning [43] output a new program describing a
subset of the original program paths. Abstraction-driven concolic testing [27]
interleaves concolic testing and predicate abstraction to construct test cases for
test goals. CoVeriTest [11] recently generalized this approach. Conditional static
analysis [49] splits the program paths into subsets, runs one dataflow analysis on
each subset and finally combines the results of these restricted analyses.
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Program Transformation for Verification. Our work uses fold-reducers
to transform the original program to remove already-verified paths. Like any
reducer, fold-reducers may unfold the structure (execution paths) of the original
program. Moreover, fold-reducers use a folder that aims at reverting some of the
unfoldings introduced by the existing reducer used in the fold-reducer. Likewise,
verification refactoring [53] heuristically undoes compiler optimizations to ease
verification. Programs-from-proofs [42] pursues the same goal, but it unfolds the
program structure to ease verification. Program partitioning [43] and abstraction-
driven concolic testing [27] transform the original program to remove tested or
infeasible program paths. Unfolding the program structure is a common approach
to remove infeasible paths [2, 38, 48] or improve the analysis result [40, 50, 51].
In contrast, folding is used less often. Examples are compiler optimizations like
constant propagation [52] and common-subexpression elimination [22].

6 Conclusion

One solution to the problem of verifying complex software systems is to improve
verification algorithms and theories. An orthogonal solution is to combine existing
techniques. Conditional model checking (CMC) is a promising approach to
combine the strengths of different verifiers. To construct new conditional model
checkers from existing model checkers in an implementation-less and configurable
manner (off-the-shelf, plug-and-play), the concept of reducer-based CMC was
recently proposed [13]. Instead of spending developer resources on adapting
existing verifiers to make them understand conditions—the information exchange
format in CMC—, reducer-based CMC suggests to put reducers in front of
existing, off-the-shelf verifiers. The task of a reducer is to convert the condition
into a format that the verifier already understands, namely program code. Until
now, only one reducer existed. Our experiments revealed that there is a lot of
potential for improving the effectiveness by using different kinds of reducers.

Developing new reducers can be a laborious task. One must define how to
compute the residual program from the input condition and program. Moreover,
one must prove that the reducer fulfills the residual property, a correctness
property for the reducer. To systematically study reducers, we developed the
framework FRed, which simplifies the development of new reducers. FRed allows
us to derive the new reducer from an existing one and a heuristic that describes
how to coarsen the residual program generated by the existing reducer. To prove
that the derived reducer is indeed a reducer, one only needs to show that the
specified heuristic is a location-consistent partitioner, a property much simpler
than the residual property. Our experience with FRed is that developing and
implementing a new heuristic takes at most a few hours. In the future, algorithm
selection could be applied to choose the most suitable reducer for a task.

Data Availability Statement. The reducers and all experimental data are
publicly available for replication on a web page 13 and as replication package [12].

13 https://www.sosy-lab.org/research/fred/

https://www.sosy-lab.org/research/fred/
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