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Abstract. This report describes the 2020 Competition on Software Veri-
fication (SV-COMP), the 9th edition of a series of comparative evaluations
of fully automatic software verifiers for C and Java programs. The compe-
tition provides a snapshot of the current state of the art in the area, and
has a strong focus on replicability of its results. The competition was based
on 11 052 verification tasks for C programs and 416 verification tasks
for Java programs. Each verification task consisted of a program and a
property (reachability, memory safety, overflows, termination). SV-COMP
2020 had 28 participating verification systems from 11 countries.
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1 Introduction

The Competition on Software Verification (SV-COMP) serves as the showcase of
the state of the art in the area of automatic software verification. SV-COMP 2020
is the 9th edition of the competition and presents an overview of the currently
achieved results by tool implementations that are based on the most recent ideas,
concepts, and algorithms for fully automatic verification. This competition report
describes the (updated) rules and definitions, presents the competition results,
and discusses some interesting facts about the execution of the competition
experiments. The competition measures its own success by evaluating whether
the objectives of the competition were achieved. To the objectives discussed
earlier (1-4 [14]) we add two further objectives that deserve mentioning (5-6):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results,

4. accelerate the transfer of new verification technology to industrial practice
by identifying the strengths of the various verifiers on a diverse set of tasks,

5. educate PhD students and others on performing replicable benchmarking,
packaging tools, and running robust and accurate research experiments, and

6. provide research teams that do not have sufficient computing resources with
the opportunity to obtain experimental results on large benchmark sets.
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We now discuss the outcome of SV-COMP 2020 with respect to these objec-
tives: (1) There were 28 participating software systems from 11 countries, using
many different technologies (cf. Table 6). SV-COMP is considered an important
event in the verification community. (2) The sv-benchmarks repository is consid-
ered one of the largest and most diverse collections of verification tasks in C and
Java. The community dedicates a lot of maintenance effort, as the issue tracker 1

and the pull requests 2 on GitHub show. (3) SV-COMP has established a format
for defining verification tasks, a standard specification language, and a set of
functions to express non-deterministic values. Verification results are validated
using verification witnesses and six different validators. (4) We received positive
feedback from industry, reporting that it is helpful to look up the newest and best
available verification tools, regarding the categories of interest. There are several
participating systems from industry since 2017. (5) Participating in SV-COMP
is also a challenge because the entry requirements are strict: the tools have to
be packaged such that all necessary non-standard components are contained,
the tools need to provide meaningful log output, the tool parameters have to be
specified in the BenchExec benchmark-definition format, and a tool-info module
needs to be implemented. All experiments are required to be fully replicable.
It is a motivating experience to observe the learning of first-time participants.
(6) Running large-scale performance experiments requires an infrastructure with
considerable computing resources — which are not necessarily available to all
tool developers. Through this competition and the preruns, the participants get
the opportunity to repeatedly run experiments on the full benchmark set of
verification tasks of the competition. The preruns and final run sum up to over
one million verification runs and ten million witness-validation runs.

Related Competitions. It is well-understood that competitions are an impor-
tant evaluation method, and there are many other competitions in the field of
formal methods. The TOOLympics 3 [7] event in 2019 (part of the 25-years-of-
TACAS celebration) presented 16 competitions in the area. Most closely related
are the competitions RERS 4 [45] and VerifyThis 5 [46]. While SV-COMP 6 per-
forms replicable experiments in a controlled environment (dedicated resources,
resource limits), the RERS Challenges give more room for exploring combina-
tions of interactive with automatic approaches without limits on the resources,
and the VerifyThis Competition focuses on evaluating approaches and ideas
rather than on fully automatic verification.

Large benchmark collections are extremely important to make approaches
comparable and to agree on what constitutes interesting problems to solve.
There are other large benchmark collections as well (e.g., by SPEC 7), but the

1 https://github.com/sosy-lab/sv-benchmarks/issues
2 https://github.com/sosy-lab/sv-benchmarks/pulls
3 https://tacas.info/toolympics.php
4 http://rers-challenge.org
5 http://etaps2016.verifythis.org
6 https://sv-comp.sosy-lab.org
7 https://www.spec.org
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sv-benchmarks suite 8 is (a) free of charge, and (b) tailored to the state of the
art in software verification. Benchmark repositories of various competitions and
challenges also contribute to each other. For example, the sv-benchmarks suite
contains programs that were originally used in RERS 9, in termCOMP 10, and
in VerifyThis 11. There is a flow of benchmarks in the other direction as well:
The competition SMT-COMP [32] uses SMT formulas that were generated from
programs of the sv-benchmarks collection. For example, the k-induction engine
of CPAchecker was used to generate more than 1000 SMT formulas for the
quantifier-free theory of arrays and bit-vectors (QF_ABV) 12.

2 Organization, Definitions, Formats, and Rules

Procedure. SV-COMP 2020’s overall organization did not change in comparison
to the earlier editions [8, 9, 10, 11, 12, 13, 14]. SV-COMP is an open competition,
where all verification tasks are known before the submission of the participating
verifiers, which is necessary due to the complexity of the C language. During the
benchmark submission phase, new verification tasks were collected, classified, and
added to the existing benchmark suite (i.e., SV-COMP uses an accumulating
benchmark suite), during the training phase, the teams inspected the verification
tasks and trained their verifiers (also, the verification tasks received fixes and
quality improvement), and during the evaluation phase, verification runs were
preformed with all competition candidates, and the system descriptions and
archives were reviewed by the competition jury. The participants received the
results of their verifier directly via e-mail, and after a few days of inspection, the
results were publicly announced on the competition web site. The Competition
Jury consisted again of the chair and one member of each participating team.
Team representatives of the jury are listed in Table 5.

Qualification and License Requirements. As a new feature in SV-COMP
2020, a rule was introduced that allows the organizer to reuse systems that
participated in previous years, and to enter new systems, provided that the
developers were given the chance to contribute a submission themselves (both
options were not used this time). Starting 2018, SV-COMP required that the
verifier must be publicly available for download and has a license that

(i) allows replication and evaluation by anybody (including results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows any kind of (re-)distribution of the unmodified verifier archive.

8 https://github.com/sosy-lab/sv-benchmarks
9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/eca-rers2012/README.txt

10 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/termination-restricted-15/
README.txt

11 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/verifythis/README.txt
12 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-inc/QF_ABV/tree/master/

20190307-CPAchecker_kInduction-SoSy_Lab
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1 format_version: ’1.0’
2

3 # old file name: floppy_true−unreach−call_true−valid−memsafety.i.cil.c
4 input_files: ’floppy.i.cil−3.c’
5

6 properties:
7 − property_file: ../properties/unreach−call.prp
8 expected_verdict: true
9 − property_file: ../properties/valid−memsafety.prp

10 expected_verdict: false
11 subproperty: valid−memtrack

Fig. 1: Example task definition for program floppy.i.cil-3.c

Validation of Results. The validation of the results based on verification
witnesses [19, 20] was done as in previous years (2017–2019), mandatory for both
answers True or False. A few categories were excluded from validation if the
validators did not sufficiently support a certain kind of program or property. Two
new validators participated in SV-COMP 2020: Nitwit [66] and MetaVal [25].

Verification Tasks — Explicit Task-Definition Files. The notion of verifica-
tion tasks did not change and we refer to previous reports for more details [10, 13].
We developed a new format for task definitions that was used for the Java cate-
gory already in SV-COMP 2019. Technically, we need a verification task (a pair
of a program and a specification to verify) to feed as input to the verifier, and
an expected result against which we check the answer that the verifier returns.
Previously, the above-mentioned three components were specified in the file name
of the program; now all the information is stored in an extra file that contains a
structured definition of the verification tasks for a program. For each program, the
repository contains the program file and a task-definition file. Consider an exam-
ple program that is available under the name floppy.i.cil-3.c: This program
comes now with its task-definition file floppy.i.cil-3.yml. Figure 1 shows
this task definition. The new format was used in SV-COMP 2019 for the Java
category [14] and in the competition on software testing, Test-Comp 2019 [15].

The task definition uses the YAML format as underlying structured data
format. It contains a version id of the format (line 1) and can contain com-
ments (line 3). The field input_files specifies the input program (exam-
ple: ’floppy.i.cil-3.c’), which is either one file or a list of files. The field
properties lists all properties of the specification for this program. Each
property has a field property_file that specifies the property file (example:
../properties/unreach-call.prp) and a field expected_verdict that spec-
ifies the expected result (example: true).

Categories, Properties, Scoring Schema, and Ranking. The categories
are listed in Tables 7 and 8 and described in detail on the competition web site.13
Figure 2 shows the category composition. For the definition of the properties
and the property format, we refer to the 2015 competition report [11]. All
specifications are available in the directory c/properties/ of the benchmark
13 https://sv-comp.sosy-lab.org/2020/benchmarks.php

350 D. Beyer

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/properties/unreach-call.prp
https://sv-comp.sosy-lab.org/2020/benchmarks.php


Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

ReachSafety

Arrays

Heap

LinkedList

Other

TerminCrafted

MemCleanup

MemSafety

MainConcurrencySafety

BitVectors

Other
NoOverflows

MainControlFlow

MainHeap

Other

Termination

AWS-C-Common
ReachSafety

BusyBox MemSafety

BusyBox NoOverflows

DeviceDriversLinux64
ReachSafety

OpenBSD MemSafety

SoftwareSystems

C-FalsificationOverall

Java-Overall

C-Overall

Fig. 2: Category structure for SV-COMP 2020; category C-FalsificationOverall
contains all verification tasks of C-Overall without Termination; Java-Overall
contains all Java verification tasks
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Table 1: Properties used in SV-COMP 2020 (unchanged since 2019 [14])
Formula Interpretation
G ! call(foo()) A call to function foo is not reachable on any finite execution.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
during which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program during which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program during which the program lost
track of some previously allocated memory.

G valid-memcleanup All allocated memory is deallocated before the program
terminates. In addition to valid-memtrack: There exists
no finite execution of the program during which the program
terminates but still points to allocated memory.
(Comparison to Valgrind: This property can be violated even
if Valgrind reports ’still reachable’.)

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates.

Table 2: Scoring schema for SV-COMP 2020 (unchanged since 2017 [13])
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True correct +1 Program correctly reported to satisfy property,

unconfirmed but the witness was not confirmed by a validator
True incorrect −32 Incorrect program reported as correct (wrong proof)

repository. Table 1 lists the properties and their syntactical representation as
overview. Property G valid-memcleanup, and thus, the category MemCleanup,
was used for the first time in SV-COMP 2019. The categories AWS-C-Common
and OpenBSD were added for SV-COMP 2020.

The scoring schema is identical for SV-COMP 2017–2020: Table 2 provides
the overview and Fig. 3 visually illustrates the score assignment for one prop-
erty. The scoring schema still contains the special rule for unconfirmed cor-
rect results for expected result True that was introduced in the transitioning
phase: one point is assigned if the answer matches the expected result but
the witness was not confirmed.
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1false (witness confirmed)

Fig. 3: Visualization of the scoring schema for the reachability property (from [13],
c© Springer-Verlag)

The ranking was again decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on success run
time, which is the total CPU time over all verification tasks for which the verifier
reported a correct verification result. Opt-out from Categories and Score Nor-
malization for Meta Categories was done as described previously [9] (page 597).

3 Reproducibility

All major components used in the competition are available in public version
repositories. This allows independent replication of the SV-COMP experiments.
An overview of the components that contribute to the reproducible setup of SV-
COMP is provided in Fig. 4, and the details are given in Table 3. The SV-COMP
2016 report [12] describes all components of the SV-COMP organization and how
we ensure that all parts are publicly available for maximal replicability.

We have published the competition artifacts at Zenodo to guarantee their
long-term availability and immutability. These artifacts comprise the verification
tasks, the produced competition results, and the produced verification witnesses.
The DOIs and references are given in Table 4. The archive for the competition
results includes the raw results in BenchExec’s XML exchange format, the log
output of the verifiers and validators, and a mapping from files names to SHA-256
hashes. The hashes of the files are useful for validating the exact contents of a file,
and accessing the files inside the archive that contains the verification witnesses.

To provide a more transparent way of accessing the exact versions of the
verifiers that were used in the competition, all verifier archives are stored in a
public Git repository. GitLab was used to host the repository for the verifier
archives due to its generous repository size limit of 10GB. The final size of
the Git repository is 5.78GB.
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(a) Verification Tasks

(e) Verification Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Verifier Archives

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 4: SV-COMP components and the execution flow

Table 3: Publicly available components for replicating SV-COMP 2020

Component Fig. 4 Repository Version

Verification Tasks (a) github.com/sosy-lab/sv-benchmarks svcomp20
Benchmark Definitions (b) github.com/sosy-lab/sv-comp svcomp20
Tool-Info Modules (c) github.com/sosy-lab/benchexec 2.5.1
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2020 svcomp20
Benchmarking (e) github.com/sosy-lab/benchexec 2.5.1
Witness Format (f) github.com/sosy-lab/sv-witnesses svcomp20

4 Results and Discussion

The results of the competition experiments represent the state of the art in fully
automatic software-verification tools. The report shows the results, in terms of
effectiveness (number of verification tasks that can be solved and correctness of
the results, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time). The results are presented in the same way as in last
years, such that the improvements compared to last year are easy to identify. The
results presented in this report were inspected and approved by the participating
teams. We now discuss the highlights of the results.

Participating Verifiers. Table 5 and the competition web site 14 provide an
overview of the participating verification systems. Table 6 lists the algorithms
and techniques that are used in the verification tools.

Computing Resources. The resource limits were the same as in the previous
competitions [12]: Each verification run was limited to 8 processing units (cores),
15GB of memory, and 15min of CPU time. The witness validation was limited
to 2 processing units, 7GB of memory, and 1.5min of CPU time for violation
witnesses and 15min of CPU time for correctness witnesses. The machines
for running the experiments are part of a compute cluster that consists of

14 https://sv-comp.sosy-lab.org/2020/systems.php
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Table 4: Artifacts published for SV-COMP 2020

Content DOI Reference

Verification Tasks 10.5281/zenodo.3633334 [17]
Competition Results 10.5281/zenodo.3630205 [16]
Verification Witnesses 10.5281/zenodo.3630188 [18]

Table 5: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2ls [26, 55] Viktor Malík BUT, Brno, Czechia
Brick Lei Bu Nanjing U., China
Cbmc [51] Michael Tautschnig Amazon Web Services, UK
Coastal [67] Willem Visser Stellenbosch U., South Africa
CPA-BAM-BnB [3, 68] Vadim Mutilin ISP RAS, Russia
CPA-Lockator [4] Pavel Andrianov ISP RAS, Russia
CPA-Seq [22, 36] Martin Spiessl LMU Munich, Germany
Dartagnan [40, 53] Hernán Ponce de León Bundeswehr U. Munich, Germany
Divine [6, 52] Henrich Lauko Masaryk U., Czechia
Esbmc [38, 39] Felipe R. Monteiro Federal U. of Amazonas, Brazil
Gacal [61] Benjamin Quiring Northeastern U., USA
Java-Ranger [65] Vaibhav Sharma U. of Minnesota, USA
JayHorn [49, 50] Philipp Ruemmer Uppsala U., Sweden
JBmc [33, 34] Peter Schrammel U. of Sussex, UK
JDart [54, 56] Falk Howar TU Dortmund, Germany
Lazy-CSeq [47, 48] Omar Inverso Gran Sasso Science Inst., Italy
Map2Check [63, 64] Herbert Rocha Federal U. of Roraima, Brazil
PeSCo [35, 62] Cedric Richter Paderborn U., Germany
Pinaka [30] Saurabh Joshi IIT Hyderabad, India
PredatorHP [44, 59] Veronika Šoková BUT, Brno, Czechia
SPF [57, 60] Willem Visser Amazon, USA
Symbiotic [28, 29] Marek Chalupa Masaryk U., Czechia
UAutomizer [42, 43] Matthias Heizmann U. of Freiburg, Germany
UKojak [27, 58] Alexander Nutz U. of Freiburg, Germany
UTaipan [37, 41] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [1, 2] Priyanka Darke Tata Consultancy Services, India
VeriFuzz [31] Raveendra Kumar M. Tata Consultancy Services, India
Yogar-Cbmc [70, 71] Liangze Yin Nat. U. of Defense Techn., China

168 machines; each verification run was executed on an otherwise completely
unloaded, dedicated machine, in order to achieve precise measurements. Each
machine had one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4GHz, 33GB of RAM, and a GNU/Linux operating system
(x86_64-linux, Ubuntu 18.04 with Linux kernel 4.15). We used BenchExec [23]
to measure and control computing resources (CPU time, memory, CPU energy)
and VerifierCloud 15 to distribute, install, run, and clean-up verification runs,

15 https://vcloud.sosy-lab.org
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Table 6: Algorithms and techniques that the competition candidates offer
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and to collect the results. The values for time and energy are accumulated
over all cores of the CPU. To measure the CPU energy, we use CPU Energy
Meter [24] (integrated in BenchExec [23]).

One complete verification execution of the competition consisted of
138 074 verification runs (each verifier on each verification task of the selected
categories according to the opt-outs), consuming 491 days of CPU time and
130 kWh of CPU energy (without validation). Witness-based result validation
required 684 858 validation runs (each validator on each verification task for
categories with witness validation, and for each verifier), consuming 311 days
of CPU time. Each tool was executed several times, in order to make sure no
installation issues occur during the execution. Including preruns, the infrastruc-
ture managed a total of 1 018 781 verification runs consuming 4.8 years of CPU
time, and 10 705 227 validation runs consuming 6.9 years of CPU time.

Quantitative Results. Table 7 presents the quantitative overview of all tools
and all categories. The head row mentions the category, the maximal score for the
category, and the number of verification tasks. The tools are listed in alphabetical
order; every table row lists the scores of one verifier. We indicate the top three
candidates by formatting their scores in bold face and in larger font size. An
empty table cell means that the verifier opted-out from the respective main
category (perhaps participating in subcategories only, restricting the evaluation
to a specific topic). More information (including interactive tables, quantile plots
for every category, and also the raw data in XML format) is available on the
competition web site 16 and in the results artifact (see Table 4).

Table 8 reports the top three verifiers for each category. The run time (column
‘CPU Time’) and energy (column ‘CPU Energy’) refer to successfully solved
verification tasks (column ‘Solved Tasks’). We also report the number of tasks for
which no witness validator was able to confirm the result (column ‘Unconf. Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results, i.e., reporting a counterexample
when the property holds (incorrect False) and claiming that the program fulfills
the property although it actually contains a bug (incorrect True), respectively.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [9, 23] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 16 and the
results archive (see Table 4) include such a plot for each category. As an example,
we show the plot for category C-Overall (all verification tasks) in Fig. 5. A total
of 11 verifiers participated in category C-Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [9]). A more detailed discussion of score-based quantile plots,
including examples of what insights one can obtain from the plots, is provided
in previous competition reports [9, 12].

16 https://sv-comp.sosy-lab.org/2020/results
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Table 7: Quantitative overview over all results; empty cells represent opt-outs
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2ls 2491 298 0 340 1264 13 914 4924
Brick

Cbmc 2864 -162 554 268 499 30 1256 3365
CPA-BAM-BnB 602
CPA-Seq 4396 355 996 483 1720 746 2772 9219
CPA-Lockator -387
Dartagnan 173
Divine -76 71 550 0 0 -12 585 1151
Esbmc 3481 334 325 264 777 500 1639 5567
Gacal

Lazy-CSeq 1279
Map2Check -68 -89
PeSCo 4376 1590 8023
Pinaka 2585 243 590
PredatorHP 611
Symbiotic 2753 516 0 294 1022 954 1828 5985
UAutomizer 2696 354 296 466 2942 591 893 8178
UKojak 1702 231 0 387 0 501 1148 3710
UTaipan 2185 316 289 461 0 482 805 5057
VeriAbs 5543 0 0 0 0 244 273 2656
VeriFuzz 1206 146
Yogar-Cbmc 1275
Coastal 472
Java-Ranger 549
JayHorn 278
JBmc 527
JDart 524
SPF 410

358 D. Beyer



Table 8: Overview of the top-three verifiers for each category (measurement values for
CPU time and energy rounded to two significant digits)

Rank Verifier Score CPU CPU Solved Unconf. False Wrong
Time Energy Tasks Tasks Alarms Proofs
(in h) (in kWh)

ReachSafety
1 VeriAbs 5543 150 1.6 3 412 171
2 CPA-Seq 4396 72 .75 2 700 54 8
3 PeSCo 4376 39 .38 2 518 36 4

MemSafety
1 PredatorHP 611 .78 .010 392 15
2 Symbiotic 516 .51 .010 358 6
3 CPA-Seq 355 .76 .010 264 1

ConcurrencySafety
1 Lazy-CSeq 1279 6.7 .090 1 023 44
2 Yogar-Cbmc 1275 .39 .000 1 024 33
3 CPA-Seq 996 12 .11 830 102

NoOverflows
1 CPA-Seq 483 .93 .010 321 8
2 UAutomizer 466 1.4 .010 326 0
3 UTaipan 461 1.5 .010 323 0

Termination
1 UAutomizer 2942 15 .16 1 606 7
2 CPA-Seq 1720 16 .17 1 247 7
3 2ls 1264 3.2 .030 955 361 3

SoftwareSystems
1 Symbiotic 954 .25 .000 676 36 3 1
2 CPA-Seq 746 21 .24 1 381 363 1
3 CPA-BAM-BnB 602 8.0 .070 1 411 582 3 4

FalsificationOverall
1 CPA-Seq 2772 45 .45 2 240 139 9
2 Symbiotic 1828 27 .35 1 461 10 3
3 Esbmc 1639 14 .18 1 819 385 16

Overall
1 CPA-Seq 9219 120 1.3 6 743 535 9
2 UAutomizer 8178 83 .84 5 523 693 71 2
3 PeSCo 8023 120 1.2 6 402 242 32

JavaOverall
1 Java-Ranger 549 1.3 .010 376
2 JBmc 527 .18 .000 376
3 JDart 524 .26 .000 374
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Fig. 5: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [9].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

Alternative Rankings. The community suggested to report a couple of al-
ternative rankings that honor different aspects of the verification process as
complement to the official SV-COMP ranking. Table 9 is similar to Table 8, but
contains the alternative ranking categories Correct and Green Verifiers. Column
‘Quality’ gives the score in score points, column ‘CPU Time’ the CPU usage of
successful runs in hours, column ‘CPU Energy’ the CPU usage of successful runs
in kWh, column ‘Solved Tasks’ the number of correct results, column ‘Wrong
Results’ the sum of false alarms and wrong proofs in number of errors, and
column ‘Rank Measure’ gives the measure to determine the alternative rank.

Correct Verifiers — Low Failure Rate. The right-most columns of Table 8 report
that the verifiers achieve a high degree of correctness (all top three verifiers in the C
track have less than 2% wrong results). The winners of category Java-Overall pro-
duced not a single wrong answer. The first category in Table 9 uses a failure rate as
rank measure: number of incorrect results

total score , the number of errors per score point (E/sp).
We use E as unit for number of incorrect results and sp as unit for total score. It
is remarkable to see that the worst result was 0.38E/sp in SV-COMP 2019 and
is now improved to 0.032E/sp, with is an order of magnitude better.

Green Verifiers — Low Energy Consumption. Since a large part of the cost
of verification is given by the energy consumption, it might be important to
also consider the energy efficiency. The second category in Table 9 uses the
energy consumption per score point as rank measure: total CPU energy

total score , with the
unit J/sp. It is interesting to see that the worst result from SV-COMP 2019
was 4 200 J/sp, and now it is improved to 2 200 J/sp.
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Table 9: Alternative rankings; quality is given in score points (sp), CPU time in
hours (h), energy in kilojoule (kJ), wrong results in errors (E), rank measures in
errors per score point (E/sp), joule per score point (J/sp), and score points (sp)

Rank Verifier Quality CPU CPU Solved Wrong Rank
Time Energy Tasks Results Measure

(sp) (h) (kWh) (E)

Correct Verifiers (E/sp)
1 CPA-Seq 9 219 120 1.3 6 743 9 .0010
2 UKojak 3 710 48 0.49 2 405 4 .0011
3 2ls 4 924 27 0.24 3 044 8 .0016
worst .032

Green Verifiers (J/sp)
1 Cbmc 3 365 15 0.16 3 217 67 170
2 2ls 4 924 27 0.24 3 044 8 180
3 Esbmc 5 567 35 0.41 5 520 51 270
worst 2 200

Table 10: Confirmation rate of verification witnesses in SV-COMP 2020

Result True False

Total Confirmed Unconf. Total Confirmed Unconf.

2ls 2 060 2 049 99% 11 1 449 995 69% 454
Cbmc 1 949 1 821 93% 128 2 095 1 396 67% 699
CPA-Seq 4 347 3 958 91% 389 2 931 2 785 95% 146
Divine 811 793 98% 18 1 099 672 61% 427
Esbmc 3 779 3 701 98% 78 2 204 1 819 83% 385
PeSCo 3 777 3 704 98% 73 2 867 2 698 94% 169
Symbiotic 2 196 2 146 98% 50 1 996 1 879 94% 117
UAutomizer 4 135 4 029 97% 106 2 081 1 494 72% 587
UKojak 1 811 1 801 99% 10 606 604 100% 2
UTaipan 2 496 2 438 98% 58 1 308 730 56% 578
VeriAbs 3 908 3 387 87% 521 1 536 1 332 87% 204

Verifiable Witnesses. All SV-COMP verifiers are required to justify the result
(True or False) by producing a verification witness (except for those categories
for which no witness validator is available). We used six independently developed
witness-based result validators [19, 20, 21, 25, 66].

The majority of witnesses that the verifiers produced can be confirmed
by the results-validation process. Interestingly, the confirmation rate for the
True results is significantly higher than for the False results. Table 10 shows
the confirmed versus unconfirmed results: the first column lists the verifiers
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of category C-Overall, the three columns for result True reports the total,
confirmed, and unconfirmed number of verification tasks for which the verifier
answered with True, respectively, and the three columns for result False
reports the total, confirmed, and unconfirmed number of verification tasks for
which the verifier answered with False, respectively. More information (for all
verifiers) is given in the detailed tables on the competition web site 16 and in
the results artifact; all verification witnesses are also contained in the witnesses
artifact (see Table 4). Result validation is an important topic also in other
competitions (e.g., in the SAT competition [5, 69]).

5 Conclusion

SV-COMP 2020, the 9th edition of the Competition on Software Verification,
attracted 28 participating teams from 11 countries (see Fig. 6 for the participation
numbers). SV-COMP continues to offer a broad overview of the state of the art
in automatic software verification. The competition does not only execute the
verifiers and collect results, but also validates the verification results, using six
independently developed results validators. The number of verification tasks was
increased to 11 052 in C and to 416 in Java. As before, the large jury and the
organizer made sure that the competition follows the high quality standards of
the TACAS conference, in particular with respect to the important principles
of fairness, community support, and transparency.

Data Availability Statement. The verification tasks and results of the com-
petition are published at Zenodo, as described in Table 4. All components
and data that are necessary for reproducing the competition are available in
public version repositories, as specified in Fig. 4 and Table 3. Furthermore,
the results are presented online on the competition web site for easy access:
https://sv-comp.sosy-lab.org/2020/results/.
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