
TACAS
Evaluation
Artifact

2020
Accepted

Software Verification with PDR:
An Implementation of the State of the Art

Dirk Beyer1 and Matthias Dangl1

LMU Munich, Germany

Abstract. Property-directed reachability (PDR) is a SAT/SMT-based
reachability algorithm that incrementally constructs inductive invariants.
After it was successfully applied to hardware model checking, several
adaptations to software model checking have been proposed. We con-
tribute a replicable and thorough comparative evaluation of the state
of the art: We (1) implemented a standalone PDR algorithm and, as
improvement, a PDR-based auxiliary-invariant generator for k -induction,
and (2) performed an experimental study on the largest publicly available
benchmark set of C verification tasks, in which we explore the effectiveness
and efficiency of software verification with PDR. The main contribution
of our work is to establish a reproducible baseline for ongoing research in
the area by providing a well-engineered reference implementation and an
experimental evaluation of the existing techniques.

Keywords: Software verification · Program analysis · Invariant genera-
tion · Property-directed reachability (PDR) · IC3 · k -Induction· VVT ·
CPAchecker

1 Introduction

Automatic software verification [24] is a broad research area with many success
stories and large impact on technology that is applied in industry [2, 14, 27].
It complements other general approaches to ensure functional correctness, like
software testing [31] and interactive software verification [3]. One large sub-area
of automatic software verification includes algorithms and approaches that are
based on SMT technology. Classic approaches like bounded model checking [10],
predicate abstraction [1, 19], and k -induction [5, 26, 32] are well understood and
evaluated; a recent survey [6] provides a uniform overview and sheds light on
the differences of the algorithms. Property-directed reachability (PDR) [12] is a
relatively recent (2011) approach that is not yet included in comparative evalua-
tions that go beyond applying different implementations of the same or different
techniques to a set of benchmark tasks, but additionally pair such experiments
with a discussion of how the concepts can be expressed in a common formalism.
The approach was originally applied to transition systems from hardware designs,
but was also adapted to software verification [11, 12, 13, 15, 16, 25, 28, 29].

An extended version of this article is available as technical report [8].
A replication package is available on Zenodo [9].

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-45190-5_1

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7333-6734
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_1&domain=pdf


While in theory, given the aforementioned body of work on the topic, the
advantages and disadvantages of using PDR seem clear, we are interested in
understanding the effect of applying PDR to a large set of verification tasks
that were collected from academia and also from industrial software, such as
the Linux kernel. To achieve this goal, we implemented one PDR adaptation for
software verification, and another approach that integrates a PDR-like invariant-
generation module into a k -induction approach.
PDR Adaptation for Software Verification. PDR is a model-checking algorithm
that tries to construct an inductive safety invariant by incrementally learning
clauses that are inductive relative to previously learned clauses. The clause-
learning strategy is guided by counterexamples to induction, i.e., each time a
proof of inductiveness fails, the algorithm attempts to learn a new clause to avoid
the same counterexample to induction in the future. Originally, this algorithm
was designed as a SAT-based technique for Boolean finite-state systems. Every
adaptation of PDR to software verification therefore needs to consider how to
effectively and efficiently handle the infinite state space and how to transfer
the algorithm from SAT to SMT. Furthermore, the adaptation to software has
to deal with the program counter.
PDR-like Invariant Generation. Whenever an induction-proof attempt fails with
a counterexample, the counterexample describes a state s that can transition
into a bad state (that violates the safety property), which means that in order to
make the proof succeed, s must be removed from consideration by an auxiliary
invariant. From this bad-state predecessor s, the clause-learning strategy of
PDR proceeds to generate such an auxiliary invariant by applying the following
two steps: (1) s is first generalized to a set of states C that all transition into
a bad state; (2) an invariant is constructed that is (a) inductive relative to
previously found invariants1 and (b) at least strong enough to eliminate all
states in C. If it fails to construct such an invariant and prove its inductiveness,
then the steps are recursively re-applied to the counterexample obtained from
the failed induction attempt.

We experimentally investigate two implementations of adaptations of PDR
to software verification (CPAchecker-CTIGAR and Vvt-CTIGAR), as well as
several combinations that use the PDR-like invariant-generation module that
we designed and implemented for this study.
Example. Figure 1 shows an example C program (eq2.c) that contains four
unsigned integer variables w, x, y, and z. In line 10, the variable w is initialized to
an unknown value via the input function __VERIFIER_nondet_uint(); then, its
value is copied to x in line 11. In line 12, variable y is initialized with the value
of w + 1, and in line 13, variable z is initialized with the value of x + 1, such
1 An assertion F is said to be inductive relative to an invariant Inv if
Inv can be used as an auxiliary invariant for the proof of inductive-
ness ∀sj , sj+1 : F (sj) ∧ T (sj , sj+1) ⇒ F (sj+1) by conjoining Inv to the
induction hypothesis F (sj), such that the modified induction query
∀sj , sj+1 : F (sj)∧ Inv(sj) ∧ T (sj , sj+1) ⇒ F (sj+1) allows a proof by induction to
succeed. [12]

4 D. Beyer and M. Dangl

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c


1 extern void __VERIFIER_error() __attribute__
↪→ ((__noreturn__));

2 extern unsigned int __VERIFIER_nondet_uint(void);
3 void __VERIFIER_assert(int cond) {
4 if (!(cond)) {
5 ERROR: __VERIFIER_error();
6 }
7 return;
8 }
9 int main(void) {

10 unsigned int w = __VERIFIER_nondet_uint();
11 unsigned int x = w;
12 unsigned int y = w + 1;
13 unsigned int z = x + 1;
14 while (__VERIFIER_nondet_uint()) {
15 y++;
16 z++;
17 }
18 __VERIFIER_assert(y == z);
19 return 0;
20 }

Fig. 1: Example C program eq2.c

that at this point, w and x are equal to each other, and y and z are also equal to
each other. Then, from line 14 to line 17, a loop with a nondeterministic exit
condition (and therefore an unknown number of iterations) increments in each
iteration both variables y and z. Lastly, line 18 asserts that after the loop, y and z

are (still) equal to each other. Since y and z are equal before the loop, and are
always incremented together within the loop, the invariant y = z is inductive.
However, since there is no direct connection between y and z but only an indirect
one via their shared dependency on w, naïve data-flow-based techniques may fail
to find this invariant. In fact, we tried several configurations of the verification
framework CPAchecker, and found that many of them fail to prove this program:

• Plain k -induction without auxiliary-invariant generation fails, because it
never checks if y = z is a loop invariant and instead only checks the reach-
ability of the assertion failure (located after loop). The reachability of the
assertion failure, in turn, depends on the nondeterministic loop-exit condition.
Therefore we cannot conclude from “the assertion failure was not reached in
k previous iterations” that “the assertion failure cannot be reached in the
next iteration”: In the absence of auxiliary invariants, a valid counterexample
to this induction hypothesis would always be that in the previous iterations
the assertion condition was in fact violated and an assertion failure was not
reached only because the loop was not exited.

• A data-flow analysis based on the abstract domain of Boxes [21] fails, because
it is not able to track variable equalities.

• A data-flow analysis based on a template Eq for tracking the equality of pairs
of variables fails, because while it detects the invariant w = x, it is unable to

Software Verification with PDR: An Implementation of the State of the Art 5

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c


make the step to y = z due to the inequalities between w and y, and x and z,
respectively.

• For consistency with our evaluation, we also applied a data-flow analysis
based on a template for tracking whether a variable is even or odd; obviously
this is not useful for this program, and thus, this configuration also fails.

• Even combining the previous three techniques into a compound invariant
generator that computes auxiliary invariants for k -induction does not yield a
successful configuration for this verification task.

• The invariant generator KIPDR (the above-mentioned adaptation of PDR to
k -induction, which we present in more detail in Sect. 3), however, detects the
invariant y = z and is therefore able to construct a proof by induction for
this verification task.

We will now briefly sketch how KIPDR detects the invariant y = z for the
example verification task. At first, KIPDR attempts to prove by induction that
when line 18 is reached, the assertion condition holds, which fails as discussed
previously. However, this failed induction attempt yields a counterexample to
induction where the values of y and z differ from each other, e.g., y = 0 ∧ z = 1,
which is then generalized to y �= z, i.e., a set of states that includes the concrete
predecessor of a bad state from the counterexample, as well as many other states
that would violate the assertion, if they were reachable themselves. Then, KIPDR
attempts to find an inductive invariant that eliminates all of these states, and
the attempt succeeds with the invariant y = z. Afterwards, KIPDR re-attempts
its original induction proof to show that the assertion is never violated, which
now succeeds due to the auxiliary invariant y = z.
Contributions. We present the following contributions:

• We implement one adaptation of PDR to software verification (based
on [11, 20]) in the open-source verification framework CPAchecker, in order
to establish a baseline for comparison with new ideas for improvement.

• We design and implement the algorithm KIPDR, as a new module for
invariant generation that is based on ideas from PDR and use this module
as an extension to a state-of-the-art approach to k -induction [5].

• We conduct a large experimental study to compare several tools and ap-
proaches to software verification using PDR as a component, to highlight
strengths and weaknesses of PDR in the domain of software verification.

• We contribute a set of small examples that need invariants that are more
difficult to obtain for standard data-flow-based approaches than the invariants
necessary for programs in the large benchmark set.

Related Work. While PDR (also known as IC3 for its first implementation [12])
was introduced as a SAT-based algorithm for model checking finite-state Boolean
transition systems [13], several approaches have since then been presented to
extend it to SMT and to apply it to the verification of software models: PDR
has been suggested as an interpolation engine for Impact, but experiments have
shown that it is too expensive in the general case, and is most effective if only

6 D. Beyer and M. Dangl



applied as a fall-back engine for cases where a cheaper interpolation engine fails
to produce useful interpolants [15]. It also has been proposed to improve this
approach by tracking control-flow locations explicitly instead of symbolically [28],
thereby avoiding the problem that many iterations of the algorithm are spent
only to learn the control flow, and this idea has later been extended by several
improvements to the generalization step of PDR [29]. Another approach is to
model the program using a Boolean abstraction, which has the advantage that it
requires only few changes to the original algorithm, but the disadvantage that a
refinement procedure is necessary to handle the spurious paths introduced by the
abstraction: One such approach uses infeasible error paths (i.e., counterexample-
guided abstraction refinement (CEGAR) [17]) to refine the abstraction [16],
while another (CTIGAR) uses counterexamples to induction [11]; both of these
refinement techniques use interpolation to obtain abstraction predicates; the
latter of the two techniques is used in two of the configurations we compare
in our evaluation (CPAchecker-CTIGAR and Vvt-CTIGAR [20]). A different
extension of PDR to verify infinite-state systems that does not require abstraction
refinement is property-directed k -induction [25], which increases the power of the
induction checks used in PDR by applying k-induction instead of 1-induction, and
which uses model-based generalization in addition to interpolation to reason about
potentially-infinite sets of states. Unfortunately, support for effective model-based
generalization is rare in SMT solvers 2, making this approach impractical. In
contrast, our KIPDR algorithm presented in Sect. 3 only requires support for
interpolation, which is available in several SMT solvers.

Despite this multitude of adaptations of PDR to infinite-state systems, most
implementations in practice require their input to be encoded as transition systems.
The only available software verifiers applicable to actual C programs and imple-
ment PDR-based techniques are CPAchecker [7], SeaHorn [23], and Vvt [20].

2 Background

In this section, we briefly introduce the algorithms PDR and k -induction, which
provide the core concepts on which we base our ideas. In the following description
of PDR and k -induction, we use the following notation: given the state variables s
and s′ within a state-transition system T that represents the program, predicate
I(s) denotes that s is an initial state, T (s, s′) that a transition from s to s′ exists,
and P (s) that the safety property P holds for state s.

2.1 PDR

PDR maintains a list of k frames, where a frame Fi is a predicate that represents
an overapproximation of all states reachable within at most 0 ≤ i ≤ k steps, and
a queue of proof obligations, which guide invariant discovery towards invariants

2 The implementation of the approach of property-directed k -induction combines two
SMT solvers, because neither of them supports all features required by the technique.

Software Verification with PDR: An Implementation of the State of the Art 7



relevant to prove the correctness of a safety property P . For a given state s, the
notation Fi(s) means that the predicate Fi holds for state s. The index i of a
frame Fi is called its level, and the frame Fk is called the frontier, because it
represents the largest overapproximation of reachable states computed by the
algorithm [12]. The algorithm maintains the following invariants:

1. F0(s) = I(s), i.e., the first frame represents precisely the initial states.
2. ∀i ∈ {0, . . . , k} : Fi(s) ⇒ P (s), i.e., every frame contains only states that

satisfy the safety property.
3. ∀i ∈ {0, . . . , k−1} : Fi(s) ⇒ Fi+1(s), i.e., a frame Fi+1 represents in addition

such states that are reachable with i+ 1 steps.
4. ∀i ∈ {0, . . . , k − 1} : Fi(s) ∧ T (s, s′) ⇒ Fi+1(s

′), i.e., each frame is inductive
relative to its predecessor.

Using these data structures and algorithm invariants, the algorithm attempts to
find either a counterexample to P or a 1-inductive invariant Fi such that Fi(s) ⇔
Fi+1(s) for some level i ∈ {0, . . . , k− 1}. Until either of these potential outcomes
is reached, PDR shifts back and forth between the following two phases:

1. If the set of states represented by the frontier Fk does not contain any pre-
decessor states of ¬P -states (i.e., ∀sj , sj+1 : Fk(sj) ∧ T (sj , sj+1) ⇒ P (sj+1),
called frontier-incrementation check), a new frontier Fk+1 is created and
initialized to P . Subsequently, the algorithm attempts to push forward 3 each
predicate c of each frame Fi with 0 ≤ i ≤ k for which the consecution check
Fi(sj) ∧ T (sj , sj+1) ⇒ c(sj+1) holds (see Fig. 2a). If, on the other hand, the
frontier-incrementation check fails, PDR extracts a ¬P -predecessor t in Fk,
which represents a counterexample to induction (CTI), from the failed query
as proof obligation 〈t, k − 1〉 (see Fig. 2b, top).

2. While the queue of proof obligations is not empty, PDR processes the queue
by trying to prove for each proof obligation 〈t, i〉 that the CTI-state t is itself
not reachable from Fi and therefore does not need to be considered as a
relevant ¬P -predecessor. For this proof, PDR chooses some predicate c ⇒ ¬t
with ∀s : Fi(s) ⇒ c(s). PDR then checks if c is inductive relative to Fi by
performing the consecution check Fi(sj) ∧ c(sj) ∧ T (sj , sj+1) ⇒ c(sj+1). If
the consecution check succeeds, the frames F1, . . . , Fi+1 can be strengthened
by adding c, thus ruling out the CTI t in these frames for the future (see
Fig. 2b, left). Also, unless i = k, we add a new proof obligation 〈t, i+ 1〉 to
the queue as an optimization to initiate forward propagation, because we
expect that the CTI-state s would otherwise be rediscovered later at a higher
level [11]. Otherwise, i.e., the consecution check does not succeed for clause c,
the algorithm extracts a predecessor u of t from the failed consecution check,
which is added as a new proof obligation 〈u, i − 1〉 if i > 0 and t ∧ I is
unsatisfiable (see Fig. 2b, right). Otherwise, u represents the initial state of
a real counterexample to P .

An example of this algorithm is presented in a technical report [8, pp. 7–8]. A
more detailed presentation of PDR can be found in the literature [12].
3 By “push forward”, we mean to add a predicate c from frame Fi to frame Fi+1 [12].

8 D. Beyer and M. Dangl



Fi
c1 c2

c3

c4

c5
T⇒ c4

Fi+1

∧ c4

T⇒

(a) Consecution check makes sure
to only conjoin to frame Fi+1

such ci from Fi that are induc-
tive relative to Fi w.r.t. transition
relation T

Fk P

t

⇓
〈t, k − 1〉

Fk−1 Fk P

t

¬cc

Fk−1 Fk P

u t

⇓
〈u, k − 2〉

or

(b) If phase 1 results in a proof obligation 〈t, k − 1〉
(top), then phase 2 resolves either by strengthening
Fk with c (left), or by creating a new (backwards)
proof obligation 〈u, k−2〉 (right); if the chain of proof
obligations propagates back to the initial states, then
a feasible error path is found

Fig. 2: Visualization of (a) the consecution check and (b) the handling of proof-
obligations.

2.2 k-Induction

Like PDR, k -induction attempts to prove a safety property P by applying
induction. However, while PDR strengthens its induction hypothesis by using
clauses extracted from specific counterexamples to induction after failed induction
attempts, k -induction strengthens its induction hypothesis by increasing the
length of the unrolling of the transition relation.

Starting with an initial value for the bound k (usually 1), the k -induction
algorithm increases the value of k iteratively after each unsuccessful attempt at
finding a specification violation (base case), proving correctness via complete
loop unrolling (forward condition), or inductively proving correctness of the
program (inductive-step case).

Base Case. The base case of k -induction consists of running BMC with the
current bound k. 4 This means that starting from all initial program states, all
4 We define the loop bound as the number of visits of the loop head, that is, with loop

bound k = 1, the loop head is visited once, but there was not yet any unwinding
of the loop body. This nicely matches the intuition for k-induction: 1-inductiveness
means that if the invariant holds for one state (without loop unrolling), then it holds
again after one loop unrolling in the successor state; k-inductiveness means that if
the invariant holds for k states (k − 1 loop unrollings), then it holds again after one
more loop unrolling in the successor state.

Software Verification with PDR: An Implementation of the State of the Art 9



states of the program reachable within at most k− 1 unwindings of the transition
relation are explored. If a ¬P -state is found, the algorithm terminates.

Forward Condition. If no ¬P -state is found by the BMC in the base case, the
algorithm continues by performing the forward-condition check, which attempts
to prove that BMC fully explored the state space of the program by checking
that no state with distance k′ > k − 1 to the initial state is reachable. If this
check is successful, the algorithm terminates.

Inductive-Step Case. The forward-condition check, however, can only prove
safety for programs with finite (and, in practice, short) loops. To prove safety
beyond the bound k, the algorithm applies induction: The inductive-step case
attempts to prove that after every sequence of k unrollings of the transition
relation that did not reach a ¬P -state, there can also be no subsequent transition
into a ¬P -state by unwinding the transition relation once more. In the realm
of model checking of software, however, the safety property P is often not
directly k-inductive for any value of k, thus causing the inductive-step-case check
to fail. It is therefore state-of-the-art practice to add auxiliary invariants to
this check to further strengthen the induction hypothesis and make it more
likely to succeed. Thus, the inductive-step case proves a program safe if the
following condition is unsatisfiable:

Inv(sn) ∧
n+k−1∧
i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

where Inv is an auxiliary invariant, and sn, . . . , sn+k is any sequence of states. If
this check fails, the induction attempt is inconclusive, and the program is neither
proved safe nor unsafe yet with the current value of k and the given auxiliary
invariant. In this case, the algorithm increases the value of k and starts over.

A detailed presentation of k -induction can be found in the literature [5, 6].

3 Combining k-Induction with PDR

Algorithm 1 shows an extension of k -induction with continuously-refined
invariants [5] that applies PDR’s aspect of learning from counterexamples to
induction and that can be applied both as a main proof engine as well as an invari-
ant generator. This allows us to apply this extension of k -induction as an invariant
generator to a main k -induction procedure, similar to the KI ���←−KI approach [5].

Inputs. The algorithm takes the following inputs: The value kinit is used to
initialize the unrolling bound k, whereas the function inc is used to increase k
in line 33 after each major iteration of the algorithm, up to an upper limit
of k defined by the value kmax enforced in line 3. The set of initial program
states is described by the predicate I, the possible state transitions are described

10 D. Beyer and M. Dangl



Algorithm 1 Iterative-Deepening k -Induction with Property Direction
Input: the initial value kinit ≥ 1 for the bound k,

an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T ,
a safety property P ,
a function get_currently_known_invariant to obtain auxiliary invariants,
a Boolean pd that enables or disables property direction,
a function lift : N× (S → B)× (S → B)× S → (S → B), and
a function strengthen : N× (S → B)× (S → B) → (S → B),
where S is the set of program states.

Output: true if P holds, false otherwise
Variables: the current bound k := kinit,

the invariant InternalInv := true computed by this algorithm internally, and
the set O := {} of current proof obligations.

1: while k ≤ kmax do
2: Oprev := O
3: O := {}
4: base_case := I(s0) ∧

k−1∨

n=0

(
n−1∧

i=0

T (si, si+1) ∧ ¬P (sn)

)

5: if sat(base_case) then
6: return false

7: forward_condition := I(s0) ∧
k−1∧

i=0

T (si, si+1)

8: if ¬ sat(forward_condition) then
9: return true

10: if pd then
11: for each o ∈ Oprev do

12: base_caseo := I(s0) ∧
k−1∨

n=0

(
n−1∧

i=0

T (si, si+1) ∧ ¬o(sn)
)

13: if sat(base_caseo) then
14: return false
15: else

16: step_caseon :=

n+k−1∧

i=n

(o(si) ∧ T (si, si+1)) ∧ ¬o(sn+k)

17: ExternalInv := get_currently_known_invariant()
18: Inv := InternalInv ∧ ExternalInv
19: if sat(Inv(sn) ∧ step_caseon) then
20: so := satisfying predecessor state
21: O := O ∪ {¬lift(k, Inv , o, so)}
22: else
23: InternalInv := InternalInv ∧ strengthen(k, Inv , o)

24: step_casen :=

n+k−1∧

i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

25: ExternalInv := get_currently_known_invariant()
26: Inv := InternalInv ∧ ExternalInv
27: if sat(Inv(sn) ∧ step_casen) then
28: if pd then
29: s := satisfying predecessor state
30: O := O ∪ {¬lift(k, Inv , P, s)}
31: else
32: return true
33: k := inc(k)
34: return unknown

Software Verification with PDR: An Implementation of the State of the Art 11



by the transition relation T , and the set of safe states is described by the
safety property P . The accessor get_currently_known_invariant is used to
obtain the strongest invariant currently available via a concurrently running
(external) auxiliary-invariant generator. A Boolean flag pd (reminding of
“property-directed”) is used to control whether or not failed induction checks
are used to guide the algorithm towards a sufficient strengthening of the safety
property P to prove correctness; if pd is set to false, the algorithm behaves
exactly like standard k -induction. Given a failed attempt to prove some candidate
invariant Q 5 by induction, the function lift is used to obtain from a concrete
counterexample-to-induction (CTI) state a set of CTI states described by a
state predicate C. An implementation of the function lift needs to satisfy the
condition that for a CTI s ∈ S where S is the set of program states, k ∈ N,
Inv ∈ (S → B), Q ∈ (S → B), and C = lift(k, Inv , Q, s), the following holds:

C(s)∧
(
∀sn ∈ S : C(sn) ⇒ Inv(sn)∧

n+k−1∧
i=n

(Q(si)∧T (si,si+1))⇒¬Q(sn+k)

)
,

which means that the CTI s must be an element of the set of states described by
the resulting predicate C and that all states in this set must be CTIs, i.e., they
need to be k-predecessors of ¬Q-states, or in other words, each state in the set of
states described by the predicate C must reach some ¬Q-state via k unrollings of
the transition relation T . We can implement lift using Craig interpolation [18, 30]

between A : s = sn and B : Inv(sn) ∧
n+k−1∧
i=n

(Q(si) ∧ T (si, si+1)) ⇒ ¬Q(sn+k),

because s is a CTI, and therefore we know that A ⇒ B holds. 6 Hence, the result-
ing interpolant satisfies the criteria for C to be a valid lifting of s according to the
requirements towards the function lift as outlined above. The function strengthen
is used to obtain for a k-inductive invariant a stronger k-inductive invariant, i.e.,
its result needs to imply the input invariant, and, just like the input invariant, it
must not be violated within k loop iterations and must be k-inductive.

Algorithm. Lines 4 to 6 show the base-case check (BMC) and lines 7 to 9
show the forward-condition check, both as described in Sect. 2. If pd is set
to true, lines 10 to 23 attempt to prove each proof obligation using k -induction:
Lines 12 to 14 check the base case for a proof obligation o. If any violations
of the proof obligation o are found, this means that a predecessor state of
a ¬P -state, and thus, transitively, a ¬P -state, is reachable, so we return false. If,
otherwise, no violation was found, lines 16 to 23 check the inductive-step case
to prove o. 7 We strengthen the induction hypothesis of the step-case check by

5 Depending on the step the algorithm is in, Q may be either the safety property P or
a proof obligation o.

6 The formula C is called Craig interpolant for two formulas A and B with A ⇒ B, if
A ⇒ C, C ⇒ B, and all variables in C occur in both A and B.

7 Note that we do not need to check the forward condition for proof obligations, because
the forward condition is unrelated to the safety property and the proof obligations,
and therefore only needs to be checked once in each major iteration (i.e., once after
each increment of k).

12 D. Beyer and M. Dangl



conjoining auxiliary invariants from an external invariant generator (via a call to
get_currently_known_invariant) and the auxiliary invariant computed internally
from proof obligations that we successfully proved previously. If the step-case
check for o is unsuccessful, we extract the resulting CTI state, lift it to a set of
CTI states, and construct a new proof obligation so that we can later attempt to
prove that these CTI states are unreachable. If, on the other hand, the step-case
check for o is successful, we no longer track o in the set O of unproven proof
obligations (this case corresponds to line 22). We could now directly use the
proof obligation as an invariant, but instead, in line 23 we first try to strengthen
it into a stronger invariant that removes even more unreachable states from
future consideration before conjoining it to our internally computed auxiliary
invariant. In our implementation, we implement strengthen by attempting to
drop components from a (disjunctive) invariant and checking if the remaining
clause is still inductive. In lines 24 to 32, we check the inductive-step case for
the safety property P . This check is mostly analogous to the inductive-step
case check for the proof obligations described above, except that if the check
is successful, we immediately return true.

Note that Alg. 1 eagerly increases k, even if the set O of proof obligations is not
empty. This heuristic prevents the PDR part from iterating through long chains
of proof obligations, it rather delegates the unrolling to the k-induction part.

An in-depth discussion of a practical example of Alg. 1 is presented in a
technical report [8, pp. 12–14].

4 Evaluation

In this section, we present an extensive experimental study on the effectiveness
and efficiency of adaptations of PDR to software verification.

4.1 Compared Approaches

We use the following abbreviations to distinguish between the different tech-
niques that we evaluated:
CTIGAR: CTIGAR [11] is an adaptation of PDR to software verification.

Our evaluation compares two implementations of CTIGAR, namely Vvt-
CTIGAR from the tool Vvt and our own implementation CPAchecker-
CTIGAR. Vvt [20] also provides a configuration that runs a parallel portfolio
combination of Vvt-CTIGAR and bounded model checking, which we call
Vvt-Portfolio.

KI: KI [5] denotes the plain k -induction algorithm without property direction
and without auxiliary invariants, i.e., we configure Alg. 1 such that pd = false
and get_currently_known_invariant() always returns true.

KIPDR: KIPDR denotes a configuration of Alg. 1 such that pd = true
and get_currently_known_invariant() always returns true, i.e., k -induction
with property direction but without additional auxiliary-invariant generation.
KIPDR is, like CTIGAR, an adaptation of PDR to software verification.

Software Verification with PDR: An Implementation of the State of the Art 13



KI ���←−DF: KI ���←−DF [5] denotes a parallel combination of k -induction (without
property direction) with a data-flow-based auxiliary-invariant generator that
continuously supplies the k -induction procedure with invariants. Here, we
configure Alg. 1 such that pd = false and get_currently_known_invariant()
always returns the most recent (strongest) invariant computed by the data-
flow-based auxiliary-invariant generator.

KI ���←−KIPDR: Similarly to KI ���←−DF, KI ���←−KIPDR denotes a parallel com-
bination of k -induction with an auxiliary-invariant generator — in this case,
KIPDR — that continuously supplies invariants to the k -induction proce-
dure. Here, we configure one instance of Alg. 1 such that pd = false and
get_currently_known_invariant() always returns the most recent (strongest) in-
variant computed by KIPDR (a second instance of Alg. 1 that is configured such
that pd = true and get_currently_known_invariant() always returns true).

KI ���←−DF;KIPDR KI ���←−DF;KIPDR denotes a parallel combination of
k -induction with an auxiliary-invariant generator that uses a sequential combi-
nation of a data-flow-based invariant generator and KIPDR to continuously
supply k -induction with auxiliary invariants. We configure one instance of Alg. 1
such that pd = false and get_currently_known_invariant() always returns the
most recent (strongest) invariant computed by a sequential combination of
the data-flow-based invariant generator and KIPDR (a second instance of
Alg. 1 that runs after the invariant generator finishes and is configured such
that pd = true and get_currently_known_invariant() always returns true).

We do not evaluate the used invariant generators as standalone approaches, as
they are designed specifically to be used as auxiliary components and do not per-
form well enough in isolation. For example, data-flow based invariant-generation
approaches are often too imprecise to verify tasks, whereas more precise techniques
like KIPDR might run into too many timeouts to be competitive. Instead, we
use the framework of k -induction with continuously refined invariant generation,
which has been shown to be able to combine quick and precise techniques [5].

4.2 Experimental Setup

Details about the experimental setup can be found in the technical report [8],
which describes in Sect. 4.2 which tool versions and SMT theory we used, in
Sect. 4.3 which benchmark sets we used and why, in Sect. 4.4 which existing
verifiers we compared to and which versions we took, in Sect. 4.5 which computing
resources and execution environment were used, in Sect. 4.6 the scoring schema,
and in Sect. 4.12 which threats to the validity of the evaluation we identified
and how we mitigated them.

4.3 Results

In the following, we pick a few highlights from the results of our experimental eval-
uation, in order to illustrate the potential of the approaches. A complete and more
detailed report of the results is available in the extended version of this article [8].

14 D. Beyer and M. Dangl



Table 1: Results for all 5 591 verification tasks, 1 457 of which contain bugs, while
the other 4 134 are considered to be safe, for the two CTIGAR implementations
CPAchecker-CTIGAR and Vvt-CTIGAR, for a theoretical “virtual best” com-
bination of both CTIGAR implementations where an oracle selects the best
implementation for each task, for k -induction without auxiliary invariants (KI),
and for the best configurations of each tool: CPAchecker’s KI ���←−DF;KIPDR,
SeaHorn, and Vvt as a portfolio verifier.

Verifier CTIGAR KI Best of each tool
CPAchecker Vvt KI ���←−DF;

KIPDR SeaHorn
Vvt -
Portfolio

Score 1 903 879 3 282 5 398 2 848 727
Correct results 1 087 739 2 075 3 095 3 468 839

Correct proofs 832 524 1 239 2 335 2 724 528
Correct alarms 255 215 836 760 744 311

Wrong proofs 0 5 0 0 46 9
Wrong alarms 1 14 2 2 117 22
Timeouts 3 982 110 2 764 2 006 1 476 524
Out of memory 23 28 315 243 231 22
Other inconclusive 498 4 695 435 245 253 4 175

Times for correct results
Total CPU Time (h) 9.0 3.2 30 54 29 5.7
Mean CPU Time (s) 30 16 52 63 31 25
Median CPU Time (s) 4.9 0.24 9.8 10 0.89 0.45

Suitability of CPAchecker for PDR. The first set of experiments showed
that our implementation is at least as good as (and even better than) the only
available implementation of PDR for software model checking. Columns two and
three of Table 1 compare the results obtained by running the two implementations
of CTIGAR on the whole benchmark set, and the last column of the table shows
the results achieved with the standard configuration of Vvt, which runs not only
CTIGAR, but a portfolio analysis of CTIGAR and bounded model checking. The
quantile plot in Fig. 3 shows the CPU times that the two tool configurations
spent on their correct results.

KIPDR versus Data-Flow Techniques. Data-flow-based techniques are usu-
ally more efficient than KIPDR. The higher efficiency of data-flow-based tech-
niques is most likely due to the simple form of the invariants needed to prove
the programs correct. In order to experiment with progams that have some more
interesting invariants, we created a few programs by hand and tried to verify
those. Table 2 shows the results we obtained for these tasks. Our experiments
support the hypothesis that KIPDR can be very strong and efficient on tasks
that other approaches can not solve. It is important to note that this is an ‘exists’
statement and can not be generalized, as shown by the results that KIPDR is
often outperformed by simpler, data-flow-based invariant-generation techniques.

Software Verification with PDR: An Implementation of the State of the Art 15



1

10

100

1 000

C
P

U
ti

m
e

(s
)

CPAchecker-CTIGAR
Vvt-CTIGAR

0 200 400 600 800 1 000 1 200
0

n-th fastest correct result (proof or alarm)

Fig. 3: Comparing two implementations of CTIGAR; quantile plot for accumulated
number of solved tasks (proofs and alarms) showing the CPU time (linear scale
below 1 s, logarithmic above) for the successful results of CPAchecker-CTIGAR
and Vvt-CTIGAR

Table 2: Results of four k -induction-based configurations in CPAchecker with
different approaches for generating auxiliary invariants for seven manually crafted
verification tasks that do not contain bugs and are not solved by k -induction
without auxiliary invariants; an entry “T” means that the CPU-time limit was
exceeded, an entry “M” means that the memory limit was exceeded, and all other
entries represent the CPU time a configuration spent to correctly solve the task

Task KI←DF KI ���←−KIPDR
Boxes Boxes,

Eq

Boxes,
Eq,
Mod2

const.c 3.3 s 3.3 s 3.2 s 3.8 s
eq1.c T 3.2 s 3.3 s 4.9 s
eq2.c M M M 3.9 s
even.c T T 3.5 s 3.9 s
odd.c T T 3.4 s 4.1 s
mod4.c T T T 3.6 s
bin-suffix-5.c M M M 3.6 s

Comparison with Non-PDR Approaches. The seven example programs 8

were added to the benchmark collection that was also used for SV-COMP 2019, and
thus, results are available for all verifiers that participated in the competition 9.
Table 3 summarizes the results of the best six verifiers in comparison with
the KI ���←−KIPDR approach that we created for the study in this paper. Those
verifiers are, in alphabetical order, Skink, Ultimate Automizer, Ultimate Kojak,

8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c/loop-invariants/
9 See the last seven rows in this table: https://sv-comp.sosy-lab.org/2019/results/

results-verified/ReachSafety-Loops.table.html

16 D. Beyer and M. Dangl

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/const_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq1_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/even_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/odd_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/mod4_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/bin-suffix-5_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c/loop-invariants/
https://sv-comp.sosy-lab.org/2019/results/results-verified/ReachSafety-Loops.table.html
https://sv-comp.sosy-lab.org/2019/results/results-verified/ReachSafety-Loops.table.html


Table 3: Results of SV-COMP 2019 for the six verifiers that performed best
on our seven manually crafted verification tasks, compared to the results of
KI ���←−KIPDR approach previously shown in Table 2; an entry “T” means that
the CPU-time limit was exceeded, an entry “M” means that the memory limit
was exceeded, an entry “O” means that the verifier gave up deliberately for other
reasons, and all other entries represent the CPU time a verifier configuration
spent to correctly solve the task; note that SV-COMP 2019 used Ubuntu 18.04
based on Linux 4.15, whereas our evaluation of KI ���←−KIPDR used Ubuntu 16.04
based on Linux 4.4; otherwise, the evaluation environment was the same

Task SV-COMP 2019 KI ���←−KIPDR
Skink UAutomizer UKojak UTaipan VeriAbs VIAP

const.c 4.2 s 8.7 s 9.1 s 8.2 s 13 s 110 s 3.8 s
eq1.c 290 s 7.8 s 7.6 s 8.3 s 14 s 57 s 4.9 s
eq2.c 4.1 s 8.1 s 8.6 s 7.6 s 14 s 4.7 s 3.9 s
even.c 3.7 s 7.4 s 8.2 s 8.6 s 140 s 4.5 s 3.9 s
odd.c O 9.6 s T 11 s 140 s 4.6 s 4.1 s
mod4.c 4.0 s 8.4 s 8.4 s 7.7 s 140 s 4.5 s 3.6 s
bin-suffix-5.c O 14 s T 13 s 13 s 4.7 s 3.6 s

Ultimate Taipan, VeriAbs, and VIAP. Fig. 4a directly compares the CPU times
spent on tasks of in the subcategory ReachSafety-Loops, which is known to contain
many tasks that require effort to be spent on generating loop invariants, by both
VeriAbs, which was the best verifier in that subcategory, and KI ���←−KIPDR.
We observe that for the majority of tasks that were solved by both verifiers,
KI ���←−KIPDR is faster than VeriAbs, often by more than an order of magnitude.
This shows that the invariant generator KIPDR can be significantly faster than
other approaches, depending on the benchmark set. As before, a more in-depth
discussion can be found in the technical report [8].

Comparison against PDR-Based Verification Tools. The last three
columns of Table 1 give an overview over the best configurations of three
software verifiers that use adaptations of PDR: For CPAchecker, we selected
KI ���←−DF;KIPDR. For SeaHorn, we used the same configuration as submit-
ted by the developers to the 2016 Competition on Software Verification (SV-
COMP 2016) [22]. For Vvt, we used the portfolio configuration. We observe that
SeaHorn achieves the highest number of correct proofs, but also has a significant
amount of incorrect proofs. CPAchecker is the slowest of the three tools and
finds fewer proofs than SeaHorn, but CPAchecker has no wrong proofs, and
also closely leads in the amount of found bugs. The score-based quantile plot
of these results displayed in Fig. 4b visualizes the effects of incorrect results on
the computed score. While the graph for SeaHorn is longer, i.e., shows that it
solved the most tasks, it is offset to the left by a total penalty of −3 344 points,
such that in the end, KI ���←−DF;KIPDR accumulates the highest score because
it has a smaller penalty of only −32 points.

Software Verification with PDR: An Implementation of the State of the Art 17



.01 .1 1 10 100 1 000
.01

.1

1

10

100

1 000

CPU time for VeriAbs (s)

C
P

U
ti

m
e

fo
r

K
I
�� �←−

K
IP

D
R

(s
)

(a) Scatter plot comparing the CPU
times spent on tasks by VeriAbs and
KI ���←−KIPDR

1

10

100

1 000

C
P

U
ti

m
e

(s
)

KI ���←−DF;KIPDR
SeaHorn

Vvt-Portfolio

−2 000 0 2 000 4 000
0

Accumulated score

(b) Quantile plot for accumulated score of
solved tasks (offset to the left by total penalty
from wrong results) showing the CPU time
(linear scale below 1 s, logarithmic above) for
the successful results of KI ���←−DF;KIPDR, Sea-

Horn, and Vvt-Portfolio
Fig. 4: Plots that support the claim that the conclusions of the evaluation are
relevant

These results confirm our hypothesis that our previous conclusions are relevant,
because they are supported by an implementation that is competitive when
compared to the best available PDR-based tool implementations.

5 Conclusion

Property-directed reachability (a.k.a. IC3) is a verification approach that is pop-
ular and successful in some fields of formal verification (e.g., hardware designs,
Horn clauses). Unfortunately, there is a large gap between this success story and
the applicability in practical software verification. We are closing this gap by
(a) providing a well-engineered implementation of one published adaptation of
PDR to software verification, (b) designing and implementing an invariant gener-
ator based on the ideas of PDR, and (c) providing an evaluation of all applicable
tools and approaches on the largest available benchmark set of C verification tasks.
This provides a good foundation as baseline for ongoing research in this area.

The results of our comparative evaluation extend the knowledge about PDR for
software verification in the following ways: (1) Our implementation outperforms
the existing implementation of PDR (Vvt) and is more precise than the other
software verifier that uses PDR (SeaHorn). Thus, our implementation can serve as
a reference implementation for further research on PDR for software verification.
(2) On most of the programs in the widely used sv-benchmarks collection of
verification tasks, other techniques are more effective (solve more problems)
and more efficient (solve the problems faster). (3) PDR can be an effective and
efficient technique for computing invariants that are difficult to obtain: there
are programs for which our PDR-based approach is more efficient than the best
invariant generator from SV-COMP in the subcategory ReachSafety-Loops.

18 D. Beyer and M. Dangl



5.1 Data Availability Statement

A replication package for this article including all evaluated implementations
and BenchExec is available at Zenodo [9]. Current versions of CPAchecker
are available at https://github.com/sosy-lab/cpachecker. The benchmark
set of SV-COMP 2018 used in Sect. 4 is available online at https://github.
com/sosy-lab/sv-benchmarks/releases/tag/svcomp18 and the dataset from
SV-COMP 2019 [4] that we analyzed is available at https://sv-comp.sosy-lab.
org/2019/results/results-verified/All-Raw.zip.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Proc. TACAS. pp. 268–283. LNCS 2031, Springer (2001).
https://doi.org/10.1007/3-540-45319-9_19

2. Ball, T., Rajamani, S.K.: The Slam project: Debugging system soft-
ware via static analysis. In: Proc. POPL. pp. 1–3. ACM (2002).
https://doi.org/10.1145/503272.503274

3. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art
and current trends. IEEE Intelligent Systems 29(1), 20–29 (2014).
https://doi.org/10.1109/MIS.2014.3

4. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

6. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifica-
tion. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

7. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

8. Beyer, D., Dangl, M.: Software verification with PDR: Implementation and empirical
evaluation of the state of the art (August 2019), http://arxiv.org/abs/1908.
06271

9. Beyer, D., Dangl, M.: Replication package for article ‘Software verification
with PDR: An implementation of the state of the art’. Zenodo (2020).
https://doi.org/10.5281/zenodo.3678766

10. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14

11. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Proc. CAV. pp. 831–848. LNCS 8559,
Springer (2014). https://doi.org/10.1007/978-3-319-08867-9_55

12. Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VMCAI. pp.
70–87. LNCS 6538, Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_7

13. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation.
Formal Asp. Comput. 20(4-5), 379–405 (2008). https://doi.org/10.1007/s00165-
008-0080-9

Software Verification with PDR: An Implementation of the State of the Art 19

https://github.com/sosy-lab/cpachecker
https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp18
https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp18
https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1145/503272.503274
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-642-22110-1_16
http://arxiv.org/abs/1908.06271
http://arxiv.org/abs/1908.06271
https://doi.org/10.5281/zenodo.3678766
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/s00165-008-0080-9


14. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

15. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proc. CAV. pp. 277–
293. LNCS 7358, Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_23

16. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant
checking with IC3 and predicate abstraction. FMSD 49(3), 190–218 (2016).
https://doi.org/10.1007/s10703-016-0257-4

17. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

18. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

19. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV.
pp. 72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10

20. Günther, H., Laarman, A., Weissenbacher, G.: Vienna Verification Tool: IC3 for par-
allel software (competition contribution). In: Proc. TACAS. pp. 954–957. LNCS 9636,
Springer (2016)

21. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: Proc.
SAS. pp. 287–303 (2010). https://doi.org/10.1007/978-3-642-15769-1_18

22. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C
programs (competition contribution). In: Proc. TACAS. pp. 447–450. LNCS 9035,
Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_41

23. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verifi-
cation framework. In: Proc. CAV. pp. 343–361. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_20

24. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

25. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Proc. FMCAD. pp.
85–92. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886665

26. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp. 55–62.
EPTCS 72 (2011). https://doi.org/10.4204/EPTCS.72

27. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

28. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow
automata. In: Proc. FMCAD. pp. 97–104 (2015)

29. Lange, T., Prinz, F., Neuhäußer, M.R., Noll, T., Katoen, J.: Improving generalization
in software IC3. In: Proc. SPIN’18. pp. 85–102. LNCS 10869, Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_5

30. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp.
1–13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

31. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley Publishing,
3rd edn. (2011)

32. Wahl, T.: The k-induction principle (2013), available at http://www.ccs.neu.edu/
home/wahl/Publications/k-induction.pdf

20 D. Beyer and M. Dangl

https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1145/876638.876643
https://doi.org/10.2307/2963593
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.4204/EPTCS.72
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-319-94111-0_5
https://doi.org/10.1007/978-3-540-45069-6_1
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf


Software Verification with PDR: An Implementation of the State of the Art 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Software Verification with PDR: An Implementation of the State of the Art
	1 Introduction
	2 Background
	2.1 PDR
	2.2 k-Induction

	3 Combining k-Induction with PDR
	4 Evaluation
	4.1 Compared Approaches
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	5.1 Data Availability Statement

	References




