
Available

Artifact

PJBDD:
A BDD Library for Java and Multi-Threading

Dirk Beyer, Karlheinz Friedberger, and Stephan Holzner

LMU Munich, Germany

Abstract. PJBDD is a flexible and modular Java library for binary
decision diagrams (BDD), which are a well-known data structure for
performing efficient operations on compressed sets and relations. BDDs
have practical applications in composing and analyzing boolean functions,
e.g., for computer-aided verification. Despite its importance, there are
only a few BDD libraries available. PJBDD is based on a slim object-
oriented design, supports multi-threaded execution of the BDD operations
(internal) as well as thread-safe access to the operations from applications
(external). It provides automatic reference counting and garbage collection.
The modular design of the library allows us to provide a uniform API
for binary decision diagrams, zero-suppressed decision diagrams, and also
chained decision diagrams. This paper includes a compact evaluation of
PJBDD, to demonstrate that concurrent operations on large BDDs scale
well and parallelize nicely on multi-core CPUs.

Keywords: BDD · Java Library · Concurrency · Multi-threaded Application

1 Introduction

Binary Decision Diagrams (BDDs) [1, 8] enabled a major break-through in apply-
ing model checking to large hardware models [9]. In our own previous work, we
applied BDDs to model checking of timed automata [2] and C programs [5]. Most
of the existing, state-of-the-art BDD libraries are not designed in thread-safe
manner (CuDD [15], BuDDy [10], and JDD [16]), do not support multi-threaded
execution of the BDD operations (BeeDeeDee [14]), or require effort to manually
update reference counters for BDD nodes (Sylvan [11]). Therefore, application
developers of, e. g., verification tools based on BDDs, have to implement code
for cleaning up unused nodes or cannot directly use multi-threaded verification
algorithms with BDDs in a thread-safe manner.

PJBDD contributes to closing this gap and offers a full-fledged BDD library
with support for convenient usage from Java applications. Table 1 lists the pro-
gramming and BDD features that we identified as important in our development
work on the verification framework CPAchecker, which uses BDDs as a central
data structure. For our work it is more important to have a convenient and
thread-safe development environment with an easy-to-read code basis, than to

https://doi.org/10.5281/zenodo.5070156
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7624-654X
https://github.com/ivmai/cudd
http://buddy.sourceforge.net/manual/main.html
https://bitbucket.org/vahidi/jdd/src
https://github.com/JuliaSoft/BeeDeeDee
https://github.com/trolando/sylvan


Table 1: Different BDD libraries and their features

last thread- parallel automatic dynamic further
main- safe operations reference variable supported
tained access counting reordering diagrams

BuDDy [10] 2014 - - 3 3 -
CuDD [15] (2016) - - - 3 ADD, ZBDD, CBDD
PJBDD 2021 3 3 3 - ZBDD, CBDD
JDD [16] 2019 - - - - ZBDD
Sylvan [11] 2020 (3) 3 - - ADD, LDD, TBDD
BeeDeeDee [14] 2018 3 - - - -

leverage the maximal possible performance. This makes the library easier to
maintain and extend for us and our students. PJBDD is also an interesting choice
for teaching. PJBDD is the only available BDD library (Table 1) that

• is actively maintained by the developers,
• ensures thread-safe concurrent calls from user applications in Java,
• supports multi-threaded execution of BDD operations,
• provides automatic reference counting, and
• supports zero-suppressed BDDs (ZBDD) and chained BDDs (CBDD).

Related Work. BDDs are practically relevant since the seminal paper by Bryant
in 1986 [7]. Several highly tuned BDD libraries became available since that time,
written in different programming languages. Well-known examples are the C/C++
libraries BuDDy [10], CuDD [15], and Sylvan [11], as well as the Java libraries
BeeDeeDee [14], and JDD [16].

The performance of a BDD library depends on several low-level design choices,
which makes it difficult for researchers to develop new design approaches in
existing highly optimized code. Furthermore, existing libraries often lack support
for multi-threaded algorithms, concurrent access, or automatic reference count-
ing. The Java-based implementation BeeDeeDee allows to perform thread-safe
parallel operations. The library Sylvan [11] achieved great speed-up in large-scale
scenarios with multi-threaded execution of BDD operations. However, due to a
bug in the Java wrapper, thread-safe access from Java is not possible (An issue
was reported at https://github.com/utwente-fmt/jsylvan/issues/3). While sev-
eral tools support automated garbage collection, BuDDy and PJBDD are the
only tools that support automated reference counting. The last date of official
maintenance of CuDD is unknown, because the official FTP server is offline (The
mirror at https://github.com/ivmai/cudd does not show activity since 2016.)

The implementation of ZBDDs is only available in the oldest (and thus most
advanced) implementations; and unfortunately missing in newer libraries like
BeeDeeDee and Sylvan. PJBDD closes this gap by providing all of the features
described above in a well-known platform-independent programming language.

http://buddy.sourceforge.net/manual/main.html
https://github.com/ivmai/cudd
https://bitbucket.org/vahidi/jdd/src
https://github.com/trolando/sylvan
https://github.com/JuliaSoft/BeeDeeDee
http://buddy.sourceforge.net/manual/main.html
https://github.com/ivmai/cudd
https://github.com/trolando/sylvan
https://github.com/JuliaSoft/BeeDeeDee
https://bitbucket.org/vahidi/jdd/src
https://github.com/JuliaSoft/BeeDeeDee
https://github.com/trolando/sylvan
https://github.com/utwente-fmt/jsylvan/issues/3
http://buddy.sourceforge.net/manual/main.html
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://github.com/JuliaSoft/BeeDeeDee
https://github.com/trolando/sylvan


2 Design and Implementation Details

This section gives a compact overview of PJBDD’s design and implementation.

Shared Graph Representation. In an application, there is not only one single
BDD, but there are multiple of them. For overall efficiency, it is required that
all common sub-graphs are shared in one central data structure, i.e., in a large
hash table. In our BDD library, this shared data structure, called UniqueTable, is
usable from multiple threads in concurrent manner, and we took care of minimal
synchronization overhead. Therefore, read and write accesses are implemented as
atomic compare-and-swap operations (CAS). Our hash tables use a prime-hashing
function, which is a common choice for BDD libraries.

Operations Cache. For efficient BDD manipulation, a cache for computed
operation results is necessary. Since the cache heavily reduces workload and
achieves huge speed up, we implemented one central caching instance which all
worker threads share. To enable thread-safe accesses we use atomic CAS accesses.

Concurrent BDD Operations. For concurrent operations, we use a fork-join
parallelism. The Shannon expansion in the BDD applies its operations such that
the two recursive calls run in parallel. We keep the implementation as simple as
possible and use the Java-native fork-join framework to avoid overthreading and
respect the execution order (the two recursive calls have to finish before returning).

Memory Management. Automatic memory management relieves the developer
from the error-prone and tedious job of manually allocating and deallocating
memory, which is one of the advantages of high-level programming languages
like Java. An automatic garbage collection clears all memory objects that are
no longer reachable from the user application. However, one problem remains
that is crucial for long-running applications: The application can leak memory if
the user forgets to remove object references in a central data structure. PJBDD
offers automated cleaning of unused nodes. We chose to use WeakReferences and
ReferenceQueues as provided by the JDK for fine-grained, but automatic and
efficient memory control.

3 Architecture of the Library

Our library is written in Java. In comparison to other BDD libraries, PJBDD
does not work with integer indices as internal BDD representations, but with
Java objects. This allows us to use the object-oriented approach, but at the price
of slightly heavier memory consumption. More implementation details and results
of preliminary experiments are available in the Master’s thesis by Holzner [13].

Design Criteria. Instead of developing another Java clone of an existing C li-
brary, we started from scratch and thoroughly considered the design criteria. Our
development of a new BDD library is motivated by several requirements that are
not addressed by existing BDD libraries.



Application

API

Operation

Data

CPAchecker n-Queens ...

BDDCreator ZBDDCreator

BDDAlgorithm CBDDAlgorithm ZBDDAlgorithm

UniqueTable OperationCache

PJBDD

Fig. 1: Overview of the components of PJBDD

First, we desire a simple to use API and an easy-to-read code basis, such
that future developers (including students) can experiment with and extend the
existing code without requiring expert knowledge about optimizations, such as
low-level bit-operations and reference counting. Of course, memory management
is important for a highly optimized library. However, memory management by
the user of a library is error prone and modern programming languages tend to
already include automatic garbage collection. We decided for the standard Java
garbage collector and do not provide an explicit way for the user to remove BDD
nodes from the cache. Second, to minimize development time and maintenance
costs, we used components from the Java standard API, such as the default
fork-join framework for efficient multi-threaded computations.

Overview. Our library offers two distinct APIs: one for working with BDDs
and one for ZBDDs. Due to their theoretical different nature, it is not possible to
directly combine those types of decision diagrams. The API for BDDs provides
typical boolean operations, such as conjunction, implication, or negation. Our
library supports to configure chaining [6] with the same interface. The API for
ZBDD has typical operations on ZBDDs, such as union and intersection.

Both APIs access the same kind of data structures: An operation layer, a
node implementation, and a central cache. Figure 1 gives an overview of the
layers and used components. The operation layer contains the basic algorithms
on BDDs, and their implementation is optimized for multi-threaded computation.
A BDD node itself represents an independent subtree and its implementation is
as slim as possible to minimize memory consumption. A BDD node references
its variable, the end of its chain in case of CBDD, and its two child nodes along
the high and low edge. The central components of a BDD library are the node
caches, which are divided into the global UniqueTable for node references given
to the user, and the operation cache that is utilized in all internal algorithms.
The operation cache is a crucial ingredient for BDD operations and responsible
for the overall performance of the library.

With our modular approach, we can exchange several components to analyze
the effect of different implementations without changing the user’s application
that is built on top of our library. For example, we can select from different cache
and UniqueTable implementations or enable BDD chaining. For the experiment,
we have set the currently best choices as default to evaluate the impact of
concurrent computation on a scaling application.



Table 2: Solving the n-queens problem with a limited number of threads and a
given number of CPU cores (wall time in seconds, memory consumption in MB)

10-queens 11-queens 12-queens 13-queens
cores (s) (MB) (s) (MB) (s) (MB) (s) (MB)

1 3.5 200 15 480 93 2 200 620 12 000

2 3.3 400 10 1 200 54 4 700 490 13 000

4 2.3 430 6.3 1 800 32 5 100 220 13 000

8 1.7 400 4.5 1 600 19 5 800 140 12 000

4 Experimental Evaluation

Our evaluation was executed with PJBDD, version v1.0.9 on an Intel Xeon E3-
1230 CPU with 8 processing units. To guarantee reproducibility we isolated the
benchmark runs with BenchExec [4], restricted the memory to 15 GB and set the
maximal Java heap size to 12 GB. The n-queens problem is a typical satisfiability
problem, which can be represented as BDD. To correctly solve the problem,
one needs to place n chess queens on a chess board of size n× n, such that no
queen can be beaten by others (according to chess rules). BDDs can represent
all the problem’s different possible solutions in one BDD. To evaluate whether
PJBDD scales well on multiple CPU cores, we analyzed the n-queens problem
and measured the consumed memory and response time, when PJBDD uses a
given number of CPU cores. The results in Table 2 show a significant impact
of the parallelization. PJBDD’s memory usage increased with multi-threaded
computations (up to four times for N = 11). In terms of response time, our
library can achieve a speed-up of up to five times for this application.

5 Conclusion

The abundance of multi-core environments makes it meaningful to invest in multi-
threaded verification algorithms. This, however, requires the availability of thread-
safe and multi-threaded data-structure libraries. The advent of Sylvan showed
that this is possible and can lead to a considerable speed-up. Our motivation is
to provide a Java implementation of a BDD library that guarantees thread-safe
operation and supports multi-threaded execution of the BDD operations. PJBDD
is such a BDD package. We use the n-queens problem as a load test and showed
that the parallelization works well, as the work nicely distributes over the cores.

There are lots of additional features that can be implemented in the future.
Due to the modular implementation, slim and flexible ZBDD and CBDD im-
plementations are included already. This design could be used to support more
different types of decision diagrams, such as CZBDDs [6] or tagged BDDs [12].
Improvements in performance or memory consumption without introducing
additional code complexity is also a major goal of the developers.

Data Availability Statement. PJBDD is licensed under Apache 2.0 and
available on GitLab: https://gitlab.com/sosy-lab/software/paralleljbdd. The

https://gitlab.com/sosy-lab/software/paralleljbdd/-/tree/v1.0.9
https://github.com/trolando/sylvan
https://gitlab.com/sosy-lab/software/paralleljbdd


repository contains examples and instructions how to install and use the tool. A re-
production package for the n-queens experiment and some software-verification
experiments is available on Zenodo [3].

Funding. This project was supported by the Deutsche Forschungsgemeinschaft
(DFG) – 378803395 (ConVeY)

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6), 509–516
(1978). https://doi.org/10.1109/TC.1978.1675141

2. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata. In:
Proc. FME. pp. 318–343. LNCS 2021, Springer (2001). https://doi.org/10.1007/3-
540-45251-6_18

3. Beyer, D., Friedberger, K., Holzner, S.: Reproduction package for article ‘PJBDD:
A BDD library for Java and multi-threading’ in Proc. ATVA 2021. Zenodo (2021).
https://doi.org/10.5281/zenodo.5070156

4. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

5. Beyer, D., Stahlbauer, A.: BDD-based software model checking with
CPAchecker. In: Proc. MEMICS. pp. 1–11. LNCS 7721, Springer (2013).
https://doi.org/10.1007/978-3-642-36046-6_1

6. Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams.
J. Autom. Reasoning 64(7), 1361–1391 (2020). https://doi.org/10.1007/s10817-020-
09569-6

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

8. Bryant, R.E.: Binary decision diagrams. In: Handbook of Model Checking, pp.
191–217. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_7

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. In: Proc. LICS. pp. 428–439. IEEE (1990).
https://doi.org/10.1109/LICS.1990.113767

10. Cohen, H., Whaley, J., Wildt, J., Gorogiannis, N.: BuDDy: A BDD package.
http://sourceforge.net/p/buddy/

11. van Dijk, T.: Sylvan: Multi-core decision diagrams. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2016)

12. van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction rules from
different decision diagram types. In: Proc. FMCAD. pp. 108–115. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102248

13. Holzner, S.: Design und Implementierung einer parallelen BDD-Bibliothek. Master’s
Thesis, LMU Munich, Software Systems Lab (2019)

14. Lovato, A., Macedonio, D., Spoto, F.: A thread-safe library for binary de-
cision diagrams. In: Proc. SEFM. pp. 35–49. LNCS 8702, Springer (2014).
https://doi.org/10.1007/978-3-319-10431-7_4

15. Somenzi, F.: Colorado University decision diagram package (1998)
16. Vahidi, A.: JDD: A pure Java BDD and Z-BDD library. https://bitbucket.org/

vahidi/jdd (2003)

https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1007/3-540-45251-6_18
https://doi.org/10.1007/3-540-45251-6_18
https://doi.org/10.5281/zenodo.5070156
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1109/LICS.1990.113767
http://sourceforge.net/p/buddy/
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.1007/978-3-319-10431-7_4
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd

	PJBDD: A BDD Library for Java and Multi-Threading

