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Software Verification:
10th Comparative Evaluation (SV-COMP 2021)

Dirk Beyer B

LMU Munich, Munich, Germany

Abstract. SV-COMP 2021 is the 10th edition of the Competition on
Software Verification (SV-COMP), which is an annual comparative eval-
uation of fully automatic software verifiers for C and Java programs.
The competition provides a snapshot of the current state of the art in
the area, and has a strong focus on reproducibility of its results. The
competition was based on 15 201 verification tasks for C programs and
473 verification tasks for Java programs. Each verification task consisted
of a program and a property (reachability, memory safety, overflows,
termination). SV-COMP 2021 had 30 participating verification systems
from 27 teams from 11 countries.

Keywords: Formal Verification · Program Analysis · Competition ·
Software Verification · Verification Tasks · Benchmark · C Language ·
Java Language · SV-Benchmarks

1 Introduction

Among several other objectives, the Competition on Software Verification (SV-
COMP, https://sv-comp.sosy-lab.org/2021) showcases the state of the art in the
area of automatic software verification. This edition of SV-COMP is already the
10th edition of the competition and presents again an overview of the currently
achieved results by tool implementations that are based on the most recent ideas,
concepts, and algorithms for fully automatic verification. This competition report
describes the (updated) rules and definitions, presents the competition results,
and discusses some interesting facts about the execution of the competition
experiments. The objectives of the competitions were discussed earlier (1-4 [16])
and extended over the years (5-6 [17]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

This report extends previous reports on SV-COMP [10, 11, 12, 13, 14, 15, 16, 17].
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3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results,

4. accelerate the transfer of new verification technology to industrial practice
by identifying the strengths of the various verifiers on a diverse set of tasks,

5. educate PhD students and others on performing reproducible benchmarking,
packaging tools, and running robust and accurate research experiments, and

6. provide research teams that do not have sufficient computing resources with
the opportunity to obtain experimental results on large benchmark sets.

The previous report [17] discusses the outcome of the SV-COMP competition
so far with respect to these objectives.

Related Competitions. Competitions are an important evaluation method
and there are many competitions in the field of formal methods. We refer to
the previous report [17] for a more detailed discussion and give here only the
references to the most related competitions [9, 19, 55, 56].

Quick Summary of Changes. We strive to continuously improve the compe-
tition, and this report describes the changes of the last year. In the following
we list a brief summary of new items in SV-COMP 2021:

• SPDX identification of licenses in SV-Benchmarks collection
• WitnessLint: New checker for syntactical validity of verification witnesses
• Upgrade of the task-definition format to version 2.0
• Addition of several verification tasks and whole new sub-categories to the

SV-Benchmarks collection
• Elimination of competition-specific functions __VERIFIER_error and
__VERIFIER_assume from the verification tasks (and rules)

• Change in scoring schema: Unconfirmed results not counted anymore (when
validation was applied)

• CoVeriTeam: New tool that can be used to remotely execute verification
runs on the competition machines

• Automatic participation of previous verifiers

2 Organization, Definitions, Formats, and Rules

Procedure. The overall organization of the competition did not change in com-
parison to the earlier editions [10, 11, 12, 13, 14, 15, 16, 17]. SV-COMP is an open
competition (also known as comparative evaluation), where all verification tasks
are known before the submission of the participating verifiers, which is necessary
due to the complexity of the C language. The procedure is partitioned into the
benchmark submission phase, the training phase, and the evaluation phase. The
participants received the results of their verifier continuously via e-mail (for
pre-runs and the final competition run), and the results were publicly announced
on the competition web site after the teams inspected them. The Competition
Jury oversees the process and consists of the competition chair and one member
of each participating team. Team representatives of the jury are listed in Table 5.
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Table 1: Tools for witness-based result validation (validators) and witness linter

Validator References Represent./Developer Affiliation

CPAchecker [22, 23, 25] Martin Spiessl LMU Munich, Germany
UAutomizer [22, 23] Daniel Dietsch Uni Freiburg, Germany
CPA-w2t [24] Thomas Lemberger LMU Munich, Germany
FShell-w2t [24] Michael Tautschnig Queen Mary U. of London, UK
NITWIT [78] Philipp Berger RWTH Aachen, Germany
MetaVal [29] Martin Spiessl LMU Munich, Germany
WitnessLint Sven Umbricht LMU Munich, Germany

License Requirements. Starting 2018, SV-COMP required that the verifier
must be publicly available for download and has a license that

(i) allows reproduction and evaluation by anybody (incl. results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows any kind of (re-)distribution of the unmodified verifier archive.

During the qualification phase, when the jury members inspect the verifier
archives, several issues with licenses (missing licenses, incompatibilities) were
detected that the developers were able to address the issues on time.

With SV-COMP 2021, the community started the process of making the
benchmark collection REUSE compliant (https://reuse.software) by adding SPDX
license identifiers (https://spdx.dev). A few directories are properly labeled al-
ready, and continuous-integration checks with REUSE ensure that new con-
tributions adhere to the standard.

Validation of Results. This time, the validation of the verification results was
done by seven validation tools, which are listed in Table 1, including references to
literature. The validators CPAchecker and UAutomizer support the competition
since the beginning of its result validation in 2015. Execution-based validation was
added in 2018 using CPA-w2t and FShell-w2t. Two new validators participated
since the previous SV-COMP in 2020: Nitwit and MetaVal. A few categories
were still excluded from validation because no validators were available for
some types of programs or properties.

For SV-COMP 2021, the new validator WitnessLint was added for vali-
dating witnesses regarding their syntax. It checks the witnesses produced by
the verification tools against the specification of the format for verification
witnesses (https://github.com/sosy-lab/sv-witnesses/tree/svcomp21). For example,
WitnessLint ensures that a verification witness is a proper XML/GraphML
file and contains the required meta data. This means that the validators can
focus on the validation of the verification result, assuming that the verification
witness is syntactically valid. If the witness linter deems a verification witness
as syntactically invalid, then the answers of the result validators are ignored
and the result is not counted as confirmed.

Task-Definition Format 2.0. The format for the task definitions in
the SV-Benchmarks repository was recently extended to include a set of

https://reuse.software
https://spdx.dev
https://github.com/sosy-lab/sv-witnesses/tree/svcomp21
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options that can carry information from the verification task to the verifi-
cation tool. SV-COMP 2021 used the task-definition format in version 2.0
(https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0).
More details can be found in the report for Test-Comp 2021 [19].

Properties. Please see the 2015 competition report [13] for the definition of
the properties and the property format. All specifications are available in the
directory c/properties/ of the benchmark repository.

Categories. The updated category structure is illustrated by Fig. 1. The
categories are also listed in Tables 7 and 8, and described in detail
on the competition web site (https://sv-comp.sosy-lab.org/2021/benchmarks.php).
Compared to the category structure for SV-COMP 2020, we added
the sub-categories XCSP and Combinations to category ReachSafety, and
the sub-categories DeviceDriversLinux64Large ReachSafety, uthash MemSafety,
uthash NoOverflows, and uthash ReachSafety to category SoftwareSystems.

Another effort was to integrate some of the Juliet benchmark tasks [31]
into the SV-Benchmarks collection. We requested a license for the Juliet
programs that properly clarifies the license terms also outside the USA. We
thank our colleagues from NIST for releasing their Juliet benchmark (which
is declared as public domain) under the Creative Commons license CC0-1.0
(https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/LICENSES/CC0-1.0.txt).
SV-COMP 2021 used many verification tasks from Juliet, in particular
for the memory-safety properties CWE121 (stack-based buffer overflow),
CWE401 (memory leak), CWE415 (double free), CWE476 (null-pointer
dereference), and CWE590 (free memory that is not on the heap) (see
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/c/MemSafety-Juliet.set).

All those new contributions to the benchmark collection lead to the growth
of the number of verification tasks from 11 052 in SV-COMP 2020 to 15 201
in SV-COMP 2021.

Verification Tasks. The previous verification tasks and competition rules used
special definitions for the functions __VERIFIER_error and __VERIFIER_assume.
These special definitions were found to be unintuitive and inconsistent with ex-
pectations in the verification community, and repeatedly caused confusion among
participants. A call of function __VERIFIER_error() was defined to never return.
A call of function __VERIFIER_assume(p) was defined such that if expression p
evaluates to false, then the function loops forever, otherwise the function returns
without any side effects. This led to unintended interactions with other properties.

We eliminated these two functions in two steps. In the first step, each
function call was replaced by a C-code implementation of the intended be-
havior. In most of the cases, __VERIFIER_error(); was replaced by the C code
reach_error(); abort();, where reach_error is a ‘normal’ function, i.e., one
whose interpretation follows the C standard [3].

Eliminating __VERIFIER_assume was more complicated: In some
tasks for property memory-cleanup, __VERIFIER_assume(p); was re-
placed by the C code assume_cycle_if_not(p);, which is implemented

https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/c/properties/
https://sv-comp.sosy-lab.org/2021/benchmarks.php
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/LICENSES/CC0-1.0.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/c/MemSafety-Juliet.set
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Fig. 1: Category structure for SV-COMP 2021; category C-FalsificationOverall
contains all verification tasks of C-Overall without Termination; Java-Overall con-
tains all Java verification tasks; compared to SV-COMP 2020, there are two new
sub-categories in ReachSafety and four new sub-categories in SoftwareSystems
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Table 2: Scoring schema for SV-COMP 2021 (new: no point for unconfirmed
correct results anymore)
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True incorrect −32 Incorrect program reported as correct (wrong proof)

TASK

VERIFIER
true-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0
unknown

-16
false

2true (witness confirmed)

0unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32true

0

unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 2: Visualization of the scoring schema for the reachability property (adjusted
from a previous report [15])

as if (!p) while(1);, while for other tasks, __VERIFIER_assume(p);
was replaced by assume_abort_if_not(p);, which is implemented as
if (!p) abort();. The solution nicely illustrates the problem of the spe-
cial semantics: Consider property memory-cleanup, which requires that all
allocated memory is deallocated before the program terminates. Here, the
desired behavior of a failing assume statement would be that the program
does not terminate (and does not unintendedly violate the memory-cleanup
property). Now consider property termination, which requires that every
path finally reaches the end of the program. Here, the desired behavior of a
failing assume statement would be that the program terminates (and does
not unintendedly violate the termination property).

In the second step, the specifications for functions __VERIFIER_error and
__VERIFIER_assume were removed from the competition rules (because no such
functions exist anymore in the SV-Benchmarks collection).

Scoring Schema and Ranking. Table 2 provides an overview and Fig. 2 visu-
ally illustrates the score assignment for the reachability property as an example.
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The scoring schema was changed regarding the special rule for unconfirmed
correct results for expected result True. There was a rule during the transi-
tioning phase to assign one point if the answer matches the expected result
but the witness was not confirmed. Now score points are only assigned if the
results got validated (or no validator was available).

As in the last years, the rank of a verifier was decided based on the sum
of points (normalized for meta categories). In case of a tie, the rank was de-
cided based on success run time, which is the total CPU time over all verifica-
tion tasks for which the verifier reported a correct verification result. Opt-out
from Categories and Score Normalization for Meta Categories was done as
described previously [11] (page 597).

3 Reproducibility

To allow independent reproduction of the SV-COMP results, we made all ma-
jor components that were used in the competition available in public version-
control repositories. An overview of the components that contribute to the
reproducible setup of SV-COMP is provided in Fig. 3, and the details are given
in Table 3. We refer to the SV-COMP 2016 report [14] for a description of
all components of the SV-COMP organization.

We have published the competition artifacts at Zenodo (see Table 4) to
guarantee their long-term availability and immutability. These artifacts comprise
the verification tasks, the competition results, the produced verification witnesses,
and the BenchExec package. The archive for the competition results includes the
raw results in BenchExec’s XML exchange format, the log output of the verifiers
and validators, and a mapping from file names to SHA-256 hashes. The hashes
of the files are useful for validating the exact contents of a file, and accessing
the files inside the archive that contains the verification witnesses.

Competition Workflow. The workflow of the competition is described in
the report for Test-Comp 2021 [19].

CoVeriTeam. The competition was for the first time supported by
CoVeriTeam [26] (https://gitlab.com/sosy-lab/software/coveriteam/), which is a
tool for cooperative verification. Among its many capabilities, it enables remote
execution of verification runs directly on the competition machines, which was
found to be a valuable service for trouble shooting.

4 Results and Discussion

The results of the competition experiments represent the state of the art in fully
automatic software-verification tools. The report shows the results, in terms of
effectiveness (number of verification tasks that can be solved and correctness of
the results, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time and CPU energy). The results are presented in the same
way as in last years, such that the improvements compared to last year are easy

https://gitlab.com/sosy-lab/software/coveriteam/
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(a) Verification Task

(e) Verification Run

(b) Benchmark Definition (c) Tool-Info Module (d) Verifier Archive

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 3: Benchmarking components of SV-COMP and competition’s execution flow
(same as for SV-COMP 2020)

Table 3: Publicly available components for reproducing SV-COMP 2021

Component Fig. 3 Repository Version

Verification Tasks (a) github.com/sosy-lab/sv-benchmarks svcomp21
Benchmark Definitions (b) gitlab.com/sosy-lab/sv-comp/bench-defs svcomp21
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.6
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2021 svcomp21
Benchmarking (e) github.com/sosy-lab/benchexec 3.6
Witness Format (f) github.com/sosy-lab/sv-witnesses svcomp21

Table 4: Artifacts published for SV-COMP 2021

Content DOI Reference

Verification Tasks 10.5281/zenodo.4459126 [20]
Competition Results 10.5281/zenodo.4458215 [18]
Verification Witnesses 10.5281/zenodo.4459196 [21]
BenchExec 10.5281/zenodo.4317433 [82]

to identify. The results presented in this report were inspected and approved by
the participating teams. We now discuss the highlights of the results.

Participating Verifiers. Table 5 provides an overview of the participat-
ing verification systems (see also the listing on the competition web site at
https://sv-comp.sosy-lab.org/2021/systems.php). Table 6 lists the algorithms and
techniques that are used by the verification tools.

Automatic Participation. To ensure that the comparative evaluation continues
to give an overview of the state of the art that is as broad as possible, a rule was
introduced before SV-COMP 2020 which enables the option for the organizer to
reuse systems that participated in previous years for the comparative evaluation.
This option was used three times in SV-COMP 2021: for Coastal, PredatorHP,
and SPF. Those participations are marked as ‘hors concours’ in Table 5.

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp21/c
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/tree/svcomp21
https://github.com/sosy-lab/benchexec/tree/3.6/benchexec/tools
https://gitlab.com/sosy-lab/sv-comp/archives-2021/tree/svcomp21/2021
https://github.com/sosy-lab/benchexec/tree/3.6
https://github.com/sosy-lab/sv-witnesses/tree/svcomp21
https://doi.org/10.5281/zenodo.4459126
https://doi.org/10.5281/zenodo.4458215
https://doi.org/10.5281/zenodo.4459196
https://doi.org/10.5281/zenodo.4317433
https://sv-comp.sosy-lab.org/2021/systems.php
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Table 5: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2ls [32, 63] Viktor Malík BUT, Brno, Czechia
Brick Lei Bu Nanjing U., China
Cbmc [60] Michael Tautschnig Queen Mary U. of London, UK
Coastal [79] (hors concours) –
CPA-BAM-BnB [4, 81] Vadim Mutilin ISP RAS, Russia
CPALockator [5, 6] Pavel Andrianov ISP RAS, Russia
CPAchecker [27, 41] Stephan Holzner LMU Munich, Germany
Dartagnan [48, 68] Hernán Ponce de León U. Bundeswehr Munich, Germany
Divine [8, 61] Henrich Lauko Masaryk U., Brno, Czechia
ESBMC-incr [36, 39] Felipe R. Monteiro Amazon Web Services, USA
ESBMC-kind [46, 47] Lucas Cordeiro U. of Manchester, UK
Frama-C [40] Martin Spiessl LMU Munich, Germany
Gazer-Theta [1, 74] Ákos Hajdu BME, Hungary
Goblint [73, 80] Simmo Saan U. of Tartu, Estonia
Java Ranger [76, 77] Soha Hussein U. of Minnesota, USA
JayHorn [59, 75] Hossein Hojjat U. of Tehran, Iran
Jbmc [37, 38] Peter Schrammel U. of Sussex / Diffblue, UK
JDart [62, 64] Falk Howar TU Dortmund, Germany
Korn [45] Gidon Ernst LMU Munich, Germany
Lazy-CSeq [57, 58] Omar Inverso Gran Sasso Science Institute, Italy
PeSCo [71, 72] Cedric Richter Paderborn U., Germany
Pinaka [35] Saurabh Joshi IIT Hyderabad, India
PredatorHP [54, 67] (hors concours) –
Smack [51, 70] Zvonimir Rakamaric U. of Utah, USA
SPF [65, 69] (hors concours) –
Symbiotic [33, 34] Marek Chalupa Masaryk U., Brno, Czechia
UAutomizer [52, 53] Matthias Heizmann U. of Freiburg, Germany
UKojak [44, 66] Dominik Klumpp U. of Freiburg, Germany
UTaipan [43, 49] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [2, 42] Priyanka Darke Tata Consultancy Services, India

Computing Resources. The resource limits were the same as in the previous
competitions [14]: Each verification run was limited to 8 processing units (cores),
15GB of memory, and 15min of CPU time. Witness validation was limited
to 2 processing units, 7GB of memory, and 1.5min of CPU time for violation
witnesses and 15min of CPU time for correctness witnesses. The machines
for running the experiments are part of a compute cluster that consists of
168 machines; each verification run was executed on an otherwise completely
unloaded, dedicated machine, in order to achieve precise measurements. Each
machine had one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4GHz, 33GB of RAM, and a GNU/Linux operating system
(x86_64-linux, Ubuntu 20.04 with Linux kernel 5.4). We used BenchExec [28]
to measure and control computing resources (CPU time, memory, CPU energy)
and VerifierCloud (https://vcloud.sosy-lab.org) to distribute, install, run, and
clean-up verification runs, and to collect the results. The values for time and

https://vcloud.sosy-lab.org
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Table 6: Algorithms and techniques that the competition candidates used
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VeriAbs 3 3 3 3 3 3 3 3



Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 411

energy are accumulated over all cores of the CPU. To measure the CPU energy,
we used CPU Energy Meter [30] (integrated in BenchExec [28]).

One complete verification execution of the competition consisted of
163 177 verification runs (each verifier on each verification task of the selected
categories according to the opt-outs), consuming 470 days of CPU time and
126 kWh of CPU energy (without validation). Witness-based result validation
required 961 919 validation runs (each validator on each verification task for cate-
gories with witness validation, and for each verifier), consuming 274 days of CPU
time. Each tool was executed several times, in order to make sure no installation
issues occur during the execution. Including preruns, the infrastructure managed
a total of 1.33 million verification runs consuming 4.16 years of CPU time, and
7.31 million validation runs consuming 3.84 years of CPU time.

Quantitative Results. Table 7 presents the quantitative overview of all tools
and all categories. The head row mentions the category, the maximal score
for the category, and the number of verification tasks. The tools are listed in
alphabetical order; every table row lists the scores of one verifier. We indicate
the top three candidates by formatting their scores in bold face and in larger
font size. An empty table cell means that the verifier opted-out from the respec-
tive main category (perhaps participating in subcategories only, restricting the
evaluation to a specific topic). More information (including interactive tables,
quantile plots for every category, and also the raw data in XML format) is
available on the competition web site (https://sv-comp.sosy-lab.org/2021/results)
and in the results artifact (see Table 4).

Table 8 reports the top three verifiers for each category. The run time (column
‘CPU Time’) and energy (column ‘CPU Energy’) refer to successfully solved
verification tasks (column ‘Solved Tasks’). We also report the number of tasks for
which no witness validator was able to confirm the result (column ‘Unconf. Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results, i.e., reporting a counterexample
when the property holds (incorrect False) and claiming that the program fulfills
the property although it actually contains a bug (incorrect True), respectively.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [11, 28] because these visualizations make it eas-
ier to understand the results of the comparative evaluation. The web site
(https://sv-comp.sosy-lab.org/2021/results) and the results archive (see Table 4)
include such a plot for each (sub-)category. As an example, we show the plot for cat-
egory C-Overall (all verification tasks) in Fig. 4. A total of 10 verifiers participated
in category C-Overall, for which the quantile plot shows the overall performance
over all categories (scores for meta categories are normalized [11]). A more de-
tailed discussion of score-based quantile plots, including examples of what insights
one can obtain from the plots, is provided in previous competition reports [11, 14].

Alternative Rankings. The community suggested to report a couple of al-
ternative rankings that honor different aspects of the verification process as
complement to the official SV-COMP ranking. Table 9 is similar to Table 8, but

https://sv-comp.sosy-lab.org/2021/results
https://sv-comp.sosy-lab.org/2021/results
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Table 7: Quantitative overview over all results; empty cells represent opt-outs; an
asterisk after the tool name marks hors-concours participation
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2ls 3021 1100 0 414 1315 -7 1436 6219
Brick

Cbmc 3395 -725 486 279 872 565 2609 5289
CPA-BAM-BnB 491
CPALockator -819
CPAchecker 4764 2992 1050 531 1356 736 4356 12217
Dartagnan 309
Divine 2012 95 391 0 0 124 306 2083
ESBMC-incr -134
ESBMC-kind 4486 1281 37 317 832 694 2002 6656
Frama-C 172
Gazer-Theta

Goblint 777 46 156 331
Korn

Lazy-CSeq 1206
PeSCo 4526 878 4329 12208
Pinaka 3408 -200 669
PredatorHP* 2187
Smack 894
Symbiotic 3864 3125 0 373 1043 2001 2947 9268
UAutomizer 3502 1615 943 512 3019 359 3432 11769
UKojak 1768 925 0 441 0 298 1800 4332
UTaipan 2743 1436 937 506 0 282 3336 7676
VeriAbs 5771
Coastal* 298
Java Ranger 630
JayHorn 369
Jbmc 603
JDart 623
SPF* 409
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Table 8: Overview of the top-three verifiers for each category (measurement values for
CPU time and energy rounded to two significant digits)

Rank Verifier Score CPU CPU Solved Unconf. False Wrong
Time Energy Tasks Tasks Alarms Proofs
(in h) (in kWh)

ReachSafety
1 VeriAbs 5771 130 1.5 3 526 725
2 CPAchecker 4764 100 1.2 2 922 251 6
3 PeSCo 4526 53 0.48 2 820 272 7

MemSafety
1 Symbiotic 3125 1.6 0.021 370 8
2 CPAchecker 2992 7.8 0.069 3 092 0
3 UAutomizer 1615 4.1 0.046 160 2

ConcurrencySafety
1 Lazy-CSeq 1206 4.0 0.051 985 34
2 CPAchecker 1050 16 0.13 903 0 1
3 UAutomizer 943 9.6 0.087 775 176

NoOverflows
1 CPAchecker 531 1.2 0.012 366 3
2 UAutomizer 512 1.7 0.015 358 0
3 UTaipan 506 1.9 0.018 355 0

Termination
1 UAutomizer 3019 22 0.24 1 581 9
2 CPAchecker 1356 17 0.20 1 078 70 10
3 2ls 1315 2.5 0.021 977 363 3

SoftwareSystems
1 Symbiotic 2001 0.55 0.0075 1 024 128
2 Smack 894 14 0.14 1 362 58 2
3 PeSCo 878 27 0.27 1 484 234 1

FalsificationOverall
1 CPAchecker 4356 71 0.76 3 814 98 8
2 PeSCo 4329 47 0.41 3 798 106 9
3 UAutomizer 3432 30 0.30 1 585 215 1

Overall
1 CPAchecker 12217 190 2.1 9 835 514 18
2 PeSCo 12208 120 1.2 9 743 579 19
3 UAutomizer 11769 99 1.0 5 980 489 1 1
JavaOverall
1 Java Ranger 630 4.9 0.056 427 0
2 JDart 623 0.93 0.0093 437 0
3 Jbmc 603 0.22 0.0022 423 0

contains the alternative ranking categories Correct and Green Verifiers. Column
‘Quality’ gives the score in score points, column ‘CPU Time’ the CPU usage of
successful runs in hours, column ‘CPU Energy’ the CPU usage of successful runs
in kWh, column ‘Solved Tasks’ the number of correct results, column ‘Wrong Re-
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Fig. 4: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [11].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

Table 9: Alternative rankings for catagory Overall; quality is given in score
points (sp), CPU time in hours (h), kilo-watt-hours (kWh), wrong results in
errors (E), rank measures in errors per score point (E/sp), joule per score point
(J/sp), and score points (sp)

Rank Verifier Quality CPU CPU Solved Wrong Rank
Time Energy Tasks Results Measure

(sp) (h) (kWh) (E)

Correct Verifiers (E/sp)
1 UAutomizer 11 769 99 1.0 5 980 2 .00017
2 UKojak 4 332 46 0.48 2 476 1 .00023
3 CPAchecker 12 217 190 2.1 9 835 18 .0015
worst 48 .023

Green Verifiers (J/sp)
1 Symbiotic 9 268 21 0.26 4 999 16 100
2 2ls 6 219 26 0.24 3 372 12 140
3 Cbmc 5 289 26 0.31 5 596 52 210
worst 630

sults’ the sum of false alarms and wrong proofs in number of errors, and column
‘Rank Measure’ gives the measure to determine the alternative rank.
Correct Verifiers — Low Failure Rate. The right-most columns of Table 8 re-
port that the verifiers achieve a high degree of correctness (all top three ver-
ifiers in the C-Overall have less than 2‰ wrong results). The winners of cat-
egory Java-Overall produced not a single wrong answer. The first category in
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Table 10: New verifiers in SV-COMP 2020 and SV-COMP 2021

Verifier Language First Year Sub-categories

Frama-C C 2021 4
Gazer-Theta C 2021 9
Goblint C 2021 25
Korn C 2021 13
Brick C 2020 1
Dartagnan C 2020 5
Gacal C 2020 1

Coastal Java 2020 1
Java Ranger Java 2020 1
JDart Java 2020 1

Table 11: Confirmation rate of verification witnesses in SV-COMP 2021

Result True False

Total Confirmed Unconf. Total Confirmed Unconf.

2ls 2 252 2 245 99.7% 7 1 591 1 127 70.8% 464
Cbmc 3 875 3 498 90.3% 377 3 772 2 098 55.6% 1 674
CPAchecker 5 992 5 646 94.2% 346 4 357 4 189 96.1% 168
Divine 1 673 1 649 98.6% 24 1 317 986 74.9% 331
ESBMC-kind 4 954 4 901 98.9% 53 1 736 1 625 93.6% 111
PeSCo 5 973 5 570 93.3% 403 4 349 4 173 96.0% 176
Symbiotic 3 351 3 149 94.0% 202 2 166 1 850 85.4% 316
UAutomizer 4 121 3 856 93.6% 265 2 348 2 124 90.5% 224
UKojak 1 816 1 796 98.9% 20 690 680 98.6% 10
UTaipan 2 602 2 542 97.7% 60 1 637 1 417 86.6% 220

Table 9 uses a failure rate as rank measure: number of incorrect results
total score , the number of

errors per score point (E/sp). We use E as unit for number of incorrect results
and sp as unit for total score. The worst result was 0.032E/sp in SV-COMP 2020
and is now improved to 0.023E/sp.
Green Verifiers — Low Energy Consumption. Since a large part of the cost of
verification is given by the energy consumption, it might be important to also
consider the energy efficiency. The second category in Table 9 uses the energy
consumption per score point as rank measure: total CPU energy

total score , with the unit J/sp.
The worst result from SV-COMP 2020 was 2 200 J/sp, now improved to 630 J/sp.
New Verifiers. To acknowledge the verification systems that participate for
the first or second time in SV-COMP, Table 10 lists the new verifiers (in
SV-COMP 2020 or SV-COMP 2021).

Verifiable Witnesses. Results validation is of primary importance in the compe-
tition. All SV-COMP verifiers are required to justify the result (True or False)
by producing a verification witness (except for those categories for which no wit-
ness validator is available). We used six independently developed witness-based
result validators and one witness linter (see Table 1).
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Fig. 5: Number of evaluated verifiers for each year (first-time participants on top)

Table 11 shows the confirmed versus unconfirmed results: the first column
lists the verifiers of category C-Overall, the three columns for result True reports
the total, confirmed, and unconfirmed number of verification tasks for which the
verifier answered with True, respectively, and the three columns for result False
reports the total, confirmed, and unconfirmed number of verification tasks for
which the verifier answered with False, respectively. More information (for all
verifiers) is given in the detailed tables on the competition web site and in the
results artifact; all verification witnesses are also contained in the witnesses
artifact (see Table 4). The verifiers 2ls and UKojak are the winners in terms
of confirmed results for expected results True and False, respectively. The
overall interpretation is similar to SV-COMP 2020 [17].

5 Conclusion

The 10th edition of the Competition on Software Verification (SV-COMP 2021)
had 30 participating verification systems from 11 countries (see Fig. 5 for the
participation numbers and Table 5 for the details). The competition does not only
execute the verifiers and collect results, but also validates the verification results
using verification witnesses. We used six independent validators to check the
results and a witness linter to check if the verification witnesses are syntactically
valid (Table 1). The number of verification tasks was increased to 15 201 in the
C category and to 473 in the Java category. The high quality standards of the
TACAS conference, in particular with respect to the important principles of
fairness, community support, and transparency are ensured by a competition jury
in which each participating team had a member. The results of our comparative
evaluation provide a broad overview of the state of the art in automatic software
verification. SV-COMP is instrumental in developing more reliable tools, as well
as identifying and propagating successful techniques for software verification.

Data Availability Statement. The verification tasks and results of the
competition are published at Zenodo, as described in Table 4. All compo-
nents and data that are necessary for reproducing the competition are avail-
able in public version repositories, as specified in Table 3. Furthermore, the
results are presented online on the competition web site for easy access:
https://sv-comp.sosy-lab.org/2021/results/.

https://sv-comp.sosy-lab.org/2021/results/
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