
JavaSMT 3: Interacting with SMT Solvers in Java

Daniel Baier , Dirk Beyer , and Karlheinz Friedberger

LMU Munich, Munich, Germany

Abstract. Satisfiability Modulo Theories (SMT) is an enabling technology
with many applications, especially in computer-aided verification. Due to
advances in research and strong demand for solvers, there are many SMT
solvers available. Since different implementations have different strengths,
it is often desirable to be able to substitute one solver by another. Un-
fortunately, the solvers have vastly different APIs and it is not easy to
switch to a different solver (lock-in effect). To tackle this problem, we
developed JavaSMT, which is a solver-independent framework that unifies
the API for using a set of SMT solvers. This paper describes version 3
of JavaSMT, which now supports eight SMT solvers and offers a simpler
build and update process. Our feature comparisons and experiments show
that different SMT solvers significantly differ in terms of feature support
and performance characteristics. A unifying Java API for SMT solvers is
important to make the SMT technology accessible for software developers.
Similar APIs exist for other programming languages.

Keywords: Satisfiability Modulo Theories · SMT Solver · Java · API

1 Introduction

SMT solvers [6, 21] are used in a multitude of applications, e.g., in formal software
analysis, where automated test-case generation [7, 16, 29, 30], SMT-based algo-
rithms for software verification [10, 34], and interactive theorem proving [27, 44]
are used. Applications and users rely on efficiency and expressiveness (sup-
ported SMT theories) to compute reasonable results in time. For application
developers, the usability and API of the solver are also important aspects, and
some features needed in applications, such as interpolation or optimization,
are not available in some solvers.

Using the solver’s own API directly makes it difficult to switch to another
solver without rewriting extensive parts of the application, as there is no stan-
dardized binary API for SMT solvers. The SMT-LIB2 standard [4] improves
this issue by defining a common language to interact with SMT solvers. How-
ever, this communication channel does not define a solver interface for special
features like optimization or interpolation.1 Additionally, the application has to
parse the data provided by the SMT solver on its own, and this of course
slightly changes from solver to solver.
1 A proposal for adding interpolation queries exists since 2012, see https://ultimate.
informatik.uni-freiburg.de/smtinterpol/proposal.pdf .

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-9116-1974
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7624-654X
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf


JavaSMT [37] provides a common API layer across multiple back-end solvers
to address these problems. Our Java-based approach creates only minimal over-
head, while giving access to most solver features. JavaSMT is available under
the Apache 2.0 License on GitHub.2

Contribution. Our contribution consists of three parts:

• We integrated more SMT solvers into the API framework JavaSMT (new:
Boolector [43], CVC4 [5], and Yices2 [25]).

• We simplified the steps to get started using JavaSMT, by including support
for more operating systems (new: MacOS and Windows) and more build
techniques (new: Ant and Maven).

• We evaluated the performance of several algorithms for software verification
to show that different SMT solvers have different strengths.

Outline. This paper first provides a brief overview of JavaSMT in Sect. 2, ex-
plaining the inner structure and features. Sect. 3 discusses the development since
the previous publication [37]: more integrated SMT solvers and extended support
for operating systems and build processes. Sect. 4 describes a case study, based
on SMT-based algorithms [10] in a common verification framework.

Related Work. SMT-LIB2 [4] is the established standard format for exchanging
SMT queries. It provides simple usage, is easy to debug, and widely known in
the community. However, it requires extra effort to parse and transform formulas
in the user application. Features like optimization, interpolation, and receiving
nested parts of formulas are not defined by the standard, such that some SMT
solvers provide their own individual solution for that. Alternatively, several SMT
solvers already come with their special bindings for some programming languages.
Most SMT solvers are written in C/C++, so interacting with them in these
low-level languages is the easiest way. However, the support for higher-level
languages is sparse. The most prominent language binding for several SMT
solvers is Python, as it directly allows the access to C code and avoids automated
memory management operations like asynchronous garbage collection. Bindings
for Java are available for some SMT solvers, such as MathSAT5 and Z3, but
missing, unsupported, or unmaintained for others, such as Boolector and CVC4.

In the following, we discuss libraries, similar to JavaSMT, that provide access
to several underlying SMT solvers via a common user interface in different popular
languages, and their binding mechanism, i.e., whether the solver interaction is
based on a native interface or text-based on SMT-LIB2. With SMT-LIB2, an ar-
bitrary SMT solver can be queried, but the interaction happens through communi-
cating processes and the solver is mostly limited to features defined in the standard.
Accessing a native interface directly allows to support more features of the under-
lying solver, e.g., using callbacks, simplifying formulas, or eliminating quantifiers.

Table 1 provides an overview of the libraries for interacting with SMT solvers.
We enumerate several special features that are not available in some libraries,

2 https://github.com/sosy-lab/java-smt

https://github.com/sosy-lab/java-smt


Table 1: Comparison of different interface libraries for SMT solvers

R
ef
er
en

ce

L
an

gu
ag
e

N
at
iv
e
A
P
I

S
M

T
-L

IB
2

U
ns
at

C
or
es

In
te
rp
ol
at
io
n

O
pt
im

iz
at
io
n

Fo
rm

ul
a

D
ec
om

po
si
ti
on

P
ro
je
ct

-
Fo

rk
s

P
ro
je
ct

-
St
ar
s

P
ro
je
ct

-
Y
ea
r

L
at
es
t
C
om

m
it

JavaSMT [37] Java 3 7 3 3 3 3 22 90 2021
PySMT [28] Python 3 3 3 3 3 7 99 363 2021
SMT Kit C/C++ 3 7 3 7 7 7 4 36 2014
Smt-Switch [38] C/C++ 3 7 3 3 7 3 15 40 2021

jSMTLIB [20] Java 7 3 3 7 7 7 15 21 2020
metaSMT [45] C/C++ 7 3 7 7 3 3 19 43 2016
rsmt2 Rust 7 3 3 7 7 7 10 24 2021
SBV Haskell 7 3 3 7 3 7 17 134 2021
Scala SMT-LIB Scala 7 3 3 7 7 3 18 44 2021
ScalaSMT [17] Scala 7 3 7 7 7 3 1 4 2019
what4 Haskell 7 3 3 7 7 7 5 97 2021

such as unsat cores, interpolation, or optimization queries. Those features depend
on the support by the underlying SMT solver, but can be provided in general
by an API on top of them. Most libraries use their own formula representation
and not just wrap the objects provided by the SMT solver. This potentially
allows for easier formula decomposition and inspection, e.g., by using the visitor
pattern. JavaSMT directly provides formula decomposition if available in the
SMT solver. The provided numbers of forks and stars of the project repositories
on GitHub or Bitbucket can be seen as a measurement of popularity.

PySMT [28] is a Python-based project and aims at rapid prototyping of
algorithms using the native API of the installed SMT solvers. It has the ability to
perform formula manipulation without a back-end SMT solver and additionally
supports the conversion of boolean formulas to plain SAT problems and then
apply a SAT solver or a BDD library. This approach comes with the drawback
of a noticeable memory overhead and performance of an interpreted language.
metaSMT [45], SMT Kit, and Smt-Switch [38] provide solver-agnostic APIs for
interacting with various SMT solvers in C/C++ to focus on the application instead
of the solver integration. jSMTLIB [20], Scala SMT-LIB, and ScalaSMT [17] are
solver-independent libraries written in Java or Scala and interact via SMT-LIB2
with SMT solvers. Scala SMT-LIB and ScalaSMT allow to use an additional
domain-specific language to interact with SMT solvers and rewrite Scala syntax
into valid SMT-LIB2 and back. Both partially extend the SMT-LIB2 standard,
e.g., by offering the ability to overload operators or receive interpolants. SBV
and what4 are generic Haskell libraries based on process interaction via SMT-
LIB2 and support several SAT and SMT solvers. rsmt2 offers a generic Rust
library that currently supports three SMT solvers.

https://github.com/sosy-lab/java-smt
https://github.com/pysmt/pysmt
http://ahorn.github.io/smt-kit/
https://github.com/makaimann/smt-switch
https://smtlib.github.io/jSMTLIB
https://github.com/agra-uni-bremen/metaSMT
https://github.com/kino-mc/rsmt2
https://github.com/LeventErkok/sbv
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/GaloisInc/what4
https://github.com/pysmt/pysmt
https://github.com/agra-uni-bremen/metaSMT
http://ahorn.github.io/smt-kit/
https://github.com/makaimann/smt-switch
https://smtlib.github.io/jSMTLIB
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/LeventErkok/sbv
https://github.com/GaloisInc/what4
https://github.com/kino-mc/rsmt2


2 JavaSMT’s Architecture and Solver Integration

In the following, we describe the architecture of JavaSMT and its main con-
cepts. Afterwards, we give an overview of the integrated SMT solvers and their
features. The architecture did not significantly change, but we added a few
new SMT solvers, as shown in Fig. 1.

Architecture. JavaSMT provides a common API for various SMT solvers. The
architecture, shown in Fig. 1, consists of several components: As common context,
we use a SolverContext that loads the underlying SMT solver and defines the
scope and lifetime of all created objects. As long as the context is available,
we track memory regions of native SMT-solver libraries. When the context is
closed, the corresponding memory is freed and garbage collection wipes all unused
objects. Within a given context, JavaSMT provides FormulaManagers for creating
formulas in various theories and ProverEnvironments for solving SMT queries.

A FormulaManager allows to create symbols and formulas in the correspond-
ing theories and provides a type-safe way to combine symbols and formulas
in order to encode a more complex SMT query. We support the structural
analysis (like splitting a formula into its components or counting all function
applications in a formula) and transformations (like substituting symbols or
applying equisatisfiable simplifications) of formulas.

Each ProverEnvironment represents a solver stack and allows to push/pop
boolean formulas and check them for satisfiability (the hard part). This follows
the idea of incremental solving (if the underlying SMT solver supports it). After a
satisfiability check, the ProverEnvironment provides methods to receive a model,
interpolants, or an unsatisfiable core for the given formula.

JavaSMT guarantees that formulas built with a single FormulaManager
can be used in several ProverEnvironments, e.g., the same formula can be
pushed onto and solved within several distinct ProverEnvironments. The in-
teraction with independent ProverEnvironments works from multiple threads.
However, some SMT solvers require synchronization (e.g., locking for an in-
terleaved usage) and other solvers do not require external synchronization
(this allows concurrent usage).

SMT-Solver Integration and Bindings. Of the eight SMT solvers that are available
in JavaSMT, only Princess [46] and SMTInterpol [18] were ‘easy’ to integrate,
as they are written in Scala and Java, respectively. Those solvers also use
the available memory management and garbage collection of the Java Virtual
Machine (JVM). All other solvers are written in C/C++ and need a Java Native
Interface (JNI) wrapper to interface with JavaSMT. Z3 [40] and CVC4 [5]
provide their own Java wrappers, while the bindings used for MathSAT5 [19],
Boolector [42], and Yices2 [25] are maintained by us. Those bindings are
self-written or partially based on a version of the solver developers, extended
with exception handling, and usable for debugging in JavaSMT. By providing
language bindings for solvers in our library, we relieve the solver developers
from this burden, and the implementation of exception handling and memory
management is done in an efficient and common manner across several solvers.



SolverContext

FormulaManager

...Formula Formula

Prover
Environment

Prover
Environment

Model

Interpolant

Unsat Core

Model

Interpolant

Unsat Core

Ja
va
SM

T
A
P
I

So
lv
er

B
in
di
ng

s

User
Application

JavaSMT

Boolector

CVC4

MathSAT5

OptiMathSAT

Princess

SMTInterpol

Yices2

Z3

Fig. 1: Overview of JavaSMT

Table 2: Size (LOC) of the Java-based solver wrappers and native solver bindings

B
o
o
le

ct
o
r

C
V

C
4

M
at

h
S
A
T

5

O
pt

iM
at

h
S
A
T

P
r
in

ce
ss

S
M

T
In

te
r
po

l

Y
ic

es
2

Z
3

Java-based Wrapper 1644 1918 3229 3229 2042 2117 2728 2674
JNI Bindings 3136 1388 1508 1598

Table 2 lists the size (lines of code) of the wrappers to integrate each solver
in JavaSMT, in order to get a rough impression of the required effort to get a
solver and its bindings usable in JavaSMT. The size information consists of two
parts, namely the JNI bindings that are written in C/C++ and the Java code
that implements the necessary interfaces of JavaSMT. An expressive solver API
(like MathSAT5 or OptiMathSAT [47]) needs more code for their binding, with
only a small increment in complexity compared to other solver bindings.

Note that the evolution of JavaSMT depends on the evolution of the underlying
SMT solvers. Z3 is well-known, has a large user group, and an active develop-
ment team. Yet, interpolation support for Z3 was dropped with release 4.8.1.3
Bitwuzla [41] is the successor of the SMT solver Boolector, for which the
developers still provide small fixes. Bitwuzla can be supported in JavaSMT in
the future. CVC4 has been developed further to CVC5. However, the maintainers
3 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1

https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1


dropped the existing Java API, partially because of issues with the Java garbage
collection, and plan to replace it.4 Yices2 is also actively maintained and adds
new features regularly. For example, the developers added support for third-party
SAT solvers such as CaDiCaL and CryptoMiniSat [48].

3 New Contributions in JavaSMT 3

This section describes the improvements over the JavaSMT version from five
years ago [37], split into two parts. First, we describe newly integrated solvers
and theory features. Second, we provide information about the build process.

Support for Additional SMT Solvers. JavaSMT3 provides access to eight SMT
solvers. Besides the solvers that were already integrated before, MathSAT5,
OptiMathSAT, Z3, Princess, and SMTInterpol, the user can now additionaly
use Boolector, CVC4, and Yices2. Table 3 lists available theories and impor-
tant features supported by each individual solver. Boolector is specialized in
Bitvector-based theories, but does not support the Integer theory. It is shipped
with several back-end SAT solvers, from which the user can choose a favorite:
CaDiCaL, CryptoMiniSat [48], Lingeling, MiniSat [26], and PicoSAT [13]. All
solvers support the input of plain SMT-LIB2 formulas. However, the feature
most requested by JavaSMT users is the input and output of SMT queries via
the API, i.e., parsing and printing boolean formulas for a given context. This
feature is required for (de-)serializing formulas to disk, for network transfer, and
to translate formulas from one solver to another one. This feature is unfortu-
nately missing for the newly integrated solvers, even though each solver internally
already contains code for parsing and printing SMT-LIB2 formulas.

For formula manipulation, JavaSMT accesses the components of a formula,
e.g., operators and operands. We do not require full access to the internal data
structures of the SMT solvers, but only limited access to the most basic parts.
Only Boolector does not provide the necessary API.

Build Simplification. JavaSMT3 also supports more operating systems than
before. Besides the existing support for Linux, we started to provide pre-compiled
binaries for MacOS and Windows for more than half of the available solvers.
This simplifies the initial steps for new users, which previously were required to
compile and link the solvers on their own. This was an involving task, because
of the diversity of build systems and dependencies of each solver.

In addition to this, we now offer direct support for two popular build sys-
tems for Java applications, namely Ant and Maven. JavaSMT comes with
several examples and documentation, such that the mentioned build systems
can be used to set up JavaSMT in a ready-to-go state on most systems. This
eliminates the need for complex manual set up of dependencies and eases the
use of JavaSMT and the SMT solvers.

4 https://github.com/cvc5/cvc5/issues/5018

https://github.com/arminbiere/cadical
https://github.com/msoos/cryptominisat
https://github.com/arminbiere/cadical
https://github.com/msoos/cryptominisat
https://github.com/arminbiere/lingeling
http://minisat.se
http://fmv.jku.at/picosat
https://github.com/cvc5/cvc5/issues/5018


Table 3: SMT theories and features supported by SMT solvers in JavaSMT3

B
o
o
le

ct
o
r

C
V

C
4

M
at

h
S
A
T

5

O
pt

iM
at

h
S
A
T

P
r
in

ce
ss

S
M

T
In

te
r
po

l

Y
ic

es
2

Z
3

SM
T

T
he

or
ie
s

Integer 7 3 3 3 3 3 3 3

Rational 7 3 3 3 3 3 3 3

Array 3 3 3 3 3 3 7 3

Bitvector 3 3 3 3 3 7 3 3

Float 7 3 3 3 7 7 7 3

UF 3 3 3 3 3 3 3 3

Quantifier 3 3 7 7 3 7 3 3

Fe
at
ur
es

Incremental Solving 3 3 3 3 3 3 3 3

Model 3 3 3 3 3 3 3 3

Assumption Solving 3 7 3 3 7 7 3 3

Interpolation 7 7 3 3 3 3 7 7

Optimization 7 7 7 3 7 7 7 3

UnsatCore 7 3 3 3 3 3 3 3

UnsatCore with Assumptions 7 7 3 3 7 3 3 3

SMT-LIB2 (plain text input) 3 3 3 3 3 3 3 3

SMT-LIB2 (via API) 7 7 3 3 3 3 7 3

Quantifier Elimination 7 3 7 7 3 7 7 3

Formula Decomposition 7 3 3 3 3 3 3 3

4 Evaluation

Frameworks that provide a unified API to SMT solvers (such as JavaSMT,
PySMT, and ScalaSMT) are necessary because the characteristics of the SMT
solvers vary a lot. In the evaluation we provide support for this argument.

We inlined a discussion of the features already in the previous section. Table 3
provides the overview of supported theories and shows that certain theories are
available only for a subset of SMT solvers. The table also shows that there are
several features that restrict the choice of SMT solvers for certain applications.

In terms of performance, we evaluate JavaSMT3 as a component of
CPAchecker [11], which is an open-source software-verification framework 5

that provides a range of different SMT-based algorithms for program analysis [10]
and encoding techniques for program control flow [8, 12]. We compare three
well-known and successful SMT-based algorithms for software model checking
and show that — when using the same algorithm and identical problem encoding
— the performance result of an analysis depends on the used SMT solver. Some

5 https://cpachecker.sosy-lab.org

https://github.com/sosy-lab/java-smt
https://github.com/pysmt/pysmt
https://bitbucket.org/franck44/scalasmt
https://cpachecker.sosy-lab.org


algorithms depend on special features of the SMT solver, e.g., to provide a certain
type of formula (such as interpolants) and operation on a formula (such as access
to subformulas). There are SMT solvers that can not be used for some algorithms.

We aim to show that depending on the feature set of the SMT solvers, it is
important to support a common API, and additionally, that using the text-based
interaction via SMT-LIB2 is not an efficient solution, when it comes to formula
analysis like adding additional information into a formula.

Benchmark Programs. We evaluate the usage of JavaSMT on a large subset
of the SV-benchmark suite 6 containing over 1 000 verification tasks. To have
a broad variation of benchmark tasks, we include reachability problems from
the categories BitVectors, ControlFlow, Heap, and Loops.

BitVectors depends on bit-precise reasoning and thus, the SMT solver needs
to support Bitvector logic. Heap depends on modeling heap memory access, e.g.,
which is either encoded in the theory of Arrays or as Uninterpreted Functions.
The category Loops contains tasks where the state space is potentially quite large.

Experimental Setup. We run all our experiments on computers with Intel Xeon
E3-1230 v5 CPUs with 3.40GHz, and limit the CPU time to 15min and the
memory to 15GB. We use CPAchecker revision r36714, which internally uses
JavaSMT 3.7.0-73. The time needed for transforming the input program into
SMT queries is rather small compared to the analysis time. Additionally, the
progress of an algorithm depends on the result (e.g., model values or interpolants)
returned from an SMT solver, thus we do not explicitly extract the run time
required by the SMT solver itself for answering the satisfiability problem, but we
measure the complete CPU time of CPAchecker for the verification run.

Analysis Configuration. We use three different SMT-based algorithms for software
verification [10]. The first approach is bounded model checking (BMC) [14, 15],
which is applied in software and hardware model checking since many years. In this
approach, a verification problem is encoded as single large SMT query and given
to the SMT solver. No further interaction with the SMT solver is required. In our
evaluation, we use a loop bound k = 10, which limits the size of the SMT query.

The second approach is k -induction [9, 24], which extends BMC, and which
uses auxiliary invariants to strengthen the induction hypothesis. In this approach,
the algorithm generates several SMT queries (base case, inductive-step case, each
with increasing loop bound) and uses an invariant generator that provides the
auxiliary invariants. We use an interval-based invariant generator that provides
not only the invariants, but also information about pointers and aliases, which
must be inserted into the SMT formula using the formula visitor.

The third approach is predicate abstraction [3, 12, 31, 35], which uses Craig
interpolation [22, 32, 39] to compute predicate abstractions of the program. This
approach does not only query the SMT solver multiple times, but also uses
(sequential) interpolation, which is currently supported only by MathSAT5,
Princess, and SMTInterpol.

6 https://github.com/sosy-lab/sv-benchmarks

https://github.com/sosy-lab/sv-benchmarks


0 250 500

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
) Boolector CVC4

MathSAT5 Princess
Yices2 Z3

Fig. 2: Quantile plot for the runtime of k -induction with several SMT solvers

All approaches are executed in two configurations, depending on the used
encoding of program statements: First, we apply a bitvector-based encoding that
precisely models bit-precise arithmetics and overflows of the program. Second,
an encoding based on linear integer arithmetic is used, which approximates the
concrete program execution and is sufficient for some programs.

Solver Configuration. Overall, we aim to show that each solver provides a unique
fingerprint of features and results. We aim for a precise program analysis and
thus configure the SMT solvers to be as precise as possible, but with a rea-
sonable configuration for each solver (i.e., without using a feature combination
that is unsupported by the SMT solver).

SMTInterpol does not support efficient solving of SMT queries in Bitvector
logic, thus, it is configured to use only Integer logic. Boolector misses Integer
logic, thus, it is applied only to the bit-precise configurations. Additionally, this
SMT solver does not support formula inspection and decomposition, which is
required by several components in k -induction, e.g., to encode proper pointer
aliasing for the program analysis. While the code for formula inspection is called
quite often, its influence on the results for the selected benchmark tasks is small.
In order to be comparable as far as possible, we deactivate pointer aliasing when
using Boolector. Yices2 misses proper support for Array logic, thus, we use a
UF-based encoding of heap memory as alternative for this solver, which results
in a slightly unsound analysis, but a comparable formula size and run time.

Results and Discussion. Figure 2 provides the quantile plot for the results of
k -induction configurations with bit-precise encoding using several SMT solvers.
The plot shows the CPU time for valid analysis results, i.e., proofs or counterex-
amples found, for both expected results true and false. We aim for providing all
result that are useful for a user and do not show results where the tool (or SMT
solver) crashes or runs out of resources. We do not subtract the run time required
for the framework CPAchecker itself (which starts a Java virtual machine), as
we assume it to be comparable per program task; we are only interested in the
asymptotics in this evaluation. The overall performance of SMT solvers is similar
for simple verification tasks, i.e., those with a small run time in the analysis. For
difficult tasks with harder SMT queries, the differences of the SMT solvers emerge.
When applying k -induction, the analysis inserts additional constraints into the



Table 4: Run time for using different SMT solvers for bounded model checking
(‘BMC’), k-induction (‘KI’), and predicate abstraction (‘PA’) with the theories
of Bitvectors (‘BV’) and Integers (‘Int’); CPU time given in seconds with two
significant digits, ‘ TO’ indicates timeouts (900 s), ‘ ERR’ indicates errors, and
empty cells indicate that the theory or interpolation was not supported

V
er
ifi
ca
ti
on

T
as
k

s3
_
sr
vr
.b
la
st
.0
7.
i.c
il-
2

by
te
_
ad

d_
1-
1

ps
6-
ll_

va
lu
eb

ou
nd

10
0

s3 di
am

on
d_

1-
1

m
od

ul
us
-2

ja
in
_
5-
2

s3
_
cl
nt
_
1.
ci
l-2

di
sk
pe

rf
_
si
m
pl
1.
ci
l

ru
le
57
_
eb

da
_
bl
as
t

Algorithm BMC BMC KI KI KI KI PA PA PA PA
Encoding Int BV Int Int BV BV Int Int BV BV

Boolector 5.8 ERR ERR

CVC4 340 6.4 TO TO 110 TO

MathSAT5 17 7.8 200 53 60 54 TO 11 16 7.1

Princess TO TO 530 TO 260 TO 38 160 TO ERR

SMTInterpol 50 TO 140 TO 13

Yices2 14 7.7 340 23 34 28

Z3 15 6.7 130 66 43 21

SMT formula and requires the SMT solver to allow access to components of
existing formulas. As Boolector misses this specific feature, k -induction cannot
be very effective here. Other SMT solvers are the preferred choice.

Table 4 contains some example tasks from all used algorithms and encodings,
where the difference between distinct SMT solvers is noteworthy. Choosing the
optimal SMT solvers for an arbitrary problem task is not obvious.

5 Conclusion

We contribute JavaSMT3, the third generation of the unifying Java API for
SMT solvers. The package now contains more SMT solvers, an improved build
process, and support for MacOS and Windows. The project has over 20 con-
tributors, 2 500 commits, and overall about 41 000 lines of code.7 JavaSMT is
used in Java applications (e.g., [23, 33, 36]) as a solution to combine convenience
and performance for the interaction with SMT solvers, or to switch between
different solvers and compare them [11, 49]. The most prominent application using
JavaSMT is the verification framework CPAchecker (a widely-used software

7 https://www.openhub.net/p/java-smt

https://www.openhub.net/p/java-smt


project 8 with 73 forks on GitHub alone), for which JavaSMT was originally
developed. In the future, we plan to support more SMT solvers, operating sys-
tems, and hardware architectures, while keeping the user interface stable. We
hope that even more researchers and developers of Java applications can benefit
from SMT solving via a convenient and powerful API.

Data Availability Statement. All benchmark tasks for evaluation, configuration
files, a ready-to-run version of our implementation, and tables with detailed
results are available in our reproduction package on Zenodo as virtual machine [1]
and as ZIP archive [2]. The source code of the open-source library JavaSMT [37]
is available in the project repository; see https://github.com/sosy-lab/java-smt.

References

1. Baier, D., Beyer, D., Friedberger, K.: Reproduction package (VM) for ar-
ticle ‘JavaSMT 3: Interacting with SMT solvers in Java’. Zenodo (2021).
https://doi.org/10.5281/zenodo.4708050

2. Baier, D., Beyer, D., Friedberger, K.: Reproduction package (ZIP) for ar-
ticle ‘JavaSMT 3: Interacting with SMT solvers in Java’. Zenodo (2021).
https://doi.org/10.5281/zenodo.4865175

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Proc. TACAS. pp. 268–283. LNCS 2031, Springer (2001).
https://doi.org/10.1007/3-540-45319-9_19

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc.
SMT (2010)

5. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. CAV. pp. 171–177. LNCS 6806, Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_14

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-
8_11

7. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

8. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE
(2009). https://doi.org/10.1109/FMCAD.2009.5351147

9. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

10. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifica-
tion. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

11. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

8 https://github.com/sosy-lab/cpachecker

https://github.com/sosy-lab/java-smt
https://doi.org/10.5281/zenodo.4708050
https://doi.org/10.5281/zenodo.4865175
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-642-22110-1_16
https://github.com/sosy-lab/cpachecker


12. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

13. Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008).
https://doi.org/10.3233/SAT190039

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14

15. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

16. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

17. Cassez, F., Sloane, A.M.: ScalaSMT: Satisfiability modulo theory
in Scala (tool paper). In: Proc. SCALA. pp. 51–55. ACM (2017).
https://doi.org/10.1145/3136000.3136004

18. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Proc. SPIN. pp. 248–254. LNCS 7385, Springer (2012). https://doi.org/10.1007/978-
3-642-31759-0_19

19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5
SMT solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_7

20. Cok, D.R.: jSMTLIB: Tutorial, validation, and adapter tools for SMT-LIBv2. In:
Proc. NFM. pp. 480–486. LNCS 6617, Springer (2011). https://doi.org/10.1007/978-
3-642-20398-5_36

21. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

22. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

23. Demarchi, S., Menapace, M., Tacchella, A.: Automating elevator design with
satisfiability modulo theories. In: Proc. ICTAI. pp. 26–33. IEEE (2019).
https://doi.org/10.1109/ICTAI.2019.00013

24. Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software verification
using k-induction. In: Proc. SAS. pp. 351–368. LNCS 6887, Springer (2011).
https://doi.org/10.1007/978-3-642-23702-7_26

25. Dutertre, B.: Yices 2.2. In: Proc. CAV. pp. 737–744. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_49

26. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. SAT. pp. 502–518.
LNCS 2919, Springer (2003). https://doi.org/10.1007/978-3-540-24605-3_37

27. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis: Verification
competition with a human factor. In: Proc. TACAS. pp. 176–195. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_12

28. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: Proc. SMT (2015)

29. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_19

30. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proc. NDSS. The Internet Society (2008)

31. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV.
pp. 72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10

https://doi.org/10.3233/SAT190039
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.2307/2963593
https://doi.org/10.1109/ICTAI.2019.00013
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/3-540-63166-6_10


32. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs.
In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

33. Ibrhim, H., Khattab, S., Elsayed, K., Badr, A., Nabil, E.: A formal methods-
based rule verification framework for end-user programming in campus build-
ing automation systems. Building and Environment 181, 106983 (2020).
https://doi.org/10.1016/j.buildenv.2020.106983

34. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

35. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program
verification. In: Handbook of Model Checking, pp. 447–491. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_15

36. Joshaghani, R., Black, S., Sherman, E., Mehrpouyan, H.: Formal specification and
verification of user-centric privacy policies for ubiquitous systems. In: Proc. IDEAS.
pp. 31:1–31:10. ACM (2019). https://doi.org/10.1145/3331076.3331105

37. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139–148. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_11

38. Mann, M., Wilson, A., Tinelli, C., Barrett, C.W.: SMT-Switch: A solver-
agnostic C++ API for SMT solving. arXiv/CoRR (2007.01374) (2020),
https://arxiv.org/abs/2007.01374

39. McMillan, K.L.: Interpolation and model checking. In: Handbook of Model Checking,
pp. 421–446. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_14

40. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. TACAS. pp.
337–340. LNCS 4963, Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24

41. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. arXiv/CoRR
(2006.01621) (2020), https://arxiv.org/abs/2006.01621

42. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model.
Comput. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

43. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and
Boolector 3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3_32

44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS 2283, Springer (2002). https://doi.org/10.1007/3-540-45949-9

45. Riener, H., Haedicke, F., Frehse, S., Soeken, M., Große, D., Drechsler, R., Fey, G.:
metaSMT: Focus on your application and not on solver integration. Int. J. Softw.
Tools Technol. Transf. 19(5), 605–621 (2017). https://doi.org/10.1007/s10009-016-
0426-1

46. Rümmer, P.: A constraint sequent calculus for first-order logic with linear in-
teger arithmetic. In: Proc. LPAR. pp. 274–289. LNCS 5330, Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1_20

47. Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization mod-
ulo theories. In: Proc. CAV. pp. 447–454. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_27

48. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) Proc. SAT. pp. 244–257. LNCS 5584, Springer
(2009). https://doi.org/10.1007/978-3-642-02777-2_24

49. Sprey, J., Sundermann, C., Krieter, S., Nieke, M., Mauro, J., Thüm, T., Schaefer,
I.: SMT-based variability analyses in FeatureIDE. In: Proc. VaMoS. pp. 6:1–6:9.
ACM (2020). https://doi.org/10.1145/3377024.3377036

https://doi.org/10.1145/964001.964021
https://doi.org/10.1016/j.buildenv.2020.106983
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1145/3331076.3331105
https://doi.org/10.1007/978-3-319-48869-1_11
https://arxiv.org/abs/2007.01374
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2006.01621
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1145/3377024.3377036

	JavaSMT3: Interacting with SMT Solvers in Java

