
International Journal on Software Tools for Technology Transfer (2021) 23:833–846
https://doi.org/10.1007/s10009-021-00613-3

COMPET IT IONS AND CHALLENGES

Special Issue: Test-Comp 2019

First international competition on software testing

Dirk Beyer1

Accepted: 20 April 2021 / Published online: 22 June 2021
© The Author(s) 2021

Abstract
Tool competitions are a special form of comparative evaluation, where each tool has a team of developers or supporters
associated that makes sure the tool is properly configured to show its best possible performance. In several research areas,
tool competitions have been a driving force for the development of mature tools that represent the state of the art in their
field. This paper describes and reports the results of the 1st International Competition on Software Testing (Test-Comp
2019), a comparative evaluation of automatic tools for software test generation. Test-Comp 2019 was presented as part of
TOOLympics 2019, a satellite event of the conference TACAS. Nine test generators were evaluated on 2356 test-generation
tasks. There were two test specifications, one for generating a test that covers a particular function call and one for generating
a test suite that tries to cover the branches of the program.

Keywords Software testing · Test generation · Fuzzing · Program analysis · Bounded model checking · Test-suite validation ·
Competition · Test-Comp

1 Introduction

Software testing is as old as software development itself,
because the easiest way to find out whether software works
is to test it. In the last few decades, the tremendous break-
through of theorem provers and satisfiability-modulo-theory
(SMT) solvers has led to the development of efficient tools
for automatic test generation. For example, symbolic exe-
cution and the idea to use it for test generation [30] exist
for more than 40 years, but efficient implementations (e.g.,
Klee [16,17]) had to wait for the availability of mature con-
straint solvers. Also, with the advent of automatic software
model checking the opportunity to extract tests from coun-
terexamples arose (see Blast [10] and JPF [36]). In the
following years, many techniques from the areas of model
checking and program analysis were adopted for the purpose
of test generation and several strong hybrid combinations
have been developed [23].

While several powerful software test generators are avail-
able [23], they are very difficult to compare. For example,

A preliminary version was published in Proc. TACAS 2019 [6].

B Dirk Beyer
dirk.beyer@sosy-lab.org

1 LMU Munich, Oettingenstr. 67, 80538 Munich, Germany

a recent study [12] first had to develop a framework that
supports to run test generators on the same program source
code and to deliver tests in a common format for valida-
tion. Furthermore, there is no widely distributed benchmark
suite available and neither input programs nor output test
suites follow a standard format. In software verification, the
competition SV-COMP [5] helped to overcome similar prob-
lems: the competition community developed standards for
defining nondeterministic functions and a language to write
specifications (so far for C and Java programs) and estab-
lished a standard exchange format for the output (witnesses).
The competition also helped to adequately give credits to
PhD students and PostDocs for their engineering efforts and
technical contributions. A competition event with high vis-
ibility can foster the transfer of theoretical and conceptual
advancements in software testing into practical tools and
also gives credits and benefits to students who spend con-
siderable amounts of time developing testing algorithms and
software tools. Successful participation in competitions indi-
cates qualification. Comparative overviews are helpful for
engineers when selecting test tools for their purpose.

Test-Comp is designed to compare automatic state-of-the-
art software test generators with respect to effectiveness and
efficiency. This comprises a preparation phase in which a set
of benchmark programs is collected and classified (accord-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00613-3&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://klee.github.io/


834 D. Beyer

ing to application domain, kind of bug to find, coverage
criterion to fulfill, theories needed), in order to derive com-
petition categories. After the preparation phase, the tools
are submitted, installed, and run on the set of benchmark
tasks.

Test-Comp uses the benchmarking framework
BenchExec [14], which is already successfully used in other
competitions, most prominently, all competitions that run
on the StarExec infrastructure [35]. Similar to SV-COMP,
the test generators in Test-Comp are applied to programs
in a fully automatic way. The results are collected via the
BenchExec results format and transformed into tables and
plots in several formats.

Competition goals. In summary, the most important goals
of the competition Test-Comp are the following:

• Establish a set of benchmarks for software testing in
the community. This means to create and maintain
a set of well-defined programs together with cover-
age criteria, and to make those publicly available for
researchers to be used in performance comparisons when
evaluating a new algorithm, technology, or implementa-
tion.

• Establish standards for software test generation. This
means,most prominently, to develop a standard formark-
ing input values in programs, define an exchange format
for test suites, and agree on a specification language for
test-coverage criteria. Furthermore, we define how to val-
idate the resulting test suites.

• Provide an overview of available tool implementations
for test generation and a snapshot of the state-of-the-art in
software-testing research to the community. This means
to compare, independently from particular paper projects
and specific techniques, different test generators in terms
of effectiveness and performance on a large benchmark
set.

• Increase the visibility and credits that tool developers
receive. This means to provide a forum for presentation
of tools and discussion of the latest technologies and to
give the developers (often PhD students) the opportunity
to publish about the development work that they have
done.

• Educate PhD students and other participants on how to set
up performance experiments, packaging tools in a way
that supports reproducibility, and how to perform a robust
and accurate research experiment.

• Provide resources to development teams that do not have
sufficient computing resources available and give them
the opportunity to obtain performance results from exper-
iments on large benchmark sets.

• Establish a transparent process to enable the test-
generation community to be the driving force behind the
competition.

Related competitions. In other areas, there are several
established competitions. For example, there are three com-
petitions in the area of software verification: (i) a com-
petition on automatic verifiers under controlled resources
(SV-COMP [5]), (ii) a competition on verifiers with arbi-
trary environments (RERS [26]), and (iii) a competition on
(interactive) verification (VerifyThis [27]). In software test-
ing, there are several competition-like events, for example,
the DARPA Cyber Grand Challenge [34]1, the IEEE Inter-
national Contest on Software Testing2, the Software Testing
World Cup3, and the Israel Software Testing World Cup4.
Those contests are organized as on-site events, where teams
of people interact with certain testing platforms in order to
achieve a certain coverage of the software under test.

There are two competitions for automatic and off-site
testing: Rode0day5 is a competition that is meant as a
continuously running evaluation on bug-finding in binaries
(currently Grep and SQLite). The unit-testing tool competi-
tion [29]6 is part of the SBST workshop and compares tools
for unit-test generation on Java programs.

So far, there was no comparative evaluation of auto-
matic test generators in a controlled environment in which
the tool developers were involved as participants and jury.
Test-Comp [6]7 is meant to close this gap. The results of
the first edition of Test-Comp were presented as part of the
TOOLympics 2019 event [1], where 16 competitions in the
area of formal methods were presented.

2 Organizational classification and schedule

The competition Test-Comp is designed according to the
model of SV-COMP [2], the International Competition on
Software Verification.
Classification. Test-Comp shares the following organiza-
tional principles:

• Automatic. The tools are executed in a fully automated
environment, without any user interaction.

• Off-site. The competition takes place independently
from a conference location, in order to flexibly allow
problem solving and organizational changes.

• Reproducible.Theexperiments are controlled and repro-
ducible, that is, the resources are limited, controlled,
measured, and logged.

1 https://www.darpa.mil/program/cyber-grand-challenge
2 http://paris.utdallas.edu/qrs18/contest.html
3 http://www.softwaretestingworldcup.com/
4 https://www.inflectra.com/Company/Article/480.aspx
5 https://rode0day.mit.edu/
6 https://sbst19.github.io/tools/
7 https://test-comp.sosy-lab.org/

123

https://github.com/sosy-lab/benchexec
https://www.starexec.org/
https://github.com/sosy-lab/benchexec
https://www.darpa.mil/program/cyber-grand-challenge
http://paris.utdallas.edu/qrs18/contest.html
http://www.softwaretestingworldcup.com/
https://www.inflectra.com/Company/Article/480.aspx
https://rode0day.mit.edu/
https://sbst19.github.io/tools/
https://test-comp.sosy-lab.org/


First international competition on software testing 835

Fig. 1 Flow of the Test-Comp
execution for one test generator;
the left side depicts a
test-generation run; the right
side depicts a test-validation run

• Jury. The jury is the advisory board of the competi-
tion, is responsible for qualification decisions on tools
and benchmarks, and serves as program committee for
the reviewing and selection of papers to be published in
conference proceedings or a journal. The jury ensures
transparency of the competition organization and judges
qualification of participants (but not their performance,
which is computed using a scoring schema from the
results, see Sect. 5). The jury is also responsible for new
competition rules and deciding on new categories.

• Training.The competition flow includes a training phase
during which the participants get a chance to train their
tools on the potential benchmark instances and during
which the organizer ensures a smooth competition exe-
cution, giving preliminary feedback to the participating
teams.

Schedule. A typical Test-Comp schedule has the following
deadlines and phases:

• Call for participation. The organizer announces the
competition on the mailing list.8

• Registration of participation and training phase. The
tool developers register for participation and submit a
first version of their tool together with documentation
to the competition. The tool can later be updated and is
used for pre-runs by the organizer and for qualification
assessment by the jury. Preliminary results are reported
to the tool developers and made available to the jury.

• Final-version submission and evaluation phase. The
tool developers submit the final versions of their tools.
The benchmarks are executed using the submitted tools
and the experimental results are reported to the authors.
Final results are reported to the tool developers for inspec-
tion and are made publicly available only after team
approval.

• Results announced.The organizer announces the results
on the competition web site.

• Publication. The competition organizer writes the com-
petition report, and the tool developers write the tool

8 https://groups.google.com/forum/#!forum/test-comp

description and participation reports. The jury reviews
the papers and the competition report.

3 Rules and definitions

Test-generation task. A test-generation task is a pair of an
input program (program under test) and a test specification.
A test-generation run is a noninteractive execution of a test
generator on a single test-generation task, in order to gener-
ate a test suite according to the test specification. A test suite
is a sequence of tests, given as a directory of files according
to the format for exchangeable test suites.9 A test-validation
run is a noninteractive execution of a test validator on a given
test suite, in order to evaluate a test suite according to the test
specification.
Execution of a test generator. Figure 1 illustrates the pro-
cess of executing one test generator on one test-generation
task. One test-generation run for a test generator gets as input
(i) a program from the benchmark suite and (ii) a test specifi-
cation (find bug, or coverage criterion), and returns as output
a test suite (i.e., a set of tests). The test generator is contributed
by the competition participant. The test-generation runs are
executed centrally by the competition organizer. The test val-
idator takes as input the test suite from the test generator and
validates it by executing the program on all test-generation
tasks: for bug finding it checks whether the bug is exposed
and for coverage it reports the coverage using the GNU tool
gcov.10

Test specification. Table 1 lists the two test specifications
that are used in Test-Comp 2019 and constitute the two main
competition categories. The first describes a formula that is
typically used for bug finding: the test generator should find
a test that executes a certain error function (Cover-Error).
The second describes a formula that is used to obtain a stan-
dard test suite for quality assurance: the test generator should
find a test suite for branch coverage (Cover-Branches). The
specification for testing a program is given to the test gener-

9 https://gitlab.com/sosy-lab/software/test-format/
10 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

123

https://groups.google.com/forum/#!forum/test-comp
https://gitlab.com/sosy-lab/software/test-format/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html


836 D. Beyer

Table 1 Coverage specifications used in Test-Comp 2019

Category Test specification Interpretation

Cover-Error COVER( init(main(), The test suite contains at least one test

FQL(COVER EDGES(@CALL(__VERIFIER_error))) ) that executes function __VERIFIER_error.

Cover-Branches COVER( init(main(), The test suite contains tests such that

FQL(COVER EDGES(@DECISIONEDGE)) ) all branches of the program are executed.

ator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp).

The definition init(main()) is used to define the
entry of the program under test. The definition FQL(f)
specifies that coverage definition f should be achieved.
The FQL (FShell query language [25]) coverage def-
inition COVER EDGES(@DECISIONEDGE) means that
all branches should be covered, COVER EDGES(@BASIC
BLOCKENTRY)means that all statements should be covered,
and COVER EDGES(@CALL(__VERIFIER_error))
means that function__VERIFIER_error shouldbe called.
A complete specification looks like those in Table 1.

License requirements for submitted test-generator
archives. The test generators need to be publicly available
for download as binary archive under a license that allows
the following (cf. [5]):

• reproduction andevaluationbyanybody (including results
publication),

• no restriction on the usage of the verifier output (log files,
witnesses), and

• any kind of (re-)distribution of the unmodified verifier
archive.

Qualification. Before a tool or person can participate in the
competition, the jury evaluates the following qualification
criteria.

Tool. A test tool is qualified to participate as competition
candidate if the tool is (a) publicly available for download
and fulfills the above license requirements, (b) works on the
GNU/Linux platform (more specifically, it must run on an
x86_64 machine), (c) is installable with user privileges (no
root access required, except for required standard Ubuntu
packages) and without hard-coded absolute paths for access
to libraries and nonstandard external tools, (d) succeeds for
more than 50%of all training programs to parse the input and
start the test process (a tool crash during the test-generation
phase does not disqualify), and (e) produces test suites that
adhere to the exchange format (see above).

Person. A person (participant) is qualified as competition
contributor for a competition candidate if the person (a) is
a contributing designer/developer of the submitted competi-
tion candidate (witnessed by occurrence of the person’s name

on the tool’s project web page, a tool paper, or in the revi-
sion logs) or (b) is authorized by the competition organizer
(after the designer/developer was contacted about the partic-
ipation).

4 Benchmark programs and categories

The first edition of Test-Comp is based on programs writ-
ten in the programming language C. The input programs are
taken from the largest and most diverse open-source repos-
itory of software verification and test-generation tasks11,
which is also used by SV-COMP [5].
Selection.We selected all programs for which the following
properties were satisfied (cf. issue on GitHub12):

1. compiles with gcc, if a harness for the special input-
providing nondeterministic methods is provided,

2. contains at least one call to a such an input-providing
nondeterministic function,

3. does not rely on nondeterministic pointers,
4. does not have expected verdict false for a ‘termination’

specification, and
5. has expected verdict false for an ‘unreach-call’ speci-

fication (only for category Cover-Error).

This selection yields a total of 2356 test-generation tasks,
namely 636 test-generation tasks for category Cover-Error
and 1720 test-generation tasks for categoryCover-Branches.
We now explain the above requirements in more detail:
(1) It is necessary to be able to compile and link the program
because we can execute a program only if all declared func-
tions are implemented. (We need to execute the compiled
programs on tests in order to measure coverage to evaluate
the test suites produced by the test generators.) Accord-
ing to the specification of the benchmark repository, there
are several unimplemented functions, which are meant to
feed test inputs. Those functions have a name of the form
__VERIFIER_nondet_X(), where X is a type from the
set {bool,char,int,float,double,loff_t,long,

11 https://github.com/sosy-lab/sv-benchmarks
12 https://github.com/sosy-lab/sv-benchmarks/pull/774

123

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-branches.prp
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774


First international competition on software testing 837

Fig. 2 Category structure for Test-Comp 2019

pchar,pthread_t,sector_t,short,size_t,u32,
uchar, uint, ulong, unsigned, and ushort } and the
implementation can be assumed to return an arbitrary (non-
deterministic) value of that type, without any side effects.
(2) The programs that we use for Test-Comp need to have at
least one call of such a function that returns a nondetermin-
istic value, in order to be able to identify the test inputs of
the program and to later feed the test values to the program
when executing it.
(3)The specification of the benchmark repository also knows
special functions to return nondeterministic values for point-
ers (type void *), which are meant for verification based
on model checking (used in SV-COMP). We do not use pro-
grams with such function calls in Test-Comp, because they
often introduce undefined behavior. Those calls will be elim-

inated in the benchmark repository in the future, from 2020
onward, in order to avoid undefined behavior in verification
and test-generation tasks.
(4) We exclude from Test-Comp all programs in the bench-
mark repository that have nonterminating executions. Those
programs are meant for evaluating verification tools that
detect nontermination. The verdict for the behavioral specifi-
cation for termination is available in the task-definition files
in the repository.
(5) For category Cover-Error, the task definition needs to
contain the verdict false for the behavioral specification
that a certain function call is not reachable. Otherwise, if the
call is not reachable, then the task is not relevant for category
Cover-Error of Test-Comp.

123



838 D. Beyer

Categories.The test-generation tasks are partitioned into cat-
egories. Figure 2 illustrates the structure of the category com-
position. The results (inTables 6 and 7) are listed according to
the main categories. Category C-Overall consists of the two
main categories Cover-Error and Cover-Branches (accord-
ing to Table 1), which in turn consist of the following sub-
categories (same for both main categories in 2019): Arrays,
BitVectors, ControlFlow, ECA, Floats, Heap, Loops, Recur-
sive, and Sequentialized. The detailed definition of the cat-
egories (which test-generation tasks are contained in which
subcategory) is available on the competition web site. 13

The main categories partition the test-generation tasks
according to the test specification, that is, whether to generate
a test suite for covering a single bug or to generate a test suite
for covering asmany branches as possible. The subcategories
are structured based on the features of the programs that the
test generators need to support: programs with arrays, with
bit-vector arithmetic that cannot be approximated as linear
arithmetic, with control flow that matters for the behavior,
with a certain style of programming for event-condition-
action (ECA) systems, with floating-point arithmetics, with
data structures on the heap, with loops that are important to
be analyzed, with recursive function calls, and programs that
result from a transformation of multi-threaded programs to
sequential programs.

The benchmark collection SV- Benchmarks contains
benchmark sets ofCprograms (c/), Javaprograms (java/),
and Horn clauses (clauses/). Test-Comp 2019 used only
programs written in C. The C collection consists of many
subdirectories, in order to structure the programs according
to their provenance and features. Each directory usually con-
tains a README file with a description of the contents and a
LICENSE file (link) to declare the license of the programs.
The subcategories are defined in category-definition files
(.set). For example, the subcategory Arrays is defined by
the file c/ReachSafety-Arrays.set. The above-mentionedweb
page13 is generated from those category-definition files. The
category-configuration files (.cfg) provide a short descrip-
tion of the subcategory and important information about
the programs in the subcategory, most importantly, the bit
architecture. For example, the category configuration for
subcategory Arrays is contained in the file c/ReachSafety-
Arrays.cfg .

5 Scoring schema

Every test-generation run will be executed in the execution
environment of the competition according to the flow in
Fig. 1, which produces for every test generator and every
test-generation task (which is a pair of a C program and

13 https://test-comp.sosy-lab.org/2019/benchmarks.php

a test specification) a coverage value, which is a value in
the interval [0, 1]. The coverage values are also called score
points.

Evaluation by scores and runtime. The participating test
generators are ranked according to the cumulative coverage
(sum of score points). Test generators with the same cumula-
tive coverage are ranked according to success runtime. The
success runtime for a test generator is the total CPU time
over all test-generation runs for which the test generator suc-
cessfully produced a test suite.

Cover-Error. The first category is to show the abilities to
discover bugs. The benchmark set consists of programs that
contain a bug. The coverage value is defined to be either
0 or 1, as follows:

1 if the program under test is executed on a
generated test that explores the bug
(i.e., specified function was called)

0 otherwise

Cover-Branches. The second category is to cover as many
branches as possible. The coverage criterion was chosen
because many test generators support this standard crite-
rion by default. Other coverage criteria can be reduced to
branch coverage by transformation [24]. The coverage value
(as reported by gcov 10; value from [0, 1]) represents the
ratio of branches of the program that are covered by the gen-
erated tests to the number of all branches of the program. The
coverage value is defined as follows:

c if the program under test is executed on all
generated tests and c is the coverage
value as measured with the tool gcov

Note that we measured what gcov calls branch coverage.
In our experiments we discovered that what gcov reports
is in fact not branch coverage, but measurement values that
are closer to what is usually referred to as condition cover-
age. Therefore, the next Test-Comp uses measurements as
reported by TestCov[13], which implements the usual defi-
nition of branch coverage.
Opt out. It is possible for participants to opt out from certain
categories that are not supported by the test generator. In
this case, the tables would show no result (empty table cell).
In Test-Comp 2019, all teams participated in all categories.
Esbmc did not support branch coverage and therefore the
table displays a zero as result for category Cover-Branches
(see Table 6).
Normalization of scores. Since the main categories are
composed of subcategories, and the subcategories contain
different numbers of test-generation tasks, there would be

123

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ReachSafety-Arrays.set
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ReachSafety-Arrays.cfg
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ReachSafety-Arrays.cfg
https://test-comp.sosy-lab.org/2019/benchmarks.php


First international competition on software testing 839

(a) (b) (c) (d)

(e)

(f)

(g)

Fig. 3 Test-Comp components and the execution flow; in relation to
Fig. 1, the program under test and test specification are defined by the
test-generation task a, the test generator is taken from the test-generator

archive d, and the test suite is stored in an archive f for later evaluation
by a test-validation run, which alsoworkswith the components depicted
in the above figure

Table 2 Publicly available components for reproducing Test-Comp 2019

Component Fig. 3 Repository Version

Test-Generation Tasks (a) github.com/sosy-lab/sv-benchmarks testcomp19

Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp19

Tool-Info Modules (c) github.com/sosy-lab/benchexec 1.18

Test-Generator Archives

Test-Validator Archive

}
(d) gitlab.com/sosy-lab/test-comp/archives-2019 testcomp19

Benchmarking (e) github.com/sosy-lab/benchexec 1.18

Test-Suite Format (f) gitlab.com/sosy-lab/test-comp/test-format testcomp19

Execution Environment (g) gitlab.com/sosy-lab/test-comp/bench-defs testcomp19

a bias toward subcategories with a large number of test-
generation tasks. In other words, without normalization, it
would maximize the score to work on categories that consist
of many similar programs. However, we do not want to stip-
ulate that one category is more important than another. Thus,
we need to normalize the score, such that all subcategories
have the same influence on the final result. The goal is to
reduce the influence of a test-generation task in a large cate-
gory compared to a test-generation task in a small category,
and thus, balance over the categories. We use the normaliza-
tion that is also used by SV-COMP (see competition report
of SV-COMP 2013 [3], page 597):
The score for a meta category is computed from the scores of
all k contained (sub-) categories using a normalization by the
number of contained test-generation tasks: The normalized
score sni of a test generator in category i is obtained by
dividing the score si by the number of tasks ni in category i
(sni = si/ni ), then the sum �k

i=1sni over the normalized
scores of the categories is multiplied by the average number
of tasks per category. An example calculation can be found
on the web page of SV-COMP. 14

14 https://sv-comp.sosy-lab.org/2019/rules.php#meta

6 Components for reproducibility

Reproducibility of the results is a main concern of a competi-
tion like Test-Comp. The competition must be as transparent
and reproducible as possible. To achieve this goal, we dupli-
cate the setup from SV-COMP [4] and describe here our
adaptation to Test-Comp. We have to try to control all vari-
ables that might influence the results.

Figure 3, in its top row, shows the input of the process
of executing a test-generation run of the competition: (a) the
test-generation task, (b) the benchmark definition, (c) the
tool-info module, and (d) the test-generator archive. Using
those four inputs, (e) the test-generation run produces (f) the
resulting test suite in (g) the execution environment. Table 2
provides for each of the 7 components the repository URL
and the tag to identify the precise version that was used in the
competition. Table 3 lists the archives that were published on
Zenodo.

Repository of test-generation tasks (a). The repository
of test-generation tasks 11 is maintained by the commu-
nity, using the GitHub issue tracker and pull requests to
efficiently handle contributions from the contributors. The

123

https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp19/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/1.18/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
https://github.com/sosy-lab/benchexec/tree/1.18
https://gitlab.com/sosy-lab/test-comp/test-format/-/tree/testcomp19
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/testcomp19/README.md
https://sv-comp.sosy-lab.org/2019/rules.php#meta


840 D. Beyer

Table 3 Artifacts archived for Test-Comp 2019

Content DOI Ref.

Test-Generation Tasks 10.5281/zenodo.3856478 [8]

Competition Results 10.5281/zenodo.3856661 [7]

Test Suites (Witnesses) 10.5281/zenodo.3856669 [9]

BenchExec 1.18 10.5281/zenodo.2561835 [14,37]

Table 4 Execution limits for each run in Test-Comp’19

Limit Test-Suite Test-Suite
Generation Validation

CPU Time 15min 3h

RAM 15GB 7GB

Processing Units 8 2

repository has more than 80 contributors15. Continuous-
integration ensures that the programs are compilable by
Gcc and Clang. The test-generation tasks as used for Test-
Comp 2019 are tagged in the repository and archived at
Zenodo [8].

The repository describes test-generation tasks using a
task-definition file in YAML format, according to the stan-
dard: https://gitlab.com/sosy-lab/benchmarking/task-defini
tion-format. For example, the task-definition file
c/ntdrivers-simplified/cdaudio_simpl1.cil-1.yml refers to the
C program (extracted from a device driver)
c/ntdrivers-simplified/cdaudio_simpl1.cil-1.c and several test
specifications, including c/properties/coverage-branches.prp,
which results in a test-generation task that consists of this
C program and the test specification to generate a test suite
that covers all branches of the program.

Benchmark definitions (b). For executing test-generation
runs, we need to set resource limits, and we need to know
for each test generator, (i) which test-generation tasks need
to be given to the test generator as input and (ii) which
parameters need to be passed to the test generator (there
are global, test-generator-specific parameters to be passed
to the tool, and there is one task-specific parameter: the
bit architecture). The benchmark definitions are XML files
in the format that BenchExec expects; they are available
in a repository. The execution of each test-generation run
was limited to the resources specified in Table 4, for CPU
time, RAM, and number of processing units (cores) of the
CPU.

15 https://github.com/sosy-lab/sv-benchmarks/graphs/contributors

For example, the benchmark definition forCoVeriTest is
shown in Fig. 4 (also available in the repository as
benchmark-defs/coveritest.xml). This XML file describes
first the tool-info module to be used (tool="cpachecker",
see below under (c)), followed by a display name and the
resource limits from Table 4. It also specifies the CPUmodel
(cpuModel="Intel Xeon E3-1230 v5 @ 3.40 GHz")
and that all 8 CPU cores shall be reserved for the test-
generation run (cpuCores="8"). The rest of the file
specifies the result files, the options for CoVeriTest, the
properties, and the programs (compare with Fig. 2). A
more detailed description is available in the BenchExec

repository
(doc/benchexec.md#defining-tasks-for-benchexec).

Tool-specific information (c). In order to correctly exe-
cute a test generator, we need to provide a tool-info
module to BenchExec. The tool-info module assembles
the command-line to properly invoke the test generator
(including program-source and test-specification files as
well as the parameters) from the parts specified in the
benchmark definition (b). The tool-info modules that were
used in Test-Comp 2019 are available in BenchExec

release 1.18 [37].
Test-generator archives/test-validation archive (d). The

test generators are provided in an archive containing a license
(that permits distribution, use in Test-Comp, and reproducing
the results) and all parts that are needed to execute the test
generator (statically linked executables, all components for
which a certain version is required, or for which no standard
Ubuntu package is available, are included). The test gener-
ators and the above-mentioned components are provided in
the Test-Comp archives repository. The same holds for the
test validator.

Precise controlling and measurement of resources (e).
For scientifically valid experiments, we require for each
test-generation run a reliable assignment and controlling
of computing resources (cores, memory, CPU time), and a
precise measurement. There are several requirements that
experiments of a competition such as Test-Comp have to ful-
fill [14]: (i) accurate measurement and reliable enforcement
of limits for CPU time and memory, (ii) reliable termina-
tion of processes (including all child processes), (iii) correct
assignment of local memory (for NUMA architectures), and
(iv) isolationof the test-generation run in a container.Weused
BenchExec [14] to perform all Test-Comp experiments,
because this benchmarking framework lets us conveniently
benefit from the modern resource-control and measurement
mechanisms that the Linux kernel offers. All results, includ-
ing raw measurement results, log files, and HTML files, are
archived at Zenodo [7].

Test suites (f).The ranking of test generators in Test-Comp
is based on achieved coverage for the given test-generation
tasks. That is, given an input program and a test specifi-

123

https://doi.org/10.5281/zenodo.3856478
https://doi.org/10.5281/zenodo.3856661
https://doi.org/10.5281/zenodo.3856669
https://doi.org/10.5281/zenodo.2561835
https://gitlab.com/sosy-lab/benchmarking/task-definition-format
https://gitlab.com/sosy-lab/benchmarking/task-definition-format
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers-simplified/cdaudio_simpl1.cil-1.yml
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers-simplified/cdaudio_simpl1.cil-1.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-branches.prp
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-benchmarks/graphs/contributors
https://cpachecker.sosy-lab.org/
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/testcomp19/benchmark-defs/coveritest.xml
https://cpachecker.sosy-lab.org/
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md#defining-tasks-for-benchexec
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec


First international competition on software testing 841

1 <?xml version="1.0"?>

2 <!DOCTYPE benchmark PUBLIC "+//IDN sosy−lab.org//DTD BenchExec benchmark 1.9//EN" "http://www.sosy−lab.org/
benchexec/benchmark−1.9.dtd">

3 <benchmark tool="cpachecker" displayName="CPA/CoVeriTest" timelimit="900 s" memlimit="15 GB" cpuCores="8">

4

5 <require cpuModel="Intel Xeon E3−1230 v5 @ 3.40 GHz" cpuCores="8"/>

6

7 <resultfiles>**test−suite/*</resultfiles>
8

9 <option name="−benchmark"/>

10 <option name="−heap">10000M</option>

11 <option name="−testcomp19"/>

12

13 <rundefinition name="test−comp19_prop−coverage−error−call">
14 <propertyfile>../sv−benchmarks/c/properties/coverage−error−call.prp</propertyfile>
15 </rundefinition>

16

17 <rundefinition name="test−comp19_prop−coverage−branches">
18 <propertyfile>../sv−benchmarks/c/properties/coverage−branches.prp</propertyfile>
19 </rundefinition>

20

21

22 <tasks name="ReachSafety−Arrays">
23 <includesfile>../sv−benchmarks/c/ReachSafety−Arrays.set</includesfile>
24 <option name="−32"/>

25 </tasks>

26 <tasks name="ReachSafety−BitVectors">
27 <includesfile>../sv−benchmarks/c/ReachSafety−BitVectors.set</includesfile>
28 <option name="−32"/>

29 </tasks>

30 <tasks name="ReachSafety−ControlFlow">
31 <includesfile>../sv−benchmarks/c/ReachSafety−ControlFlow.set</includesfile>
32 <option name="−32"/>

33 </tasks>

34 <tasks name="ReachSafety−ECA">
35 <includesfile>../sv−benchmarks/c/ReachSafety−ECA.set</includesfile>
36 <option name="−32"/>

37 </tasks>

38 <tasks name="ReachSafety−Floats">
39 <includesfile>../sv−benchmarks/c/ReachSafety−Floats.set</includesfile>
40 <option name="−32"/>

41 </tasks>

42 <tasks name="ReachSafety−Heap">
43 <includesfile>../sv−benchmarks/c/ReachSafety−Heap.set</includesfile>
44 <option name="−32"/>

45 </tasks>

46 <tasks name="ReachSafety−Loops">
47 <includesfile>../sv−benchmarks/c/ReachSafety−Loops.set</includesfile>
48 <option name="−32"/>

49 </tasks>

50 <tasks name="ReachSafety−Recursive">
51 <includesfile>../sv−benchmarks/c/ReachSafety−Recursive.set</includesfile>
52 <option name="−32"/>

53 </tasks>

54 <tasks name="ReachSafety−Sequentialized">
55 <includesfile>../sv−benchmarks/c/ReachSafety−Sequentialized.set</includesfile>
56 <option name="−32"/>

57 </tasks>

58

59 </benchmark>

Fig. 4 Benchmark definition benchmark-defs/coveritest.xml for test generator CoVeriTest

123

https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/testcomp19/benchmark-defs/coveritest.xml
https://cpachecker.sosy-lab.org/


842 D. Beyer

1 <?xml version="1.0" encoding="UTF−8" standalone="no"?>

2 <!DOCTYPE test−metadata SYSTEM "https://gitlab.com/sosy−lab/software/test−format/blob/master/test−metadata.dtd">
3 <test−metadata>
4 <sourcecodelang>C</sourcecodelang>

5 <producer>CPAchecker 1.8−svn 30375</producer>

6 <specification>COVER( init(main()), FQL(COVER EDGES(@DECISIONEDGE)) )</specification>

7 <programfile>../../sv−benchmarks/c/ntdrivers−simplified/cdaudio_simpl1.cil−1.c</programfile>

8 <programhash>eff1925cc737e819caaeac8669d2e9012af323aabffe91551e0a9b218d320618</programhash>

9 <entryfunction>main</entryfunction>

10 <architecture>32bit</architecture>

11 <creationtime>2019−02−06T01:13:08+01:00</creationtime>

12 </test−metadata>

Fig. 5 Meta data of a test suite from Test-Comp 2019 (taken from test suite 1bbef0df...zip)

1 <?xml version="1.0" encoding="UTF−8" standalone="no"?>

2 <!DOCTYPE testcase SYSTEM "https://gitlab.com/sosy−lab/software/test−format/blob/master/testcase.dtd">
3 <testcase>

4 <input>8</input>

5 <input>0</input>

6 <input>9</input>

7 <input>10</input>

8 <input>11</input>

9 <input>12</input>

10 </testcase>

Fig. 6 Test of a test suite from Test-Comp 2019 (taken from test suite 1bbef0df...zip)

cation, the test generator has to produce a test suite that
covers the test specification as much as possible. The test
suite functions as witness for the achieved coverage and
needs to be stored and evaluated. Test suites are stored in
a community-agreed test-suite format (https://gitlab.com/
sosy-lab/test-comp/test-format/-/tree/testcomp19). All test
suites that were produced in Test-Comp 2019 are archived at
Zenodo [9].

For example, the test suite thatCoVeriTest generated for
the above-mentioned test-generation task is directly accessi-
ble also on the Test-Compweb site (visit https://test-comp.so
sy-lab.org/2019/results/results-verified/, click on the score
(14) for columnCoVeriTest and rowcoverage-branches.
ReachSafety-ControlFlow, then in the table with the
detailed results click on the cell for column test-suite
and rowntdrivers-simplified/cdaudio_simpl1.
cil-1.yml, to obtain the file 1bbef0df...zip). The test suite
is contained in a directory test-suite/ inside the ZIP

Fig. 7 Coverage plot for the discussed test suite from Test-Comp 2019
(test suite 1bbef0df...zip); the diagram shows the number of tests pro-
cessed on the x-axis and the coverage in percent on the y-axis, that is,
a data point (100, 60) informs us that the first 100 tests cover 60 % of
the program’s branches

archive. The directory contains a file metadata.xml that
describes the test suite and one file test...xml for each
test (also called test vector). The meta-data file is shown
in Fig. 5; it provides information about the language of
the program, the producing engine (CoVeriTest is based on
CPAchecker), the test specification, the program path, the
SHA-256 hash of the program, the entry function, the data
model of the CPU for which the programwaswritten, and the
creation time stamp. The first test of the test suite is shown
in Fig. 6; it provides a sequence of test values to be fed into
the program.

The discussed test suite contains 212 tests. During the
test-validation run, the test validator takes the test suite and
executes each test of the program (feeding in the values from
the XML file). For the discussed test suite, the test generator
is assigned a score of 0.738, because the test suite covers
73.8% of all branches of the program. The increase in cov-
erage by each test is illustrated in Fig. 7.

Execution environment (g) The machines for running
the experiments were part of a compute cluster at LMU
Munich that consists of 168 machines; each test-generation
run was executed on an otherwise completely unloaded, ded-
icated machine, in order to achieve precise measurements.
Each machine had one Intel Xeon E3-1230 v5 CPU, with
8 processing units each, a frequency of 3.4 GHz, 33GB of
RAM, and a GNU/Linux operating system (x86_64-linux,
Ubuntu 18.04 with Linux kernel 4.15). Further technical
parameters of the competition machines are available in the
file README.md of the repository that also contains the

123

https://test-comp.sosy-lab.org/2019/results/fileByHash/1bbef0dfff1037b564dadc304cb4b070b58e2e23845e57139cda12c04de21fe9.zip
https://test-comp.sosy-lab.org/2019/results/fileByHash/1bbef0dfff1037b564dadc304cb4b070b58e2e23845e57139cda12c04de21fe9.zip
https://gitlab.com/sosy-lab/test-comp/test-format/-/tree/testcomp19
https://gitlab.com/sosy-lab/test-comp/test-format/-/tree/testcomp19
https://cpachecker.sosy-lab.org/
https://test-comp.sosy-lab.org/2019/results/results-verified/
https://test-comp.sosy-lab.org/2019/results/results-verified/
https://cpachecker.sosy-lab.org/
https://test-comp.sosy-lab.org/2019/results/fileByHash/1bbef0dfff1037b564dadc304cb4b070b58e2e23845e57139cda12c04de21fe9.zip
https://test-comp.sosy-lab.org/2019/results/fileByHash/1bbef0dfff1037b564dadc304cb4b070b58e2e23845e57139cda12c04de21fe9.zip
https://cpachecker.sosy-lab.org/
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/testcomp19/README.md


First international competition on software testing 843

Table 5 Competition candidates
with tool references and
representing jury members

Participant Ref. Jury Member Affiliation

CoVeriTest [11,28] Marie-Christine Jakobs LMU Munich, Germany

CPA/Tiger- MGP [15,33] Sebastian Ruland TU Darmstadt, Germany

Esbmc- bkind [21,22] Rafael Menezes Federal U. of Amazonas, Brazil

Esbmc- falsif [21] Mikhail Gadelha University of Southampton, UK

FairFuzz [32] Caroline Lemieux University of California at Berkeley, USA

Klee [17] Cristian Cadar Imperial College London, UK

PRTest [31] Thomas Lemberger LMU Munich, Germany

Symbiotic [18,19] Martina Vitovská Masaryk U., Czechia

VeriFuzz [20] Raveendra Kumar M. Tata Consultancy Services, India

benchmark definitions. The job-distribution system Veri-

fierCloud
16 was used to distribute, install, run, and clean-up

test-generation runs, and to collect the results.

7 Results

For the first time, the competition Test-Comp 2019 presents
the state of the art in fully automatic test-generation for
whole C programs, using a developer-involved compara-
tive evaluation based on controlled experiments. The results
help in understanding the current achievements of the test-
generation research, in terms of effectiveness (test coverage,
as accumulated in the score) and efficiency (resource con-
sumption in terms of CPU time). All results mentioned in
this article were inspected and approved by the participants.
Participating tools. The automatic test generators that par-
ticipated in the first edition of Test-Comp are listed in Table 5.
The table provides for each of the 9 participating systems the
test-generator name (links to the project web site in the PDF
version of this article), references to system descriptions, and
the representing jury member, with affiliation).
Quantitative results. Table 6 presents the quantitative
overview of all tools and all categories. The head row men-
tions the category and the number of test-generation tasks in
that category. The tools are listed in alphabetical order; every
table row lists the scores of one test generator.We indicate the
top three candidates by formatting their scores in bold face
and in larger font size. More information (including inter-
active tables, quantile plots for every category, and also the
raw data in XML format) is available on the competition
web site 17 and in the results artifacts (see Table 3). Table 7
reports the top three test generators for each category. The
consumed runtime (column ‘CPU Time’) is given in hours,
and the consumed energy (column ‘Energy’) is given in
kWh.

16 https://vcloud.sosy-lab.org
17 https://test-comp.sosy-lab.org/2019/results

Table 6 Quantitative overview: main categories

Table 7 Overview of the top three verifiers for each category (CPU
time in h, with two significant digits)

Rank Test generator Score CPU Energy
Time
(in h) (in kWh)

Cover-Error

1 VeriFuzz 595 15 .18

2 Klee 499 4.9 .040

3 CoVeriTest 397 8.7 .080

Cover-Branches

1 VeriFuzz 1238 430 5.5

2 Klee 1226 310 2.9

3 CoVeriTest 1153 340 3.9

Overall

1 VeriFuzz 1951 440 5.7

2 Klee 1764 320 2.9

3 CoVeriTest 1524 350 4.0

123

https://cpachecker.sosy-lab.org/
https://www.es.tu-darmstadt.de/testcomp19
http://www.esbmc.org/
http://www.esbmc.org/
https://github.com/carolemieux/afl-rb
http://klee.github.io/
https://github.com/sosy-lab/tbf
https://github.com/staticafi/symbiotic
https://www.tcs.com/creating-a-system-of-systems
https://vcloud.sosy-lab.org
https://test-comp.sosy-lab.org/2019/results
https://www.tcs.com/creating-a-system-of-systems
http://klee.github.io/
https://cpachecker.sosy-lab.org/
https://www.tcs.com/creating-a-system-of-systems
http://klee.github.io/
https://cpachecker.sosy-lab.org/
https://www.tcs.com/creating-a-system-of-systems
http://klee.github.io/
https://cpachecker.sosy-lab.org/


844 D. Beyer

Fig. 8 Quantile functions for category C-Overall; each quantile func-
tion illustrates the quantile (x-coordinate) of the score points obtained
by test-generation runs for a certain minimal number of test-generation

tasks (y-coordinate); the graphs are decorated with symbols to make
them better distinguishable without color

Score-based quantile functions.We use score-based quan-
tile functions (see [14], Sect. 7.7 and 7.8, and [4], pages 899–
900) for quality assessment, because these visualizations
make it easier to understand the results of the comparative
evaluation. The web site 17 and the results artifact (Table
3) include such a plot for each category. As example, we
show the plot for category C-Overall (all test-generation
tasks) in Fig. 8. All 9 test generators participated in category
C-Overall, for which the quantile plot shows the overall per-
formance over all categories (scores for meta categories are
normalized, see Sect. 5).

Generation of score-based quantile plots. For the score
calculation, we have computed a function that maps each
test-generation task to the coverage (error coverage or branch
coverage) of the test suite that was generated for this
test-generation task and another function to map each test-
generation task to the achieved normalized coverage score.
Now, we sort the pairs 〈test-generation task, achieved nor-
malized score〉 by the score in descending order, and accumu-
late the score and test-generation tasks. The pairs 〈cumulative
score, number test-generation tasks〉 define the quantile
function, which maps an achieved normalized score to the
minimal number of test-generation tasks that are needed to
achieve this coverage score with the given test suite. (Note
that quantile plots compare quantiles and not individual test-
generation tasks, that is, one cannot tell from a quantile plot
the performance on a certain single test-generation task.)
Plots of functions like this can easily be generated using tools
like gnuplot.18

18 http://www.gnuplot.info

Table 8 Consumed resources for one Test-Comp 2019 execution
(rounded to three significant digits)

Resource Test-Suite Test-Suite
Generation Validation

Runs 21204 21204

CPU Time 122 d 31.1d

Energy 32.1kW h

Interpretation of data points.A data point (x, y) for a test
generator tells us that the tool needed y test-generation tasks
to achieve the score of x score points (cumulative, normal-
ized coverage values). For example, the quantile function for
VeriFuzz contains the pair (1802.9, 1000), which means
that VeriFuzz needs at least 1000 test-generation tasks to
achieve a coverage of 1802.9 score points. Such plots make
it easy to compare the performance of different test genera-
tors, because the graphs are monotonically increasing. The
lower and the more to the right a graph is drawn, the better
is the test generator.

Overall quality measured in scores (Right end of graph).
VeriFuzz is the winner of this category: the x-coordinate of
the right-most data point represents the highest total score
(and thus, the total value) of the completed test-generation
work (cf. Tables 6 and 7; right-most x-coordinates match the
score values in the tables). The ranking can be read from the
plot of the quantile functions from right to left: The right-
most data point for VeriFuzz is 1951, for Klee 1764, for
CoVeriTest 1524, and so on.
Consumed Resources. One complete test-generation exe-
cution of the competition consisted of 21204 single test-

123

http://www.gnuplot.info
https://www.tcs.com/creating-a-system-of-systems
https://www.tcs.com/creating-a-system-of-systems
https://www.tcs.com/creating-a-system-of-systems
http://klee.github.io/
https://cpachecker.sosy-lab.org/


First international competition on software testing 845

generation runs (see Table 8). The total CPU time was
122 days and the consumed energy 32.1 kWh for one com-
plete competition run for test generation (without validation).
Test-suite validation consisted of 21204 single test-suite val-
idation runs. The total consumed CPU time was 31.1 days.
Each tool was executed several times, in order to make sure
no installation issues occur during the execution, and thus,
the total consumed resources including pre-runs were a mul-
tiple of the above-mentioned amounts of resources.

8 Conclusion and future plans

Test-Comp 2019 gave an overview of the state of the art
in automatic test generation for C programs. This report
describes the organizational aspects of the 1st International
Competition on Software Testing (Test-Comp 2019), and the
qualitative and quantitative results of the comparative eval-
uation. The competition attracted nine participating teams
from six countries. The feedback from the testing commu-
nity was positive, and the plan is to hold the competition
on software testing annually from now on. We hope that
the introduced standards for marking input values, specify-
ing the test-coverage criteria, and writing the generated test
suites encourages developers of test generators to apply those
standards, in order to deliver tools that are easy to compare
and use as components in quality assurance. For the future,
the community has plans to increase the number and diver-
sity of the benchmark set, experiment with different time
budgets, reduce the size of the generated test suites, include
test-generation tasks for Java programs, and extend the cat-
egories toward other coverage criteria (e.g., MC/DC) and
mutation testing.

Data Availability Statement The test-generation tasks and results of
the competition are published at Zenodo, as described in Table 3. All
components and data that are necessary for reproducing the competition
are available in public version repositories, as specified in Table 2.
Furthermore, the results are presented online on the competition web
site for easy access: https://test-comp.sosy-lab.org/2019/results

Funding This work was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG)- 418257054 (Coop). Open Access was funded by
Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution, and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H.,
Hartmanns, A., Huisman, M., Kordon, F., Nagele, J., Sighireanu,
M., Steffen, B., Suda, M., Sutcliffe, G., Weber, T., Yamada, A.:
TOOLympics 2019: An overview of competitions in formal meth-
ods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

2. Beyer, D.: Competition on software verification (SV-COMP). In:
Proc. TACAS. pp. 504–524. LNCS 7214, Springer (2012). https://
doi.org/10.1007/978-3-642-28756-5_38

3. Beyer, D.: Second competition on software verification (Summary
of SV-COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795,
Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_43

4. Beyer, D.: Reliable and reproducible competition results with
BenchExec and witnesses (Report on SV-COMP 2016). In: Proc.
TACAS. pp. 887–904. LNCS 9636, Springer (2016). https://doi.
org/10.1007/978-3-662-49674-9_55

5. Beyer, D.: Automatic verification of C and Java programs: SV-
COMP 2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_9

6. Beyer, D.: Competition on software testing (Test-Comp). In: Proc.
TACAS (3). pp. 167–175. LNCS 11429, Springer (2019). https://
doi.org/10.1007/978-3-030-17502-3_11

7. Beyer, D.: Results of the 1st international competition on software
testing (test-comp 2019). Zenodo (2020). https://doi.org/10.5281/
zenodo.3856661

8. Beyer, D.: SV-Benchmarks: benchmark set of the 1st Intl. competi-
tion on software testing (Test-comp 2019). Zenodo (2020). https://
doi.org/10.5281/zenodo.3856478

9. Beyer, D.: Test suites from test-comp 2019 test-generation tools.
Zenodo (2020). https://doi.org/10.5281/zenodo.3856669

10. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R.,Majumdar, R.:
Generating tests from counterexamples. In: Proc. ICSE. pp. 326–
335. IEEE (2004). https://doi.org/10.1109/ICSE.2004.1317455

11. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based
testing. In: Proc. FASE. pp. 389–408. LNCS 11424, Springer
(2019). https://doi.org/10.1007/978-3-030-16722-6_23

12. Beyer, D., Lemberger, T.: Software verification: testing vs. model
checking. In: Proc. HVC. pp. 99–114. LNCS 10629, Springer
(2017). https://doi.org/10.1007/978-3-319-70389-3_7

13. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution
and coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE
(2019). https://doi.org/10.1109/ASE.2019.00105

14. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: require-
ments and solutions. Int. J. Softw. Tools Technol. Transfer 21(1),
1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

15. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein,
A., Apel, S., Beyer, D.: Facilitating reuse in multi-goal test-suite
generation for software product lines. In: Proc. FASE. pp. 84–99.
LNCS 9033, Springer (2015). https://doi.org/10.1007/978-3-662-
46675-9_6

16. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems
programs. In: Proc. OSDI. pp. 209–224. USENIX Association
(2008)

17. Cadar, C., Nowack, M.: Klee symbolic execution engine in 2019
(competition contribution). Int. J. Softw. Tools Technol. Transf.
(2020). https://doi.org/10.1007/s10009-020-00570-3

123

https://test-comp.sosy-lab.org/2019/results
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.5281/zenodo.3856661
https://doi.org/10.5281/zenodo.3856661
https://doi.org/10.5281/zenodo.3856478
https://doi.org/10.5281/zenodo.3856478
https://doi.org/10.5281/zenodo.3856669
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3


846 D. Beyer

18. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory
safety checking. In: Proc. SPIN. pp. 115–132. Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_7

19. Chalupa, M., Vitovska, M., Jašek, T., Šimáček, M., Strejček, J.:
Symbiotic 6: generating test-cases by slicing and symbolic execu-
tion (competition contribution). Int. J. Softw.ToolsTechnol. Transf.
(2020). https://doi.org/10.1007/s10009-020-00573-0

20. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz:
Program-aware fuzzing (competition contribution). In: Proc.
TACAS (3). pp. 244–249. LNCS 11429, Springer (2019). https://
doi.org/10.1007/978-3-030-17502-3_22

21. Gadelha, M.R., Menezes, R., Cordeiro, L.: Esbmc 6.1: automated
test-case generation using bounded model checking (competition
contribution). Int. J. Softw. Tools Technol. Transf. (2020). https://
doi.org/10.1007/s10009-020-00571-2

22. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in
bounded model checking of C programs via k-induction. Int. J.
Softw. Tools Technol. Transf. 19(1), 97–114 (2017). https://doi.
org/10.1007/s10009-015-0407-9

23. Godefroid, P., Sen, K.: Combining model checking and testing.
In: Handbook of Model Checking, pp. 613–649. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_19

24. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H.,
Baresel, A., Roper, M.: Testability transformation. IEEE Trans.
Software Eng. 30(1), 3–16 (2004). https://doi.org/10.1109/TSE.
2004.1265732

25. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

26. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.,
Păsăreanu, C.S.: Rigorous examination of reactive systems. the
RERS challenges 2012 and 2013. Int. J. Softw. Tools Technol.
Transfer 16(5), 457–464 (2014). https://doi.org/10.1007/s10009-
014-0337-y

27. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: a
program verification competition. STTT 17(6), 647–657 (2015).
https://doi.org/10.1007/s10009-015-0396-8

28. Jakobs, M.C.: CoVeriTest: interleaving value and predicate analy-
sis for test-case generation (competition contribution). Int. J. Softw.
Tools Technol. Transf. (2020). https://doi.org/10.1007/s10009-
020-00572-1

29. Kifetew, F.M., Devroey, X., Rueda, U.: Java unit-testing tool com-
petition: Seventh round. In: Proc. SBST. pp. 15–20. IEEE (2019).
https://doi.org/10.1109/SBST.2019.00014

30. King, J.C.: Symbolic execution and program testing. Commun.
ACM 19(7), 385–394 (1976). https://doi.org/10.1145/360248.
360252

31. Lemberger, T.: Plain random test generation with PRTest (compe-
tition contribution). Int. J. Softw. Tools Technol. Transf. (2020).
https://doi.org/10.1007/s10009-020-00568-x

32. Lemieux, C., Sen, K.: FairFuzz-TC: A fuzzer targeting rare
branches (competition contribution). Int. J. Softw. Tools Technol.
Transf. (2020). https://doi.org/10.1007/s10009-020-00569-w

33. Ruland, S., Lochau, M., Fehse, O., Schürr, A.: CPA/Tiger-MGP:
test-goal set partitioning for efficient multi-goal test-suite genera-
tion (competition contribution). Int. J. Softw.ToolsTechnol. Transf.
(2020). https://doi.org/10.1007/s10009-020-00574-z

34. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: a
competitor’s perspective, part 2. IEEE Sec Privacy 14(1), 76–81
(2016). https://doi.org/10.1109/MSP.2016.14

35. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community
infrastructure for logic solving. In: Proc. IJCAR, pp. 367–373.
LNCS 8562, Springer (2014). https://doi.org/10.1007/978-3-319-
08587-6_28

36. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

37. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 1.18. Zenodo
(2019). https://doi.org/10.5281/zenodo.2561835

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/s10009-020-00573-0
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/s10009-020-00572-1
https://doi.org/10.1007/s10009-020-00572-1
https://doi.org/10.1109/SBST.2019.00014
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/s10009-020-00569-w
https://doi.org/10.1007/s10009-020-00574-z
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.5281/zenodo.2561835

	First international competition on software testing
	Abstract
	1 Introduction
	2 Organizational classification and schedule
	3 Rules and definitions
	4 Benchmark programs and categories
	5 Scoring schema
	6 Components for reproducibility
	7 Results
	8 Conclusion and future plans
	References




