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Abstract. Software verifiers have different strengths and weaknesses,
depending on properties of the verification task. It is well-known that
combinations of verifiers via portfolio and selection approaches can help
to combine the strengths. In this paper, we investigate (a) how to easily
compose such combinations from existing, ‘off-the-shelf’ verification tools
without changing them and (b) how much performance improvement easy
combinations can yield, regarding the effectiveness (number of solved
problems) and efficiency (consumed resources). First, we contribute a
method to systematically and conveniently construct verifier combinations
from existing tools, using the composition framework CoVeriTeam. We
consider sequential portfolios, parallel portfolios, and algorithm selections.
Second, we perform a large experiment on 8883 verification tasks to
show that combinations can improve the verification results without
additional computational resources. All combinations are constructed
from off-the-shelf verifiers, that is, we use them as published. The result of
our work suggests that users of verification tools can achieve a significant
improvement at a negligible cost (only configure our composition scripts).
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1 Introduction

Automatic software verification has been an active area of research for many
decades and various tools and techniques have been developed to solve the problem
of verifying software [3,7,9,25,34,37]. The research has also been adopted in
practice [2,22, 24, 39]. Each tool and technique has its own strengths in specific
areas. In such a scenario, it becomes obvious to combine these tools to benefit
from the strengths of individual tools, leading to a ‘meta verifier’ that solves
more problems. Most current combination approaches are hardcoded, that is, the
choice of the tools and the way to combine them is specifically programmed.
We contribute a method to construct combinations in a systematic way,
independently from the set of tools to use. As for the types of combinations,
we considered sequential and parallel portfolio [36], and algorithm selection [47].
The combinations are composed and executed with the tool CoVerITEAM [15].!
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CoVERITEAM is a tool that is based on off-the-shelf atomic actors, which are
executable units based on tool archives. It provides a simple language to construct
tool combinations, and manages the download and execution of the existing tools
on the provided input. CoVErRITEAM provides a library of atomic actors for many
well-known and publicly available verification tools. A new verification tool can
be easily integrated into CoVERITEAM within a few minutes of effort.

For our experimental evaluation, we selected eight of the verification tools
that participated in the 10th competition on software verification [6]. We reused
the archives submitted to this competition, and composed combinations of three
types (sequential and parallel portfolio, algorithm selection) with 2, 3, 4, and 8
verification tools: in total 12 combinations. We evaluated these 12 combinations on
a large benchmark set consisting of 8 883 verification tasks in total and compared
the results of the combinations against the results of the existing tools.

We show that all three combination approaches can lead to considerable
improvements of the performance regarding effectiveness (number of correctly
solved instances) and efficiency (consumed resources).

Contributions. We make the following contributions:

1. We show how to conveniently construct combination approaches from off-the-
shelf verification tools in a modular manner, without changing the tools.

2. We perform an extensive comparative evaluation of sequential portfolio,
parallel portfolio, and algorithm selection approaches.

3. A reproduction package containing the tools and experiment data.

2 Improving Verification by Verifier Combinations

In this study, we explore different strategies for combining verifiers to improve
the overall verification effectiveness. We focus on the most commonly applied
black-box combinations (i.e., combinations that do neither require any changes to
the existing tools nor communication between verification tools) which we briefly
describe in the following.

Verifier Combinations. Existing strategies for combining verifiers can be
generally classified into one of the following three categories: sequential portfolios
[17,33,53], parallel portfolios [35,36,40], and algorithm selectors [8, 28,47, 48, 50].
We provide an overview over these composition strategies in Figs. 1 and 2.

Sequential Portfolio. Portfolios combine several verification algorithms by
executing them either sequentially or in parallel. A sequential portfolio (Fig. 1)
executes a set of verifiers sequentially by running one verifier after another. In
this setting, each verifier is assigned a specific time limit and the verifier runs
until it finds a solution or reaches the time limit. If the current verifier is able
to solve the given verification task, the sequential composition is stopped and
the solution is emitted. Otherwise, if a verifier runs into a timeout without, the
current algorithm is stopped and the next one is started. CPA-Seq [17, 53] and
Ultimate Automizer [33] are examples of sequential portfolios.
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Fig. 1: Sequential portfolio of verifiers. Each verifier runs for a certain amount of
time. If a verifier stops without computing a result (grey box), the next one is
started (white box with double borders).

Parallel Portfolio. In contrast to sequential portfolios, a parallel portfolio
(Fig. 2(a)) executes all verification algorithms in parallel, while sharing all system
resources like CPU time and memory. As soon as one algorithm solves the given
verification problem, the portfolio is stopped. Based on the assumption that
all verifiers provide only sound solutions, we can safely take the first solution
computed as the final result of the overall portfolio. PredatorHP [35,40] is an
example of a parallel portfolio.

Algorithm Selection. To reduce spending resources on unsuccessful verifiers,
algorithm selectors (Fig. 2(b)) are designed to select the verification algorithm
that is likely well suited to solve a given verification task. More precisely, the algo-
rithm selector analyzes the given verification problem for common characteristics
(typically program features like the existence of a loop or an array) and based on
these features, selects a verification algorithm likely suited for the given problem.
Then the selected verifier is executed. Algorithm selectors were recently explored
for selecting a task-dependent verification algorithm (e.g., in PeSCo [48, 50]) or a
complete verification strategy (e.g., in CPAchecker [8]).

The above combination types have their own advantages and limitations when
applied in real-world scenarios. While algorithm selectors omit the necessity of
sharing resources, the approach heavily relies on the used selection algorithm. If
the selection algorithm is not powerful enough or the selection task is too difficult,
the selector fails to identify a verifier equipped for the given task. Although
portfolios omit this problem by assigning the verification task to several verifiers,
each verifier gets less resources, which could lead to out-of-resource failures.

3 Construction of Verifier Combinations with CoVERITEAM

CoVEerITEAM [15] is a tool for creating and executing tool combinations for
cooperative verification [20]. It consists of a language for tool composition, and
an execution engine for this language. Tools are considered as verification actors
(verifiers, validators, testers, transformers), and the inputs consumed and outputs
produced by the tools as verification artifacts (programs, specifications, witnesses,
results). Verification artifacts are seen as basic objects, verification actors as
basic operations, and tool combinations as composition of these operations.
CoVERITEAM supports execution of most of the well known automated verifi-
cation tools that are publicly available. The composition operators supported by
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Fig. 2: Comparison of parallel portfolio and algorithm selection

CoVEeriTeEaMm are: SEQUENCE, PARALLEL, REPEAT, and ITE. SEQUENCE exe-
cutes the composed tools sequentially, PARALLEL in parallel, REPEAT repeatedly
till a termination condition is satisfied, ITE is an if-then-else that executes one

tool if the provided condition is true and otherwise the other. The work in this
paper uses SEQUENCE, PARALLEL, ITE, and a newly developed PORTFOLIO.

3.1 Verifier Based on Sequential Portfolio
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Fig. 3: Verifier based on sequential portfolio

Figure 3 shows the construction of a sequential portfolio of two verifiers
verifierl and verifier2 using CoVeErITEAM. This construction uses two kinds of
compositions: SEQUENCE and ITE. At the outermost level, it is a sequence
of verifierl and an actor that in itself is a composition—an ITE composition.
Let us call it ite verifier. When we execute this composition, first, verifierl is
executed and then ite verifier. ite verifier first checks if verifierl was successful
in verification or not (i.e., verdict ¢ {T, F'}). If verifierl was successful, then it
forwards the results, otherwise, verifier2 is executed and its results are taken.
This construction can be generalized to create sequential portfolios of arbitrary
sizes. We used it to create sequential portfolios of 2, 3, 4, and 8 verifiers.

3.2 Verifier Based on Parallel Portfolios

We developed a composition operator for parallel portfolio in CoVERrRITEAM. In
this composition, multiple tools are executed in parallel and the result of the
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one that succeeds first is taken. The composition consists of a set of verification
actors of the same type (verifiers, testers, etc.), and a success condition defined
over the artifacts produced by these actors. When one actor finishes, the success
condition is evaluated: if it holds then the output of this actor is taken and the
execution of the remaining actors is stopped. Otherwise, the portfolio waits for
the next actor to finish and repeats the check. If none of the actors produce the
output that satisfies the success condition, the result of the last one is taken.
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Figure 4 shows a parallel portfolio of two verifiers verifierl and verifier2. In this
case, both the verifiers are executed simultaneously. When one verifier finishes, its
result is checked for the success condition (i.e., verdict € {T, F'}). If the success
condition holds then the result is forwarded, otherwise, the result is discarded
and we wait for the second verifier to finish. Once a successful result is available,
the remaining executing verifiers are terminated. For our experiments, we created
parallel portfolios of 2, 3, 4, and 8 tools.

3.3 Verifier Based on Algorithm Selection

We designed and implemented a generic selection framework in CoVerITEAM for
selecting verifiers. The framework decomposes the algorithm-selection process into
two phases: (1) a feature-extraction phase, in which a feature encoder extracts a
set of predefined features for a given verification task (i.e., certain characteristics
that are believed to indicate difficulty for a verifier), and (2) selection to identify
an appropriate verifier based on the extracted features. Each phase is constructed
using CoVERITEAM actors (explained below in more detail). Figure 5 shows the
CoVERITEAM composition of a verifier based on algorithm selection.
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Fig. 5: Verifier based on algorithm selection

Feature Encoder. The first component of our framework is the feature encoder.
Given a verification task consisting of a program P and a specification S, the goal
of the feature encoder is to encode the problem into a meaningful feature-vector
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(F'V) representation, which we can later use to select a verification tool. Typically,
the representation encodes certain features of a program which might correlate
with the performance of a verifier such as the occurrence of specific loop pat-
terns [28] or variable types [29]. In this study, we encode verification problems via
a learning-based feature encoder by employing a pretrained CSTTransformer [50].
The CSTTransformer first parses a given program P into a simplified abstract
syntax tree (AST) representation. Afterwards, a specific type of neural network
processes the AST structure to produce a vector representation. The last en-
coding step is learned by pretraining the neural network on selecting various
verification tools. While this approach was originally developed to learn a vector
representation optimized for a specific verifier composition, the authors showed
that the learned encoder can be effectively reused across many new selection
tasks, often outperforming other hand-crafted feature encoders.

Selection of Verifiers Based on the Individual Difficulty of the Tasks.
The same task might be solved with one tool in a few seconds, while another is
not able to find a solution within the given resource constraints. Therefore, to
avoid wasting resources on tools that are not well suited for a given task, the
algorithm selector aims to predict the difficulty of a task before executing a tool.
Then, the tool that is predicted to be the best suited tool for the task is executed.

Similar to previous work [28, 50], we learn to predict the difficulty of task with
hardness models [55]. Based on the previously computed vector representation, a
hardness model learns to predict the hardness of a given task for a specific tool.
In our case, this reduces to a binary classification problem of predicting whether
a tool can solve a task or not. We address this by training logistic regression
classifiers. The classifier’s confidence that a verifier will fail a particular task then
determines the hardness of the task.

Now, given a set of hardness models —each accessing the hardness of a
verification task for a specific tool— a verification tool is selected for which the
task is likely easy (i.e., the respective model outputs the lowest hardness score).
The final selection is done by a comparator implemented in CoVERITEAM that
selects a tool by comparing the hardness scores.

3.4 Extensibility

To facilitate future research and the design of novel combinations, we implemented
all combination types such that they can be easily configured and extended. Ex-
tending a combination with a new verifier only requires an actor definition for
that verifier in CoVERITEAM. Afterwards, this actor can be put in a sequential or
parallel portfolio by adding it to the composition. While our algorithm selector
can be easily used with all tools employed during our experiments, extending
a combination based on algorithm selection with a new verifier requires a bit
more effort. However, by using hardness models together with a common feature
representation we simplified the process required for configuring algorithm selec-
tion. In fact, we are able to modify the set of verifiers to select from by simply
adding or removing individual hardness models. While previous approaches to
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Fig. 6: Subsets of verification tools used for composition

verifier selection often require training the complete selector from scratch, our
combination can be extended by training a single hardness model.? For training a
new model, we provide all training scripts that were used for training our hardness
models and a precomputed dataset of vector representations for SV-COMP 2021.
Therefore, to integrate a new tool in our algorithm selector, one only requires to
run the respective verifier once on (a subset of) the benchmark set. The results
then act as training examples.

4 Evaluation

We perform a thorough experimental evaluation on a large benchmark set in order
to show the potential of combinations. We address the following research questions
concerning the comparative evaluation of combinations against standalone tools:

RQ1. Can a CoVeriTEaM-based sequential portfolio of verifiers perform signifi-
cantly better than standalone tools with respect to
(a) number of solved verification tasks, and

(b) resource consumption?

RQ2. Can a CoVeriTeaM-based parallel portfolio of verifiers perform signifi-
cantly better than standalone tools with respect to
(a) number of solved verification tasks, and
(b) resource consumption?

RQ3. Can a CoVeriTEAM-based algorithm selection of verifiers perform signifi-
cantly better than standalone tools with respect to
(a) number of solved verification tasks, and

(b) resource consumption?

4.1 Experimental Setup

Selection of Existing Verifiers. We selected eight existing verification tools
that performed well in a recent competition on software verification (SV-COMP
2021) [6]. We excluded two verifiers from consideration: VeriABs [27] and
PeSCo [49]. VErIABs was excluded because its license does not allow us to
use it for scientific evaluation, and PESCo because it is a derivate of CPAchecker
that would not contribute to diversity of technology in the combinations. The
chosen set of verifiers used for the tool combinations is depicted in Fig. 6.

2 A single hardness model can be trained within a few minutes on a modern CPU.
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Tool Combinations. We evaluated twelve verifier combinations: for each of
sequential portfolio, parallel portfolio, and algorithm selection, we constructed
a combination of 2, 3, 4, and 8 verifiers. These variants of combinations with
different numbers of verifiers allowed us to quantify the influence of the number
of verifiers on the performance. We constructed these subsets of verifiers to
maximize the number of tasks (from our benchmark set) that can be solved by
at least one tool in the subset. For sequential portfolios, we additionally rank
the verifiers in descending order of their success on the benchmark. We used
the results from SV-COMP 2021 to achieve this. Figure 6 illustrates the sets of
verifiers that we composed in different types of combinations.

Execution Environment. Our experiments were executed on machines with
the following configuration: one 3.4 GHz CPU (IntelXeon E3-1230 v5) with
8 processing units (virtual cores), 33 GB RAM, operating system Ubuntu 20.04.
Each verification run (execution of one tool or combination on one verification
task) was limited to 8 processing units, 15 min of CPU time, and 15 GB memory.
This configuration is the same as the configuration used in SV-COMP 2021
allowing us to use the competition results of the standalone tools for comparison.

Benchmark Selection. Our benchmark set consists of all the verification tasks
with specification unreach-call from the open-source collection of verification
tasks SV-Benchmarks®. Each verification task consists of a program written in C
and a specification. The specification is a safety property describing that an error
location should never be reached. The benchmark set includes all verification
tasks of the competition categories ReachSafety and Concurrency, and a part
of the verification tasks in category SoftwareSystems. In total, there were 8 883
verification tasks in our benchmark set. We evaluated our combinations on the
version of the benchmark set that was used in SV-COMP 2021 (tag svcomp21).

Scoring Schema. We not only count the number of results of each kind* for the
verification tasks, but also the scores as used in the competition, because this
models what the community considers as quality. A verifier is rewarded score
points as follows: 2 score points for each correct proof, 1 score point for each
correct alarm, -32 score points for wrong proofs, and -16 score points for wrong
alarms. This schema has been used in SV-COMP [6] since a few years and has
been accepted by the verification community for judging the quality of results.

Resource Measurement and Benchmark Execution. We used the state-of-
the-art benchmarking framework BENcHEXEC [18] for executing our benchmarks.
It executes tools in isolation, reports the resource consumption, and also enforces
the resource limitations. It provides measurements of the consumption of CPU
time, wall time, memory, and CPU energy during an execution of a tool.

4.2 Results of Existing Verifiers as Standalone

Table 1 shows the summary of results of the execution of the standalone tools on
the selected benchmark set. These results are publicly available in the respective

3 https://gitlab.com/sosy-lab/benchmarking /sv-benchmarks
4 Either claims of program correctness or alarms of specification violations.
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Table 1: Standalone verifiers

& §
$ & & & S
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oy & N N g & 5 &
Verifier < o % Q O Q < Q
Score 9040 6623 4878 7146 4663 3679 2770 5338
Correct results 5652 4481 3001 4358 3484 2922 1385 3725
Correct proofs 3516 2958 1909 2836 1499 1605 1385 2365
Correct alarms 2136 1523 1092 1522 1985 1317 0 1360
Wrong results 8 29 2 2 19 41 0 24
Wrong proofs 0 22 0 1 1 12 0 23
Wrong alarms 8 7 2 1 18 29 0 1
Total resource consumption for correct results
CPU time (h) 190 57 22 97 31 60 11 81
Wall time (h) 140 57 22 59 31 15 11 52
Memory (GB) 7000 1800 770 4300 1300 2000 120 2700

CPU Energy (KJ) 7700 2500 1000 3500 1300 1500 560 3000

Median resource consumption for correct results

CPU time (s) 61 0.84 0.81 36 0.70 17 0.78 39
Wall time (s) 32 0.84 0.84 12 0.69 9.1 0.80 13
Memory (MB) 600 53 25 450 44 670 25 430
CPU Energy (J) 590 11 11 310 9.2 150 11 330
Resource consumption of correct results per score point
CPU time (s/sp) 7 31 16 49 24 59 15 55
Wall time (s/sp) 55 31 16 30 24 14 15 35
Memory (MB/sp) 780 270 160 600 280 540 42 500
Energy (J/sp) 850 380 210 490 280 420 200 560

reproduction package of the competition 5] and on the competition web site®.
We only adjust the presentation to our needs here.

Figure 7 shows the quantile plots of the results, where the z-coordinate repre-
sents the quantile of score obtained by the tool below the run time represented
by y-coordinate. We used a logarithmic scale for time ranges between 1 and 1000
seconds, and linear scale between 0 and 1 second. The graph of a tool that solves
more verification tasks will be farther to the right, and the plot of the faster tools
would be lower. The farther on the right side a plot goes and the lower a plot
remains. the better it is. More details about these plots are given elsewhere [4].

Figure 8 shows the resource consumption for standalone tools using a parallel-
coordinates plot (each parallel coordinate represents a different variable). The
plot shows the number of unsolved tasks, and resource consumption per score
point. The lower the plot of a tool is the better it is for the user.

4.3 RQ 1: Evaluation of Sequential-Portfolio Verifier

We now present the results of the sequential-portfolio verifier against the existing
standalone verifier with the highest score: CPACHECKER.

5 https:/ /sv-comp.sosy-lab.org/2021 /results/results-verified
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Fig. 7: Standalone verifiers: Score-based quantile plot for results
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Fig.8: Standalone verifiers: Parallel-coordinates plot showing unsolved tasks and
resource consumption per score point

Table 2 shows the summary of results for the sequential verifiers. The sequen-
tial portfolio, in general achieves better score than the best performing standalone
tool. The portfolio with 8 tools performs worst, which is expected because as we
increase the size of the portfolio, the amount of time allocated to each verifier
also decreases. This means that the verifiers can only solve relatively easier tasks.
The table also shows that the portfolio requires more resources to solve the tasks.
This is a side effect of the sequential portfolio, as all the resources consumed
by unsuccessful attempts to solve a given task by the verifiers in a sequence are
still counted in the resource consumption. Also, the portfolio with 8 tools has a
considerably large number of wrong results as it is reduced to fast results, instead
of the verifier earlier in the sequence. The index at which a verifier is placed plays
a key role in the performance of the sequential portfolio. If we put a verifier that
produces results fast but has more wrong results first in the sequential portfolio,
then the overall results are going to have a lot of wrong results.

Figure 9 shows the quantile plot of scores. As a portfolio is biased towards
the verifiers that compute results fast and not towards correctness, we see the
sequential portfolio combinations starting from farthest in the left, i.e., having the
most negative score, or most wrong results. CPACHECKER has the least number
of wrong results, and because of it its starting point is farthest to the right.
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Table 2: Sequential portfolios of different sizes with CPACHECKER

. CPACHECKER Sequential Portfolio of
Verifier 9 3 4 8
Score 9040 9198 9519 9522 8349
Correct results 5652 6058 6239 6275 6084

Correct proofs 3516 3780 3920 3903 3721
Correct alarms 2136 2278 2319 2372 2363
Wrong results 8 26 26 27 61
Wrong proofs 0 14 14 14 30
Wrong alarms 8 12 12 13 31
Total resource consumption for correct results
CPU time(h) 190 240 260 240 190
Wall time (h) 140 190 210 190 150
Memory (GB) 7000 8900 8600 8500 7600
CPU Energy (KJ) 7700 9700 11 000 10000 7900
Median resource consumption for correct results
CPU time(s) 61 95 100 100 97
Wall time (s) 32 54 69 70 54
Memory (MB) 600 920 930 910 840
CPU Energy (J) 590 920 1100 1100 920
Resource consumption of correct results per score point
CPU time (s/sp) s 95 97 90 82
Wall time (s/sp) 55 72 78 72 64
Memory (MB/sp) 780 970 910 890 920
CPU Energy (J/sp) 850 1100 1100 1100 950

Figure 10 shows that CPAcHECKER is more resource efficient in comparison to the
sequential portfolio. The sequential combination with best score is performing
worst in resource efficiency.

4.4 RQ 2: Evaluation of Parallel-Portfolio Verifier

‘We now present the results of the parallel-portfolio verifiers. The parallel portfolio,
mostly, achieves worse score than the best performing standalone tool. But the
parallel portfolio with 3 tools scores better. The parallel portfolio is affected by
two aspects: (1) size of the parallel portfolio — if too many tools are used then
any of them would not get enough resources to verify the task, (2) selection of
tools — if there is a fast tool that produces a lot of wrong results it reduces the
score. Parallel portfolio, in general, produces more wrong results; even more than
sequential portfolio, as the tools are running in parallel, whereas in sequential
portfolio this can be somewhat mitigated by putting a more sound tool before a
less sound tool. Table 3 shows the summary of results for the parallel portfolios.

Figure 11 shows that parallel portfolios have many more wrong results when
compared to CPAcHECKER. Interestingly, the graph for ParPortfolio-3, the best
performing parallel portfolio, remains lower than CPACHECKER, i.e., it takes less
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Fig. 9: Sequential portfolios: Score-based quantile plot comparing the best and
the worst sequential portfolio (SeqPortfolio-4 and SeqPortfolio-8, respectively)
with the best performing standalone tool (CPACHECKER)
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Fig. 10: Sequential portfolios: Parallel-coordinates plot showing unsolved tasks and
resource consumption per score point for best and worst portfolio (SeqPortfolio-4
and SeqPortfolio-8, resp.) and the best standalone tool (CPACHECKER)

CPU time. This is because the parallel portfolio takes results of the most efficient
tool. Figure 12 shows that the best performing parallel portfolio performs better
than CPAcCHECKER in terms of resource efficiency except memory consumption.

4.5 RQ 3: Evaluation of Algorithm Selection Verifier

We now present the results of the algorithm-selection verifier. Table 4 shows the
summary of results for algorithm selection: There is a clear trend of better results
with more verifiers. This is expected because our selector that was trained using
machine learning has more options to choose from, and can choose the better
one. Also, an algorithm-selection verifier does not need to share resources for the
verification task. It needs to perform the prediction, which takes some resources;
but after this step all the provided resources are available to the verifier. The
number of wrong results is also comparable with CPACHECKER, as the training
process is biased towards selecting the verifiers that are correct.

In Fig. 13, all the plots start from around similar scores but at different times.
Initially, CPAcHECKER performs better with respect to CPU time, but after
around half the scores, algorithm selection starts being more efficient. Figure 14
shows that algorithm selection is also more resource efficient than CPACHECKER.
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Table 3: Parallel portfolios of different size with CPAcHECKER

Verifier CPACHECKER Parallel Portfolio of
2 3 4 8
Score 9040 8969 9459 8952 7547
Correct results 5652 6101 6363 6001 5367
Correct proofs 3516 3780 3992 3639 3236
Correct alarms 2136 2321 2371 2362 2131
Wrong results 8 36 35 28 42
Wrong proofs 0 21 21 15 24
Wrong alarms 8 15 14 13 18
Total resource consumption for correct results
CPU time(h) 190 160 170 250 280
Wall time (h) 140 74 61 74 64
Memory (GB) 7000 8900 11000 14000 11000
CPU Energy (KJ) 7700 5400 5200 6500 6400
Median resource consumption for correct results
CPU time(s) 61 18 16 70 130
Wall time (s) 32 5.2 4.6 16 23
Memory (MB) 600 430 420 1000 1300
CPU Energy (J) 590 140 120 470 780
Resource consumption of correct results per score point
CPU time (s/sp) 7 65 66 99 130
Wall time (s/sp) 55 30 23 30 31
Memory (MB/sp) 780 1000 1200 1500 1400
CPU Energy (J/sp) 850 600 550 720 850

4.6 Discussion

The experiments show that each of the compositions has a configuration that can
perform better than any standalone tool in terms of correctly solved tasks. Initially,
we thought that portfolios would be less resource efficient than standalone tools,
and, in particular, would not be able to solve hard tasks as the resources allocated
to each tool would be less. But the experimental data support the opposite: The
benchmark set had a few such tasks: for most of the tasks that were hard for
one tool, there was some other tool that solved it in the given time. This was
especially pronounced in the parallel portfolio. The verifiers in the portfolios have
to be selected with different strengths, otherwise there is no benefit, it might
even perform worse.

Both the portfolios prefer fast results, as there is no selector. To mitigate this,
one needs to either select the tools carefully or add a validation step.

Our algorithm selection was based on a model trained using machine learning.
The training penalized the tools that produced more incorrect results, but it did
not consider the resource consumption of these tools. In comparison to both the
portfolios, the verifier based on algorithm selection produced much less incorrect
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Fig. 11: Parallel portfolios: Score-based quantile plot comparing the best and the
worst performing parallel portfolios (ParPortfolio-3 and ParPortfolio-8, respec-
tively) with the best performing standalone tool (CPACHECKER)
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Fig. 12: Parallel portfolios: Parallel-coordinates plot showing unsolved tasks and
resource consumption per score point of best and worst portfolio (ParPortfolio-3
and ParPortfolio-8, resp.) and the best standalone tool (CPACHECKER)

results. We think if we used the resource consumption data in our training,
the verifier based on selection would have consumed less resources. Our verifier
combinations are easy to construct by simply selecting tools that complement
each other well. Although this strategy is simple, we found that it still leads to
successful combinations for all evaluated combination types. Nevertheless, the
combinations can be further fine-tuned to achieve even better results.

The portfolio compositions are easy to construct, and with a well diversified
tool selection, portfolios can perform good. Also, the portfolios should not be
too large unless we are willing to increase the resources. On the other hand,
training the selection requires more preliminary work but with limited resources
and enough choice (number of tools) the selection-based verifier works better.

5 Threats to Validity

Ezxternal Validity. A combination of tools can only be as good as the parts it is
combined from. Therefore, the concrete instantiation of our tool combinations is
limited by the selected tools and their configuration. We have selected eight of the
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Table 4: Algorithm-selection-based verifiers of different sizes with CPAcHECKER

. CPACHECKER Algorithm Selection of
Verifier 9 3 4 8
Score 9040 9226 9689 9816 9 886
Correct results 5652 5904 6 086 6125 6214

Correct proofs 3516 3658 3843 3867 3 896
Correct alarms 2136 2246 2243 2258 2318
Wrong results 8 15 11 8 11
Wrong proofs 0 6 4 3 3
Wrong alarms 8 9 7 5 8
Total resource consumption for correct results
CPU time(h) 190 200 200 200 210
Wall time (h) 140 160 160 150 170
Memory (GB) 7000 6900 6900 6200 6 000
CPU Energy (KJ) 7700 8200 8600 8400 9000
Median resource consumption for correct results
CPU time(s) 61 47 48 66 55
Wall time (s) 32 30 30 35 42
Memory (MB) 600 740 700 550 420
CPU Energy (J) 590 490 500 660 620
Resource consumption of correct results per score point
CPU time (s/sp) 7 7 76 73 76
Wall time (s/sp) 55 61 61 56 63
Memory (MB/sp) 780 750 720 630 600
CPU Energy (J/sp) 850 890 890 850 910

most powerful verification tools as determined by the annual software-verification
competition, and executed them in the original configuration as submitted to
the competition. Furthermore, our evaluation results only hold for the given
benchmark set. While we have evaluated our tool combinations on programs taken
from one of the largest and diverse verification benchmarks publicly available, the
performance of the evaluated combinations might differ on other sets of tasks.
Similarly, this also impacts the training of our algorithm selector. The training
of a learning-based algorithm selector, which we employ for tool combinations
based on algorithm selection, requires a large and diverse set of verification tasks;
and each task has to be labeled with the execution results of each tool in our
combination. The used benchmarks repository® was created by the efforts of
the verification community over many years. We are not aware of any other
benchmark set of verification tasks that is as diverse as this one. As a result, we
had to train our algorithm selector on the same dataset that we later use for
benchmarking the tool combinations. Therefore, we only showed that algorithm
selection improves the performance of verification on the given benchmark set

5 https: //gitlab.com/sosy-lab/benchmarking /sv-benchmarks
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Fig. 13: Algorithm-selection-based verifiers: Score-based quantile plot comparing
the best and the worst performing portfolio (AlgoSelection-8 and AlgoSelection-3,
respectively) with the best performing standalone tool (CPACHECKER)
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Fig. 14: Algorithm-selection-based verifiers: Parallel-coordinates plot showing
unsolved tasks and resource consumption per score point of the best and the worst
performing algorithm selection (AlgoSelection-8 and AlgoSelection-2, respectively)
and the best performing standalone tool (CPACHECKER)

and the selector might only generalize to a set of tasks with similarly distributed
verification tasks. For a fair comparison, we (1) restricted the training to linear
models, which are known to generalize well, (2) train only on a random subset
of the benchmark, and (3) cross validated our model over multiple benchmark
splits. The variance of selection performance between different splits was less
than 1%. Therefore, the performance of our trained algorithm selector is likely
independent of the random subset selected for training.

Finally, the evaluation of algorithm selection is dependent on the chosen
selection methodology and choosing alternative selection methods, for example,
based on hand-crafted rules, might impact the evaluation. However, the design
of hand-crafted methods is not straightforward and might require deep expert
knowledge about the tool implementation. Depending on the human designer, this
design process might in addition be biased in favor of certain tool combinations,
which could also impact the experimental results.

For sequential portfolios, we ordered verifiers in sequence according to their

performance in SV-COMP 2021. Changing the order of the tools might change
the results with respect to resource consumption as well as soundness.
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Internal Validity. We have used the same verifier archives, benchmark set, bench-
marking framework, resource limits, and infrastructure to execute our experiments
as was used in SV-COMP 2021. This minimizes the influence of a changing en-
vironment on our experiments, allowing us to compare results of our verifier
combinations to the results of the standalone tools from SV-COMP 2021.

CoVEerITEAM induces an overhead of about 0.8 s for each actor in the composi-
tion, and around 44 MB memory overhead [15]. It is possible that one can reduce
this overhead by using shell scripts, but we decided in favor of using CoVERITEAM
for composing tools because of the modular design. This is especially pronounced
in our algorithm-selector composition. We could have saved a few seconds if we
were using a monolithic algorithm selector instead of composing one.

6 Related Work

Combination Strategies for Software Verification. Combining verifiers to increase
the verification performance is well established in the domain of software verifica-
tion [1, 8, 20,26, 31, 33,46,48, 49, 53]. In fact, the top three winning entries of the
software-verification competition SV-COMP 2021 all combine various verification
techniques to achieve their performance [6]. CPAchecker [8] combines up to six
different verification appraoches into three sequential portfolios that are task-
dependently selected with an algorithm selector. PeSCo [49] ranks verification
algorithms according to their predicted likelihood of solving a given task and then
executes them sequentially in descending order. Ultimate Automizer [33] employs
an integrated tool chain of preprocessing and verification algorithm to solve a
given task. PredatorHP [46] and UFO [1] demonstrate that parallel portfolios
can also be a promising strategy when running multiple specialized algorithms at
the same time. Even though previous work showed that internal combinations
can be successfully applied to improve the effectiveness of a single tool, we show
that similar combinations can be effectively employed to combine ‘off-the-shelf’
verifiers. This gives us the unique opportunity to further increase the number of
verifiable programs by simply combining state-of-the-art verification tools.
Cooperative methods [20] distribute the workload of a single verification task
among multiple algorithms to combine their strengths. For example, conditional
model checking [11, 12,13, 14] runs two or more verifiers in sequence, while the
program is reduced after every step to the state space of program unexplored by
the previous algorithm. CoVeriTest [10], a tool for test-case generation based on
verification, interleaves multiple verifiers, while (partially) sharing the analysis
state between algorithms. MetaVal [19] integrates verification tools for witness
validation (i.e., to check whether a previous verifier obtained a comprehensible
result) by instrumenting the produced witness into the verified program. While
cooperative methods are effective for reducing the workload of a verification task,
employing cooperative methods at tool level would require to exchange analysis
information between tools. In general, existing verification tools are not well
suited for this type of cooperation, which lead us to explore black-box verifier
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combinations. In addition, we showed that non-cooperative methods can improve
the verification effectiveness without the need to adapt the employed tools.

Combining Algorithms Beyond Software Verification. The idea of combining algo-
rithms to improve performance have been successfully applied in many research ar-
eas including SAT solving [51, 54, 56|, constraint-satisfaction programs [21, 45, 57]
and combinatorial-search problems [41]. Employed approaches traditionally fo-
cused on portfolio-based approaches [21, 51, 54], but recent techniques started
to integrate algorithm selectors for either selecting single algorithms [45, 56] or
portfolios of algorithms [44, 57]. For example, earlier works in SAT solving [51, 54]
focused on parallel-portfolio solvers, while later works such as SATzilla [56] fur-
ther improves the solving process by selecting a task-dependent solver. However,
existing techniques often employ hybrid strategies between portfolios and algo-
rithm selection to achieve state-of-the-art performance. Therefore, Kashgarani
and Kothoff [38] have recently shown that parallel portfolios are generally bottle-
necked by the available resources and that a pure algorithm selector that selects
a single algorithm performs better. While we observed that portfolios of software
verifiers are also restricted by available resources (i.e., the performance generally
stops to improve after a certain portfolio size), we found that all evaluated
combination types yield a similar performance gain when configured correctly.

7 Conclusion

This paper describes a method to construct combinations of verification tools in
a systematic and modular way. The method does not require any changes to the
verification tools that are used to construct the combinations. Our experimental
evaluation shows that all three considered combinations (sequential portfolio,
parallel portfolio, and algorithm selection) can lead to performance improvements.
The improvements can be significant although the construction does not require
significant development effort, because we use CoVErRITEAM for the combination
and execution of verification tools. We hope that our contribution makes it easy
for practitioners to get access to the best performance out of the latest research
and development efforts in software verification.
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