
Decomposing Software Verification into Off-the-Shelf
Components: An Application to CEGAR
Dirk Beyer

dirk.beyer@sosy-lab.org
LMU Munich

Munich, Germany

Jan Haltermann∗
jan.haltermann@uol.de
University of Oldenburg
Oldenburg, Germany

Thomas Lemberger∗
thomas.lemberger@sosy.ifi.lmu.de

LMU Munich
Munich, Germany

Heike Wehrheim
heike.wehrheim@uol.de
University of Oldenburg
Oldenburg, Germany

ABSTRACT

Techniques for software verification are typically realized as co-
hesive units of software with tightly coupled components. This
makes it difficult to re-use components, and the potential for work-
load distribution is limited. Innovations in software verification
might find their way into practice faster if provided in smaller,
more specialized components.

In this paper, we propose to strictly decompose software ver-
ification: the verification task is split into independent subtasks,
implemented by only loosely coupled components communicat-
ing via clearly defined interfaces. We apply this decomposition
concept to one of the most frequently employed techniques in soft-
ware verification: counterexample-guided abstraction refinement
(CEGAR). CEGAR is a technique to iteratively compute an abstract
model of the system. We develop a decomposition of CEGAR into
independent components with clearly defined interfaces that are
based on existing, standardized exchange formats. Its realization
component-based CEGAR (C-CEGAR) concerns the three core tasks of
CEGAR: abstract-model exploration, feasibility check, and precision
refinement. We experimentally show that — despite the necessity
of exchanging complex data via interfaces — the efficiency thereby
only reduces by a small constant factor while the precision in solv-
ing verification tasks even increases. We furthermore illustrate the
advantages of C-CEGAR by experimenting with different implemen-
tations of components, thereby further increasing the overall effec-
tiveness and testing that substitution of components works well.

CCS CONCEPTS

• Software and its engineering → Formal software verifi-

cation; Abstraction, modeling and modularity; • Theory of

computation → Logic and verification.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510064

KEYWORDS

Software engineering, Software verification, Abstraction refine-
ment, CEGAR, Decomposition, Cooperative verification

ACM Reference Format:

Dirk Beyer, Jan Haltermann, Thomas Lemberger, and Heike Wehrheim.
2022. Decomposing Software Verification into Off-the-Shelf Components:
An Application to CEGAR. In 44th International Conference on Software

Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510064

1 INTRODUCTION

potential
counterexample

infeasible
counterexample

precision
increment

Abstract-Model
Exploration

Feasibility
Check

Precision
Refinement

𝑃, 𝜑

Task

program
correct

program
incorrect

Figure 1: Workflow of classic CEGAR

Over the past decades, software verification has emerged as
an area with continuous research innovations and also with in-
creasing tool development. Competitions on software verification
(SV-COMP [15], VerifyThis [67]) showcase and conserve the rapid
process of tool building and application, and have also observed an
interest in standardization of verification artifacts (e.g., of verifica-
tion witnesses). The general task of automatic verification tools is
to compute a proof or counterexample for specified requirements.

Today, the majority of existing verification tools, whether config-
urable or not, are strongly cohesive software units. Though software
verification as a task clearly consists of individual subtasks, veri-
fiers are typically made up of tightly coupled, stateful components

https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1145/3510003.3510064

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

Violation
Witness

Path
Witness

Invariant
Witness

Abstract-Model
Explorer

Feasibility
Checker

Precision
Refiner

𝑃, 𝜑

Task

program
correct

program
incorrect

Figure 2: Workflow of component-based CEGAR

that operate on shared data structures. This architecture compli-
cates reuse of components, impacts scalability (e.g., parallelization)
and hampers exchange and integration of new components. In
consequence, it often requires major implementation effort to in-
tegrate innovations in verification technology into existing tools,
or is even prohibitive because the strong cohesion between ex-
isting components can not be broken easily.

To avoid this issue, we propose to employ decomposition concepts
in the construction of verifiers. Instead of having all components
integrated into a single tool, we opt for cooperative verification [41]
where independent executable units cooperate on a verification task.
Every such unit is only responsible for one well-defined subtask,
and the units communicate via clearly defined interfaces.

To investigate the feasibility of such ideas, we have realized this
strict decomposition into components for one of themost frequently
employed techniques in software verification, counterexample-

guided abstraction refinement (CEGAR) [53, 54]. CEGAR is a tech-
nique for automatically finding an abstract model of the software
to be verified which is as abstract as possible, but as precise as

necessary to successfully construct a proof of correctness or a refu-
tation. Many tools for software verification include this CEGAR
principle (e.g., [2, 4, 25, 34, 45, 47, 71, 76, 81, 83, 94, 96, 101–103]).
CEGAR is also successfully employed in other areas, like proba-
bilistic or timed-automata model checking [79, 80]. CEGAR readily
lends itself to a decomposition which we realize here as component-

based CEGAR (C-CEGAR). Figure 1 first of all illustrates the iterative
procedure of classic CEGAR: For a given level of abstraction, the
exploration of an abstract model of the software (top) either proves
the program correct and terminates the procedure, or finds a po-
tential counterexample. The feasibility check (right) analyzes the
counterexample. It either proves the counterexample feasible and
terminates the procedure, or passes an infeasible counterexample
to the next phase. The precision refinement (left) analyzes the in-
feasible counterexample and extracts from it a precision increment
refining the abstract model which the abstract-model exploration
employs in the next iteration. This cycle continues until either
a correctness or a violation proof is found.

But while this general concept of CEGAR has overall proven suc-
cessful (witnessed by CEGAR-based tools scoring high at SV-COMP),
research into specialized techniques for the three subtasks is still

ongoing. This can best be illustrated by proposals of and discus-
sions on precision refiners [37, 38, 65, 72]. Precision refinement
techniques rely on heuristics, and hence their effectiveness can
only be evaluated through experiments. Due to the tight coupling
of components in verifiers, new precision refiners can however
neither be evaluated in isolation nor can they be integrated into
existing tools without reimplementation. The past has thus un-
fortunately already seen multiple reimplementations of precision
refiners: A vast amount of tools [4, 25, 34, 45, 47, 71, 76, 83, 96, 101]
contain implementations of a refiner based on Craig interpolation
and at least three tools [34, 72, 75] contain (re-)implementations
of so called Newton refinement.

C-CEGAR overcomes these disadvantages of classic CEGAR by a
consequent decomposition, implementing each of the three con-
ceptual units as a stand-alone component and defining clear-cut
interfaces between components. Figure 2 illustrates the workflow
of C-CEGAR. For the interfaces, we employ existing standards for
verification artifacts, namely violation, path, and invariant wit-
nesses [20, 21], but also new formats. Witnesses are already pro-
duced by many verifiers, which allows us to partially reuse tools.

We have implemented C-CEGAR as a particular form of co-
operative verification, and implemented it using the framework
CoVeriTeam [33].With this implementation at hand, we have then in-
vestigated the effects of decomposition into components on the over-
all effectiveness and efficiency. Our experiments show that while
efficiency is slightly impacted by the necessity of data exchange via
external interfaces, the overall effectiveness can even be increased.
We have moreover performed the now possible independent evalua-
tion of precision refiners, comparing Craig and Newton refinement.

Novelty. We provide the following contributions:

• We develop the concept of C-CEGAR as a composition of three
independent (software) units with clearly defined interfaces
based on verification witnesses and invariant maps.

• We implement C-CEGAR for C programs using the framework
CoVeriTeam.

• We show the feasibility and effectiveness of C-CEGAR through
a sound experimental evaluation on an extensive benchmark
set with 8 347 verification tasks (written in C). We use 3 off-
the-shelf verification tools for the three base units.

• We experimentally demonstrate that C-CEGAR makes it pos-
sible to independently evaluate components like precision
refiners, which was not possible before.

• Our results are verifiable: all data and software are publicly
available for inspection and reproduction (Sect. 6).

Significance and Potential Impact. Evaluations in the research
literature and competitions show that different approaches have
different strengths to solve the problem of software verification. It
is therefore imperative to leverage the possibility of substituting
components by alternatives, instead of (re-)implementing whole
tools. Exchangeability is a key feature in component-based de-
sign and our approach can lead to components that are tuned to
excel in their specific task. SAT and SMT solvers are a success
story because there already is such a clearly defined interface
(SAT queries, SMTlib exchange format): many applications build

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

on SAT and SMT solvers as components and many tools implement
these component interfaces [8, 9, 11, 82].

Software verification needs to be integrated into the continuous-
integration process [50], and therefore, it is important to reduce its
response time. Most of the currently available software verifiers are
not constructed in a way that supports massively parallel execution,
but the decomposition of verification techniques into stand-alone
components would enable this. With C-CEGAR, we try to improve
the state of the art in this respect. We see our work as a catalyst
for further research in the domain of CEGAR and as a first step
towards a microservice architecture for software verification.

1.1 Related Work

There is a large body of literature on decomposition, interfaces,
and cooperative verification. We restrict ourselves here to provide
a few pointers to literature that directly inspired our work.

Compositionality and Decomposition. Decomposition is a cen-
tral general problem-solving approach in computer science, and
in particular in software engineering [63, 64]. The goal is to “di-
vide and conquer”, that is, split the problem into “easier-to-solve”
sub-problems and solve them as independently as possible. Compo-
sitionality means that a system can be composed from components.

Cooperative Verification. The electronic tools integration plat-
form (ETI) [86–88, 99] was an effort to collect and conserve tools
from the formal-methods community. Wide (and public) availabil-
ity of tools is the precondition to any kind of cooperation. The
evidential tool bus [58, 59, 97] arose also in the formal-methods
community, and tries to integrate tools that cooperate, in partic-
ular, to compose assurance claims. Conditional model checking
(CMC) [26] is an approach in which several tools exchange infor-
mation about the progress of the verification. CMC introduced a
condition as artifact that describes which parts of the system are
successfully verified so far. Conditional testing [36] applies the
same idea to software testing. Sets of test goals are used as artifact
to describe what has been tested so far. Conditions are also used to
test what could not be verified [51, 60]. CoDiDroid [91] is a broker
that delegates queries to the tools that are best suited to answer
them. This way, several tools cooperate to achieve the goal.

Composition in Software Verification. There are several ap-
proaches to compose new tools from existing binary components.
Reducers [31] can be composed from off-the-shelf verifiers to con-
struct conditional verifiers and the artifact that is passed from the
reducer to the verifier is a residual program. MetaVal [40] is an
approach to construct a witness-based result validator from a pro-
gram transformer and an off-the-shelf verifier. If the specification
is large, it could be promising to decompose the specification [6].

Interfaces. Components are connected via interfaces. The inter-
face specifies what the outside should know about the component
and what types of data (or, more general, artifacts) are expected
as input and output. Signatures of functions are often used in pro-
gramming languages to document how a function can be used, and
abstract classes (in Java: interfaces) are used to document a cohesive
component or subsystem by a set of functions with their signatures
which describe the service that the component or subsystem deliv-
ers. Behavioral interfaces were found to be useful for concurrent

systems [61], for timed systems [62], for resources [49], for web
services [16], and for program APIs and their behavior [28, 32, 77].

VerificationArtifacts and Exchange Formats.Artifacts and for-
mats that are relevant for cooperative verification were discussed
recently [41]. To give some examples, artifacts for cooperative ver-
ification can be (a) programs (exchange format C: [3]), (b) spec-
ifications (exchange format: [12, 92]), (c) results (exchange for-
mat: [20, 21, 48]), and (d) conditions (exchange format: [10, 11, 26]).

Libraries and Components. Many verification approaches are
based on formulas in a certain logic, and theorem provers [98]
or SMT solvers [11] are used to reason about the programs or
systems. SMT solvers support a standard exchange format [10],
and there are even API frameworks [46, 55, 68, 84, 85] that make
SMT-solvers exchangeable. There was already an idea to make
reachability queries via a defined interface [18], because several
verification approaches can be solved with the help of reachability
queries, such as termination analysis [56, 93], test-case genera-
tion [17, 69], Impact [42, 90], and PDR [19, 43].

CEGAR. The full, concrete system implementation is often com-
plex and abstraction can help to ignore details that are not important
for proving correctness or for finding bugs. CEGAR [53, 54] is an
approach that can be used to compute an abstraction of the system.
There are many verification tools that use CEGAR as a component,
for example, the most recent SV-COMP report mentions the follow-
ing: Brick, CPA-BAM-BnB [101], CPALockator [5], CPAchecker [34],
Gazer-Theta [1], JayHorn [83], PeSCo [95], UAutomizer [76], UKo-
jak [66], UTaipan [71], and VeriAbs [2]. CEGAR is a research topic
itself because of its importance [27, 37, 38, 44, 73, 90, 100].

This paper stands on the shoulders of the fine works described
above: we use CEGAR, decompose it into components, use veri-
fication witnesses as interfaces, and reuse existing components
for the construction of the components.

2 BACKGROUND

We start by explaining some basic notations and concepts.

Programs. For a simplified presentation, we assume that each pro-
gram contains at most one program statement on each source-
code line, and that the only variable type is integer (Z). Figures 3a
and 3b show two programs. For a program 𝑃 , we define the set 𝐿 of
all program locations (uniquely identifiable by source-code line),
the program counter 𝑝𝑐 ∈ 𝐿, the set 𝑋 of all program variables,
the set 𝑂𝑝 of all program operations over integer variables and the
program states𝐶 = (𝑋 → Z) ∪ ({𝑝𝑐} → 𝐿). A program state 𝑐 ∈ 𝐶

assigns a value to each program variable, and a line number to 𝑝𝑐 . A
program path 𝑐0

𝑜𝑝0−−−→ . . .
𝑜𝑝𝑛−1−−−−−→ 𝑐𝑛 is a sequence of program states,

where 𝑐0 is an initial state with arbitrary value assignments for pro-
gram variables, 𝑜𝑝𝑖 is the program statement at program location
𝑐𝑖 (𝑝𝑐), and 𝑐𝑖+1 is a possible successor state of 𝑐𝑖 after executing 𝑜𝑝𝑖 .
A control-flow automaton (CFA) (𝐿, ℓ0,𝐺) for a program 𝑃 consists of
the locations L, the program entry ℓ0 and transitions𝐺 ⊆ 𝐿×𝑂𝑝×𝐿,
modeling the execution of a statement when moving the program
counter from one location to a successor location. When control-
flow branches conditionally (e.g., because of an if-else or while),

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

1 int main() {
2 unsigned int y = 1;
3 while (1) {
4 y = y + 2U * nondet();
5 if (y != 0) {}
6 else
7 error();
8 }
9 }

(a) Craig interpolation finds the more

meaningful precision (𝑦 mod 2 = 1) , New-

ton finds the equivalent, but more com-

plex precision 1 ≤ 𝑦 +2∗ ⌊((𝑦 ∗−1+1)/2) ⌋

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short N = nondet();
4 while (x < N) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 error();
10 }

(b) Newton refinement finds the more

meaningful precision 𝑥 ≤ 2 ∗ (𝑥/2) ,
Craig interpolation enumerates all valid

assignments for 𝑥 explicitly

𝑙1

𝑙2

𝑙3

𝑙4𝑙7

𝑙5𝑙9

𝑙10

x = 0

n = nondet()

x < N

x += 2

¬(x < N)

x % 2 = 0

¬(x % 2 = 0)

error()

(c) CFA for program Fig. 3b

Figure 3: Code examples for Craig interpolation and Newton

refinement

the two corresponding edges of a CFA are labeled with the condi-
tion (e.g., for the if-branch) and the negated condition (e.g., for the
else-branch). Figure 3c gives the CFA of the program in Fig. 3b.

Software verification aims at analyzing the correctness of soft-
ware. In this work, we suppose the verifier to check C programs for
the reachability of calls to the specific error function error, which
represents a specification violation1. A program 𝑃 is correct if there
is no program path that contains the statement 𝑜𝑝𝑖 = error().
A state condition 𝜙 is a logical expression over program vari-
ables (e.g., 𝑦 = 1), used to express state-space restrictions. A
program state 𝑐 fulfills a state condition 𝜙 when 𝑐 |= 𝜙 . We de-
fine the type Φ of state conditions.

Witnesses.The interfaces in our component-based CEGAR approach
all come in the form of witnesses. An invariant witness describes a
set of potential invariants for a program, using the formal definition
of the common exchange format of correctness witness [20]2. Intu-
itively, an invariant witness automaton is a CFA equipped with in-
variants, explaining why a property is not violated on a path or in a
program. An example of an invariant witness is given in Fig. 4. More
formally, the invariant witness automaton consists of a set of states
𝑄 , an initial state𝑞0 and a transfer relation 𝛿 . A state𝑞 ∈ 𝑄 may sum-
marize several concrete states of a CFA. In the example, the state 𝑞2
represents the CFA node 𝑙3, 𝑞3 summarizes 𝑙4 and 𝑙5 and 𝑞4 summa-
rizes 𝑙7, 𝑙9 and 𝑙10. In addition, states can contain invariants, e.g. state
𝑞2 contains the invariant 𝑥 ≤ 2 ∗ (𝑥/2). A transition between two
states is labeled with the line number of a program location. If the lo-
cation is a branch or a loop-head, the transition is in addition either
1We do not lose generality, as any safety property can be reduced to the call to an
arbitrary function.
2We use the term invariant witness, as a correctness witness contains correct invariants
only, in contrast to the invariant witness.

𝑞0

𝑞1

𝑞2
𝑥 ≤ 2 ∗ (𝑥/2)

𝑞4 𝑞3

line 2

line 3, cond-true

line 4,
cond-false

line 4,
cond-true

line 5

o/w

o/w

o/w

o/w o/w

Figure 4: Invariant-witness

automaton for Fig. 3b

𝑞0

𝑞1

𝑞2

𝑞𝑒𝑟𝑟

line 2:
y = 1

line 3, cond-true

line 5, cond-false

o/w

o/w

o/w

Figure 5: (Invalid) violation-

witness automaton for Fig. 3a

labeled with cond-true or cond-false, indicating whether the
condition is assumed to be true or false. Each state has an additional
self-loop labeled 𝑜/𝑤 (otherwise) that can be taken if no other tran-
sition is applicable (when a state summarizes several CFA nodes).
Thereby, the invariant witness covers all paths present in a CFA.

A violation witness in the common exchange format for wit-
nesses [21] describes a set of program states of which at least one
represents a specification violation. These program states are de-
scribed by a violation witness automaton. A violation witness au-
tomaton is similarly defined to invariant witness automata, with
three differences: (1) As it only represents a subset of the CFA, it
may limit the CFA by not providing a 𝑜/𝑤 transition for each state,
(2) it does not contain invariants and (3) its transitions may, in
addition, contain state conditions, to model assumptions on the
programs state. Figure 5 contains a violation witness for Fig. 3a,
that describes the path of line 1 to line 7. A violation witness is
called valid, if at least one concrete path in the program matches
the described path, otherwise it is invalid. As the program in Fig. 3a
is correct, the violation witness is invalid.

To increase the confidence in verification results, SV-COMP
requires since 2017 [13] that all participating verifiers report a
violation witness or correctness witness as part of each veri-
fication result.

Precision Refiners. One component of C-CEGAR for which concep-
tually different techniques exist is the precision refinement. In our
evaluation, we will illustrate the advantage of C-CEGAR with the
possibility of an independent evaluation of precision refiners. Here,
we first of all give an example to show that different forms of pre-
cision refiners have different benefits. The programs of Figures 3a
and 3b (taken from SV-Benchmarks3) illustrate the precisions (for a
predicate domain) computed by Craig interpolation [57, 78, 89] and
Newton refinement [7]. In Fig. 3a, an indefinite while-loop adds a
non-deterministically computed even value to program variable 𝑦
(line 4) and then asserts that 𝑦 ≠ 0 (line 5). Because 𝑦 is initialized
with 1 in line 2, 𝑦 will always stay uneven and thus unequal to 0,
even if an overflow occurs. This means that the assertion always
holds. Trying to prove this, Craig interpolation (implemented in
CPAchecker [34]) computes the predicate 𝑦 mod 2 = 1 for the loop
head in line 3, which a verifier can use to construct the right level of
abstraction for proving the assertion in line 5. Newton refinement

3https://github.com/sosy-lab/sv-benchmarks

https://github.com/sosy-lab/sv-benchmarks

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(implemented in Ultimate Automizer [65]) computes a predicate with
the same meaning, but it is more complex and increases verification
overhead: 1 ≤ 𝑦+2∗ ⌊((𝑦 ∗−1+1)/2)⌋4 In Fig. 3b, a while-loop adds
value 2 to program variable 𝑥 until 𝑥 is greater than or equal to
non-deterministic value 𝑁 . Afterwards, it asserts that 𝑥 mod 2 = 0.
Because 𝑥 is initialized with 0 and𝑁 is of type unsigned short, the
loop can at most add 2∗65536 to 𝑥 . The type of 𝑥 , unsigned int, is
large enough to hold this value. Thus, there will be no overflow on
𝑥 , and 𝑥 will always be even (or 0). This means that the assertion al-
ways holds. Trying to prove this, Craig interpolation creates a large
number of predicates that enumerate all possible values for 𝑥 , i.e.,
𝑥 = 0, 𝑥 = 2, 𝑥 = 4, etc. Computing these predicates requires many
precision refinements and is costly. In contrast, Newton refinement
finds the more helpful predicate, 𝑥 ≤ 2 ∗ (𝑥/2), which encodes
𝑥 mod 2 = 0 and hints to a more suited, coarse abstraction. These
small examples show that there is no single technique that is opti-
mal for all programs. C-CEGAR is designed to open up the possibility
for systematically performing exactly these kind of comparisons.

3 COMPONENT-BASED CEGAR

For a decomposition of CEGAR, we need to identify its individual
components, and precisely define the interfaces between compo-
nents. Figure 2 depicts the resulting workflow.

3.1 Interfaces of C-CEGAR

The components of CEGAR pass (infeasible) counterexamples
and precision increments among each other. We briefly discuss
the information passed:

Paths. Both potential and infeasible counterexamples are typically
described by (sets of) program paths. Program paths are sequences
of program locations and program states. An exchange format for
paths should allow to describe program paths both concrete and
abstract, so that multiple paths can be described and information
can be restricted to the important. The exact path information
that is exchanged must balance precision and abstraction: A more
precise description of program paths avoids imprecision, but may
become very large (think about a precise description of many loop
unrollings) and lead the precision refiner to produce very specific
precision increments. A more abstract description of program paths
may guide a precision refiner to produce more generic precision
increments (which are often better), but it may also increase impre-
cision and require more time to analyze. It may be beneficial to not
only describe syntactic program paths, but to include information
about the program state, like constraints on variable values for
reaching a certain program location. This can help the feasibility
checker and precision refiner to reconstruct relevant information.

Precision Increment. The precision increment produced for an
infeasible counterexample helps the abstract-model exploration
to not explore the same infeasible counterexample again, but to
prove it infeasible. The concrete type of precision depends on the
abstract model explorer, but for communicating precision incre-
ments, we propose the use of partial invariants, i.e., invariants that
hold for a subset of program paths. From these partial invariants, an
4It can be shown that this term is equivalent to 𝑦 mod 2 = 1 based on the C datatypes.
A detailed reasoning is given on our supplementary webpage, https://www.sosy-
lab.org/research/component-based-cegar/.

𝑃, 𝜑

Task

𝜋

Invariant
Witness

Strengthener 𝑃𝜋 , 𝜑

Strengthened
Task

Off-the-Shelf
Verifier

Verdict

𝜔

Violation
Witness

Abstract-Model Explorer

Figure 6: Construction of an abstract-model explorer from

an off-the-shelf verifier

abstract model explorer can infer its precision. For example, predi-
cate abstraction can split partial invariants into atoms and create a
mapping from program locations to predicates. When exchanging
partial invariants, a balance between weak and strong invariants
must be found. In addition, most of the time, smaller invariants
are easier to parse and reuse than equivalent, but more complex
invariants (consider the example invariants of Fig. 3a).

The types of these artifacts are arbitrary and information other
than the proposed are possible. But to achieve the goals of C-CEGAR,
common (and at the best standardized) interfaces are required.
To exchange sets of program paths and precision increments,
we propose to use the existing exchange formats for verifica-
tion artifacts [21, 41]:

Violation Witness. We use violation witnesses for describing
the (potentially infeasible) counterexample obtained from the
abstract-model exploration.

Path Witness. If a violation witness is rejected by the feasibility
checker, then it describes an infeasible counterexample path and
no valid violation. To signify this change in the meaning of the
witness, we call a rejected violation witness path witness. A path
witness is passed from feasibility checker to precision refiner.

Invariant Witness. Precision increments are described by invari-
ant witnesses which give (partial) invariants in a program, e.g.,
for invariants associated to loop heads.

With the existence of a general format for witnesses [21], we thus
have tool-independent interfaces.

3.2 Components of C-CEGAR

Next, we describe the three components of C-CEGAR in more detail.
The three components use the above interfaces to pass information
from one to the next component. Furthermore, the components
take input from and provide output to the environment.

Abstract-Model Explorer. C-CEGAR uses an abstract-model ex-

plorer to compute the abstraction. The abstract-model explorer
takes two inputs: (1) the program 𝑃 under verification and the spec-
ification 𝜑 (together called task), and (2) an invariant witness, and
provides two outputs: (1) potentially the final verdict ‘correct’, and,
if the verdict is not ‘correct’, (2) a violation witness that describes
at least one potential counterexample path. The input invariant
witness describes the precision increment. The contained (partial)
invariants are parsed and used for improving the precision of the
abstraction employed during model exploration.

https://www.sosy-lab.org/research/component-based-cegar/
https://www.sosy-lab.org/research/component-based-cegar/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

𝑃, 𝜑

Task

𝜔

Violation
Witness

Reducer 𝑃𝜋 , 𝜑

Updated Task
with Path Program

Off-the-Shelf
Verifier

Verdict

𝜔

Path
Witness

Feasibility Checker

Figure 7: Construction of a feasibility checker from an off-

the-shelf verifier

Feasibility Checker. The feasibility checker is responsible for
checking counterexample paths for feasibility. A feasibility checker
takes two inputs: (1) the task and (2) a violation witness. It provides
two outputs: (1) potentially the final verdict ‘incorrect’ and, if the
violation witness contains no feasible counterexample path, (2) a
path witness that describes no feasible and at least one of the infeasi-
ble counterexample paths contained in the input violation witness.

Precision Refiner. The task of the precision refiner is to compute
new (refined) precision increments for the abstraction. A preci-
sion refiner takes two inputs: (1) the task and (2) a path witness.
It provides as single output an invariant witness that describes a
precision increment, computed based on the path witness.

3.3 Usage of Off-the-Shelf Components

For a realization of C-CEGAR as a cooperation of off-the-shelf com-
ponents, implementations of all three components are required.
A key advantage guaranteed by the usage of witnesses is the
fact that such components can (partially) be generated with ex-
isting off-the-shelf verifiers.

Abstract-Model Explorer. Any off-the-shelf verifier can be
turned into an abstract-model explorer (Fig. 6) by encoding the
invariants in the invariant witness (which the verifier might not
natively understand) as additional code (assertions) in the program
using MetaVal [40] — we call a task enriched with such invari-
ants strengthened task (Fig. 6). In addition, verifiers CPAchecker [34]
and UAutomizer [75] natively support parsing invariant witnesses
and using them for abstract-model exploration.

Feasibility Checker. Any existing results validator [21] for viola-
tion witnesses, of which there are plenty [14], can work as feasibil-
ity checker (Fig. 8). Furthermore, any off-the-shelf verifier can be
turned into a feasibility checker by transforming the violation wit-
ness into program code [27, 40]. This so-called path program only
encodes the program parts encoded by the witness.

Precision Refiner. Finally, we can generate precision refiners out
of invariant-generation tools (like [27]). To this end, we combine
the current task and a path witness into an updated task [31] which
only contains those parts of the program which cover the infeasible
counterexample paths contained in the path witness. This updated
task is then passed to invariant generation (Fig. 8). If an invariant
generator does not support the output format of invariant wit-
nesses, existing techniques [74] can perform this transformation.
In addition, any feasibility checker that is able to output an in-
variant witness can be used as precision refiner.

𝑃, 𝜑

Task

𝜔

Path
Witness

Reducer 𝑃𝜋 , 𝜑

Updated Task
with Path Program

Off-the-Shelf
Invariant
Generator

𝜋

Invariant
Witness

Precision Refiner

Figure 8: Construction of a precision refiner from an off-the-

shelf invariant generator

Overall, this shows the advantage of the decomposition of CEGAR:
once such a component-based framework is available, different
tools can be plugged into it, with the help of various program trans-
formations even those that do not natively support these interfaces.

4 IMPLEMENTATION

To realize a first C-CEGAR instance, we started with a decomposition
of CPAchecker’s implementation of CEGAR with predicate abstrac-
tion. Afterwards, we experimented with the usage of other off-the-
shelf components as Feasibility Checker and Precision Refiner.

4.1 CPAchecker’s Predicate Abstraction

CPAchecker [34] is a configurable tool for software verification of-
fering many different analysis techniques, especially providing
an implementation of predicate abstraction [70] using CEGAR.
It has a mature code base and has proven its ability to verify
and falsify programs by winning medals in the category Over-

all in SV-COMP ’22 for the fifth year in a row; among others,
by applying predicate abstraction.

CPAchecker’s implementation of predicate abstraction (Pred) is a
program analysis comprising two modules, a model explorer and a
combined feasibility checker and precision refiner. The analysis is
based on the CPA algorithm [29] with precision adjustment [30] and
adjustable-block encoding (ABE) [35]. In general, the analysis infor-
mation is stored in an abstract reachability graph (ARG), linking the
analysis information with CFA nodes. The analysis stores a set of
available predicates as precision for each ARG node together with a
boolean formula abstracting the current state using predicates from
the precision. Initially, only the predicates true and false are avail-
able. The abstraction is computed using the strongest-postcondition
semantics. If the model explorer finds an (abstract) path in the ARG
to an error location, this path is analyzed for feasibility.

Within Pred, a potential counterexample path is checked for
feasibility by validating the path formula which is build using the
strongest-postcondition semantics. It is represented in an inter-
nal format, similar and compatible with SMT-2-LIB [9]. The ob-
tained formula is checked for satisfiability using MathSAT5 [52].
An unsatisfiable formula indicates an infeasible path. In this case,
MathSAT5’s Craig interpolation is used to compute a precision in-
crement. The newly discovered predicates are added to the pre-
cision and the ARG is recomputed. Otherwise, a violation wit-
ness is computed for the found counterexample. In addition, the
precision is reported using a predicate map, which is a format
containing the predicates in SMT-2-LIB.

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 explorer = ActorFactory.create(ProgramValidator,

2 "cpa-predicate-NoRefinement.yml");

3 checker = ActorFactory.create(ProgramValidator,

4 "cpa-validate-violation-witnesses.yml");

5 refiner = ActorFactory.create(ProgramValidator,

6 "uautomizer.yml");

Figure 9: Example configuration of C-CEGAR components in

CoVeriTeam

4.2 Decomposing CPAchecker’s Predicate

Abstraction

Besides the existing CEGAR implementation, CPAchecker also pro-
vides additional helpful configurations: (1) validating potential
counterexamples given as violation witnesses and (2) analyzing
only the part of a program described by a violation witnesses and
computing a precision increment for the infeasible part. To decom-
pose this existing implementation, we created new configurations
to ensure that only the desired functionality is executed. Thereby,
we obtained three standalone and stateless components:
Abstract-Model Explorer. This configuration computes only the
ARG and checks whether a counterexample path is present. A po-
tential counterexample path is exported as violation witnesses. The
initial precision is given as predicate map.
Feasibility Checker. To check a given violation witness for fea-
sibility, we use CPAchecker’s existing witness-based result valida-
tion [20, 21, 23], working with violation witnesses.
Precision Refiner. The precision refiner takes the path witness
as input and uses strongest-postcondition semantics to build a
path formula for each path within the witness. It then computes
Craig interpolants for each path and exports the computed in-
terpolants in a predicate map.

4.3 Implementation in CoVeriTeam

The C-CEGAR implementation using these three components, real-
ized using CoVeriTeam [33], is called C-Pred. CoVeriTeam is a frame-
work for cooperative verification, allowing for the definition of new
verifiers as compositions of stateless components. It provides an
easy-to-use language for describing the components’ inputs and
outputs as well as the communication among them. Compositions
are defined in a domain-specific language and components can
be exchanged easily (see Fig. 9 for an example).

4.4 Off-the-Shelf Components

Besides the thus constructed C-Pred, we used several off-the-shelf
components to evaluate the benefits of C-CEGAR. We searched for
tools applying techniques conceptually different to CPAchecker
which can either work with the exchange formats directly or
can analyze the corresponding path program. We have chosen
the following two tools:

FShell-witness2test. FShell-witness2test [22] is an execution-
based result validator for violation witnesses that is implemented
independent of any existing verification tool. FShell-witness2test
extracts test vectors encoded in the violation witness automaton,
converts this test vector into a compilable test harness, compiles

the test harness against the program under verification, and exe-
cutes it. If a specification violation is observed during execution,
the violation witness is shown to be valid through program exe-
cution. If no specification violation is observed during execution,
the violation witness is rejected. Due to concrete program exe-
cution, FShell-witness2test is very precise. But FShell-witness2test
can only validate violation witnesses that contain, for each non-
deterministic value in the program, a state condition that encodes
the corresponding concrete value. For example, FShell-witness2test
would neither be able to validate nor reject Fig. 5, because this
violation-witness automaton does not define a concrete value for
the nondeterministic method call nondet() in line 4 of Fig. 3a.

Ultimate Automizer. Ultimate Automizer [75, 76] is a verification
tool that uses a finite state automaton for the program and encodes
property violation as final states. Accepting runs of the automaton
are then analyzed for feasibility. By default, it applies a CEGAR
based predicate abstraction wherein the precision increment is
computed using Newton refinement. Newton refinement is concep-
tually different from Craig interpolation which is employed by the
CPAchecker precision refiner. Whenever a path in the automaton
is proven infeasible, a generalization is aimed for to reduce the ac-
cepted language of the automaton. A program is thus proven correct
if the language of the automaton is empty. Ultimate Automizer offers
the option to only analyze the paths of a program covered by a
violation witness and to store the computed precision increment in
an invariant witness. Hence, we can directly use Ultimate Automizer
as both feasibility checker and precision refiner – off-the-shelf.

5 EVALUATION

Within a C-CEGAR implementation, components can be easily ex-
changed by others which implement the same interface via dif-
ferent concepts. We thus allow researchers to focus on enhanc-
ing individual components, instead of reimplementing the whole
CEGAR scheme. For our evaluation, we are interested in examin-
ing the overhead associated with such a decomposition. Moreover,
we want to investigate whether the component-based implemen-
tation can bring an improvement over the tightly coupled one by
studying novel combinations of components.

5.1 Research Questions

We have already shown the feasibility of C-CEGAR in Sect. 4. Here,
we want to study the following three research questions:

RQ 1. How large is the overhead of a component-based approach
that uses off-the-shelf components?

RQ 2. What are the cost for using standardized formats in C-CEGAR?
RQ 3. Can the use of different off-the-shelf components in C-CEGAR

increase the overall effectiveness to solve verification tasks?

5.2 Evaluation Setup

We run our experiments on machines with an Intel Core i5-1230 v5,
3.40GHz (8 cores), 33GB of memory, and Ubuntu 18.04 LTS with
Linux kernel 5.4.0-96-generic. To increase the reproducibility of
our results, we run our experiments with BenchExec [39]. Each
verification run is limited to use 15GB of memory, 4 CPU cores,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

Table 1: Comparison of CPAchecker’s predicate abstraction

and the component-based version in two variations

correct incorrect

overall proof alarm proof alarm

Pred 3 769 2 556 1 213 3 9
C-Pred 3 524 2 450 1 074 0 3
C-PredWit 2 854 2 110 744 0 1

and 15min of CPU time. The used setup is comparable to the
setup used in the SV-COMP.

We use SV-Benchmarks, the largest available benchmark set for
verification of C programs, in the version used in SV-COMP ’22 5.
We use all 8 347 verification tasks with a reachability property.
A verification task can be safe (contains no violation) or un-
safe (contains a violation).

We use CPAchecker version 2.1.16, CoVeriTeam ver-
sion c-cegar-icse20227, FShell-witness2test8 and UAutomizer9

in its SV-COMP ’22 version, UAutomizer uses a wrapper script
to determine the correct configuration to use in SV-COMP. By
default, this does not produce invariant witnesses if a violation
witness is given. We communicated with the developers of
UAutomizer and adjusted the wrapper script according to their
instructions, so that UAutomizer always creates invariant witnesses.
This adjusted wrapper script (and all other data and tools) is
available in our supplementary artifact [24].

5.3 Evaluation Results

RQ 1 (Overhead of Component-Based Design). Evaluation

Plan: To analyze the cost of using a component-based approach, we
compare the effectiveness (RQ 1.1) and efficiency (RQ 1.2) of Pred,
described in Sect. 4.1, and our component-based version C-Pred,
described in Sect. 4.3. To improve comparability, we configure the
model explorers of both Pred and C-Pred to start the exploration
at the root of the ARG in each iteration.

RQ 1.1 (Effectiveness). Table 1 shows the experimental results of
the comparison: The number of tasks solved by the component-
based version C-Pred reduces from 3 769 to 3 524. There are 25 tasks
that C-Pred solves even though Pred does not, but also 270 tasks
that C-Pred fails to solve but Pred does (a 6.4% decrease). For most
of these tasks, the reason for failure is the decrease in efficiency:
When increasing the time limit for C-Pred by the factor of twelve
(to 180min), C-Pred only fails to solve 60 tasks that Pred can solve.
This is only a 1.7% decrease compared to Pred. Reason for the re-
maining 60 unsolved tasks is the feasibility checker used by C-Pred.
It (a) rejects more counterexamples because it is more precise than
the internal check of Pred, (b) explores paths with unsupported
program features that Pred does not visit, or (c) triggers SMT er-
rors because different interpolation sequences are queried. These
three issues are not related to C-CEGAR, but to the inconsistency
between the internal feasibility checker of Pred and the one used by
5https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
6https://doi.org/10.5281/zenodo.5898968
7https://gitlab.com/sosy-lab/software/coveriteam/-/tree/c-cegar-icse2022/
8https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/raw/main/2022/val_fshell-
witness2test.zip
9https://doi.org/10.5281/zenodo.5898990

1 10 100 900

CPU time for Pred (s)

1

10

100

900

C
P

U
ti

m
e

fo
r

C
-P

r
e
d

(s
)

(a) Comparison of CPU time for

Pred and C-Pred

1.0

4.3

2.8

0.69

13

(b) Distribution of run time fac-

tor for C-Pred, compared to Pred

Figure 10: Comparison of efficiency of Pred and C-Pred

(across all successful verification runs)

C-Pred. Except for these issues, we can conclude that C-Pred has the
same expressive power and can solve the same verification tasks
as the classic version Pred (when more time is given). Because the
feasibility check of C-Pred is more precise than that of Pred, the
number of false alarms reduces from 9 to 3.

Decomposing an existing CEGAR implementation into compo-
nents has (almost) no negative effects on the effectiveness of the
approach. Moreover, the new tool can have a higher precision
because better components can be used.

RQ 1.2 (Efficiency). In general, C-Pred takes more CPU time to
compute the result. This effect is illustrated in the scatter-plot in
Fig. 10a. The plot shows all tasks that Pred and C-Pred both solved
correctly. Each point (𝑥,𝑦) represents a task where Pred takes 𝑥
CPU-seconds and C-Pred 𝑦 CPU-seconds. To visualize overlapping
datapoints, each point is displayed with a transparency of 90 %.
Figure 10a clearly visualizes that C-Pred has a lower efficiency com-
pared to Pred, whereas the factor for the increased CPU time is
bounded by roughly 10 (dashed line). More precisely, C-Pred uses
on mean average the 3.3-fold CPU time, whereas the median in-
crease is 2.8. Therefore, we provide a more precise insight on the
time differences in Fig. 10b: In 25 % of all cases, C-Pred takes at most
as much CPU time as the non-composed version (factor of 1.0).
For 50% the increase is bounded by the factor 2.8 and in 75%
of the cases, the CPU time increases by at most 4.3. The upper
whisker at 13, which includes 99% of all data, shows that there
are some tasks for which C-Pred takes notably longer. Thus the
median is more meaningful. To increase readability, 35 outliers,
ranging from factor 13 to 31, are not shown.

We also observed that the median increase strongly correlates
with the number of CEGAR iterations needed to solve a task. Fig-
ure 11 visualizes the median increase, grouped by the number of
CEGAR iterations needed. Note that the 𝑖-th bars’swidth represents
the number of tasks that can be solved in 𝑖 iterations. When the task
can be solved within a single CEGAR iteration, in the median, the
CPU time does not increase (factor of 0.9). Almost 95 % of all tasks
are solved within at most 5 CEGAR iterations. As the number of
tasks solved with more than five iterations is smaller than 200, the

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://doi.org/10.5281/zenodo.5898968
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/c-cegar-icse2022/
https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/raw/main/2022/val_fshell-witness2test.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/raw/main/2022/val_fshell-witness2test.zip
https://doi.org/10.5281/zenodo.5898990

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 2 3 4 5 6 7 8 9 10
Number of CEGAR iterations to solve task

M
ed

ia
n

fa
ct

or
of

in
cr

ea
se

in
ru

n
ti

m
e

0.9

3.1

4.7 4.4

8.0
7.3

6.6
6.0

6.2

5.2

Figure 11:Median factor of run-time increase by C-Pred com-

pared to Pred, for the first 10 numbers of CEGAR iterations.

The width of the bar for i corresponds to the number of ver-

ification tasks that require exactly i CEGAR iterations

1 int main(void) {
2 unsigned int x = 1;
3 unsigned int y = 0;
4
5 while (y < 1024) {
6 x = 0;
7 y++;
8 }
9 if (x == 0) {}
10 else
11 error();
12 }

(a) Program from SV-COMP,

where 𝑥 = 0 is not a valid invari-

ant at the loop head.

𝑞0

𝑞1

𝑞2

𝑞𝑒𝑟𝑟

line 5, cond-true

line 5, cond-false

line 9, cond-false

o/w

o/w

o/w

(b) Counterexample computed

by model explorer

Figure 12: Example comparing predicate map and invariant

witness as exchange formats

median may not perfectly summarize these iterations. We present
the full figure and the raw data on our supplementary webpage 10.
The additional run time consumed by C-Pred stems mostly from
the following facts: (1) Due to the three stateless components, less
caching is possible (e.g. for incremental solver usage), (2) each
component has to recompute basic information for the program,
especially the CFA, which yields non-negligible I/O-overhead, and
(3) redundant counterexample checks may be performed because
feasibility check and precision refinement are fully decoupled.

The efficiency of C-Pred decreases only by a constant factor
(median smaller than three).

RQ 2 (Cost of Standardized Formats).

Evaluation Plan: Instead of encoding the precision increment
computed by the precision using the CPAchecker internal format
predicate map, we use a standardized format, namely the invariant
witness. We call this configuration C-PredWit. We compare the
effectiveness and efficiency of C-Pred with C-PredWit.

Table 1 also contains the experimental results of C-PredWit. This
configuration can solve in total 2 854 tasks, computing 2 110 cor-
rect proofs and 744 correct alarms. Compared to C-Pred, the ef-
fectiveness reduces by 670 tasks, a decrease of around 20%. This
decrease follows mostly from the fact that the precision refiner
does not add the computed precision increment to the invariant
10https://www.sosy-lab.org/research/component-based-cegar/

1 10 100 900

CPU time for C-Pred (s)

1

10

100

900

C
P

U
ti

m
e

fo
r

C
-P

r
e
d
W

it
(s

)

Figure 13: Comparison of run time per task of C-Pred and

C-PredWit (in CPU time seconds)

witnesses. As a result, C-PredWit gets stuck in an endless loop
and eventually aborts the computation.

Since invariant witnesses are not primarily designed for the ex-
change of a precision increment, we regularly observe this behavior.
We exemplify its main reason in Fig. 12: Figure 12a contains a sim-
plified C program from our evaluation. Before the loop body is exe-
cuted for the first time, the value of 𝑥 is 1 and𝑦 has the value 0. After
the first loop iteration, 𝑥 has the value of 0 and 𝑦’s value is unequal
to 0. The model explorer computes the spurious counterexample
visualized in Fig. 12b. The path contains exactly one loop iteration
(𝑞0 to 𝑞1) and leads to the error location afterwards (𝑞1 to 𝑞2 to
𝑞𝑒𝑟𝑟). A helpful precision increment which can be used to prove
the counterexample to be spurious and the program to be correct
contains the predicate (𝑦 = 0 ∧ 𝑥 ≠ 0) for state 𝑞0 and the predi-
cate (𝑦 ≠ 0 ∧ 𝑥 = 0) for state 𝑞1. Although the invariant witnesses
format can conceptually be used to express loop unrollings and thus
can contain these two predicates, none of the precision refiners
used encode these or comparable predicates in an invariant witness.

In contrast, the predicate map used to exchange information in
C-Pred contains the predicates 𝑦 = 0, 𝑦 ≠ 0, 𝑥 = 0, and 𝑥 ≠ 0, which
enable the model explorer to remove the spurious counterexample.

Next, we compare the efficiency of C-Pred and C-PredWit. Fig-
ure 13 compares the CPU time used to compute the correct solu-
tion for a task. It is visible that, except for a few outliers, both
tools have the same efficiency.

The effectiveness of C-CEGAR reduces by 20% when using stan-
dardized formats, whereas the efficiency is not influenced.

RQ 3 (Benefit of Different Components). Finally, we analyze
the advantages of the component-based design by replacing the
CPAchecker components by existing off-the-shelf implementations.
Here, we consider two separate questions, exchanging the fea-
sibility checker in RQ 3.1 and the precision refiner in RQ 3.2.
In the following, we are using violation and invariant witnesses
as exchange formats.

RQ 3.1 (Benefit of Different Feasibility Checkers). Evaluation Plan:

To analyze how different feasibility checkers influence the effec-
tiveness and efficiency, we replace CPAchecker’s witness validation
with both FShell-witness2test and UAutomizer. Then, we compare
the effectiveness of the three resulting C-CEGAR configurations.

https://www.sosy-lab.org/research/component-based-cegar/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

Table 2: C-CEGAR using different components

RQ 3.1: C-PredWit + different feasibility checker (with precision refiner CPAchecker)
correct incorrect

overall proof unique alarm unique proof alarm

CPAchecker 2 854 2 110 494 744 441 0 1
FShell-witness2test 1 223 1 126 0 97 64 0 0
UAutomizer 1 941 1 614 4 327 29 0 1

RQ 3.2: C-PredWit + different precision refiner (with feasibility checker CPAchecker)
correct incorrect

overall proof unique alarm unique proof alarm

CPAchecker 2 854 2 110 709 744 436 0 1
UAutomizer 1 739 1 430 29 309 1 0 1

Table 2 shows the experimental results: For each of the three
configurations, it shows the overall correct results, the correct
proofs, the unique proofs, the correct alarms, the unique alarms,
the incorrect proofs and alarms, and the unknown results. A proof
or alarm is considered unique if the corresponding configuration is
the only one that achieves that result. The table shows that C-Pred
with CPAchecker as feasibility checker produces the best results.
Considering the unique results among these three configurations,
it is visible that all three feasibility checkers allow the verification
of tasks that neither of the other two configurations can solve.

C-CEGAR allows a simple exchange of feasibility checkers. The
use of conceptually different off-the-shelf checkers can increase
the effectiveness of C-CEGAR.

RQ 3.2 (Benefit of Different Precision Refiners). Evaluation Plan: We
replace CPAchecker’s precision refiner (which uses Craig interpo-
lation) by an existing tool, applying a conceptually different re-
finement strategy. Therefore, we use a configuration of Ultimate
Automizer for the path described in the violation witness, com-
puting the Newton refinement. To the best of our knowledge, Ul-
timate Automizer is the only formal-verification tool that is able
to process violation witnesses as additional input and that also
outputs invariant witnesses. Note that, in theory, any verification
tool can be transformed to process violation witnesses through
program transformation (as explained in Sect. 3.2). Unfortunately
(based on SV-COMP ’21) no other verification tool is able to pro-
duce meaningful invariant witnesses (this evaluation is available
on our supplementary webpage 11).

Our objective is to show the most important advantage of
C-CEGAR, namely that using complementary techniques can lead
to an increased effectiveness through uniquely solved tasks. Ta-
ble 2 also contains the results for C-Pred using CPAchecker and
Ultimate Automizer as precision refiner. C-PredWitwith Ultimate Au-
tomizer as precision refiner is able to find 1 430 proofs (vs. 2 110)
and 309 alarms (vs. 744). These numbers are lower than C-PredWit
with CPAchecker as precision refiner, but this combination is still

11https://www.sosy-lab.org/research/component-based-cegar/

able to find 29 proofs and 1 alarm that are not found by C-PredWit
with CPAchecker. This shows that different precision refiners have
different strengths and weaknesses, so the easy replacement of-
fered by C-CEGAR can be beneficial.

Taking a closer look at the two tasks given as motivating exam-
ples in Fig. 3a and Fig. 3b, we observe the following: For Fig. 3b,
Ultimate Automizer is able to export a meaningful precision incre-
ment when CPAchecker in contrast starts enumerating valid as-
signments for 𝑥 . In this case, the configuration with Ultimate Au-
tomizer as precision refiner can continue the analysis and solve
tasks that cannot be solved by the other configuration. On the other
hand, the precision increment computed by Ultimate Automizer of-
ten contains correct but complex predicates, for which the model
explorer runs into a timeout. One example is given in Fig. 3a,
where the precision increment (1 ≤ 𝑦 + 2 ∗ ⌊((𝑦 ∗ −1 + 1)/2)⌋)
is logically equivalent to (𝑦 mod 2 = 1), found by CPAchecker,
but expressed in a more complex way.

C-CEGAR allows a simple exchange of precision refiners. The
use of conceptually different off-the-shelf refiners can increase
the effectiveness of C-CEGAR.

5.4 Threats to Validity

We have conducted our evaluation using the dataset SV-Benchmarks,
(https://github.com/sosy-lab/sv-benchmarks), which is the largest
publicly available benchmark set for C program verification and
also used by competitions. Although this dataset is widely used and
accepted for benchmarking, our findings may not completely carry
over to real-world C programs or other programming languages. Re-
garding resources, we limited the CPU limit to 15min and memory
to 15GB. More resources will lead to improved results; but both the
new approach and the baseline would benefit from more resources.

We considered only off-the-shelf tools that participated in
SV-COMP, because we consider them state of the art. For verification
witnesses, we used the standardized format https://github.com/sosy-
lab/sv-witnesses, which is also used in SV-COMP. Using other ex-
isting tools in addition may lead to different results. To the best

https://www.sosy-lab.org/research/component-based-cegar/
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-witnesses
https://github.com/sosy-lab/sv-witnesses

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

of our knowledge, there are no other standardized formats appli-
cable in the C-CEGAR setting or other tools that can process the
used exchange formats properly. Even if such formats would ex-
ist or other tools are applicable but do not increase the effective-
ness, our findings remain valid. In addition, we cannot guaran-
tee that decomposing other existing CEGAR schemes into com-
ponents lead to the same results.

As the results from C-Pred and Pred show a high agreement in the
results, we are confident that the implementation does not suffer
from bugs. Anyhow, such bugs would influence the effectiveness
only negatively and our findings would remain valid.

The reported data may deviate on reproduction due to different
experimentation environments and measurement errors. To guar-
antee that our reported data has the highest precision possible, we
conducted the experiments using the benchmarking framework
BenchExec. To account for small, expected measurement errors, we
restrict the presentation of our data to two significant digits.

6 CONCLUSION

Software verification is an important and complex problems in
computer science, important because our society depends on cor-
rectly functioning software, and complex because the problem is in
general undecidable. Software engineering offers the idea of decom-
position [63, 64] to tackle complexity, in order to be able to focus
on subproblems which are easier to solve than the overall problem.

This paper investigated the problem of decomposing the often-
used CEGAR approach into components for which we can take pub-
licly available binary components (“off-the-shelf”). This opens up
many new opportunities. In particular, researchers can now focus
on developing highly tuned components for each of the subprob-
lems, and there are easy ways to parallelize software verification in
order to reduce the response time. However, tool developers also
have to make sure that their components deliver high-quality infor-
mation to other components, at the best in a standardized format.

In future work, we will investigate the decomposition of further
verification approaches as well as explore the options for paral-
lelization. An obvious first idea is to slightly change the outer
CEGAR loop in such a way that the abstract-model exploration
generates a stream of counterexamples, each of which is investi-
gated independently by feasibility checks and precision refinements
running in subprocesses, which feed the precision increments on-
the-fly back to the abstract-model exploration.

DECLARATIONS

DataAvailability Statement. Our implementation is open source
and available online as part of CoVeriTeam; minor adjustments for
the C-Pred configuration were checked in to the project reposi-
tory for CPAchecker. The implementation and all experimental data
are archived and available at Zenodo [24].

Funding Statement. This work was funded by the Deutsche
Forschungsgesellschaft (DFG) — 418257054 (Coop).

REFERENCES

[1] Zs. Ádám, Gy. Sallai, and Á. Hajdu. 2021. Gazer-Theta: LLVM-Based Verifier
Portfolio with BMC/CEGAR (Competition Contribution). In Proc. TACAS (2)

(LNCS 12652). Springer, 433–437. https://doi.org/10.1007/978-3-030-72013-1_27
[2] M. Afzal, A. Asia, A. Chauhan, B. Chimdyalwar, P. Darke, A. Datar, S. Kumar, and

R. Venkatesh. 2019. VeriAbs: Verification by Abstraction and Test Generation.
In Proc. ASE. 1138–1141. https://doi.org/10.1109/ASE.2019.00121

[3] American National Standards Institute. 1999. ANSI/ISO/IEC 9899-1999: Program-

ming Languages — C. American National Standards Institute, 1430 Broadway,
New York, NY 10018, USA.

[4] Pavel Andrianov, Vadim Mutilin, and Alexey Khoroshilov. 2018. Predicate
Abstraction Based ConfigurableMethod for Data Race Detection in Linux Kernel.
In Proc. TMPA (CCIS 779). Springer. https://doi.org/10.1007/978-3-319-71734-0_2

[5] P. S. Andrianov. 2020. Analysis of Correct Synchronization of Operating System
Components. Program. Comput. Softw. 46 (2020), 712–730. Issue 8. https:
//doi.org/10.1134/S0361768820080022

[6] S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahlbauer. 2016. On-the-
Fly Decomposition of Specifications in Software Model Checking. In Proc. FSE.
ACM, 349–361. https://doi.org/10.1145/2950290.2950349

[7] T. Ball and S. K. Rajamani. 2002. Generating abstract explanations of spurious
counterexamples in C programs. Technical Report MSR-TR-2002-09. Microsoft
Research.

[8] Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and Aaron
Stump. 2013. 6 Years of SMT-COMP. J. Autom. Reasoning 50, 3 (2013), 243–277.
https://doi.org/10.1007/s10817-012-9246-5

[9] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2015. The SMT-LIB Standard:

Version 2.5. Technical Report. University of Iowa. Available at www.smt-lib.org.
[10] C. Barrett, A. Stump, and C. Tinelli. 2010. The SMT-LIB Standard: Version 2.0.

In Proc. SMT.
[11] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In

Handbook of Model Checking. Springer, 305–343. https://doi.org/10.1007/978-3-
319-10575-8_11

[12] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
2020. ACSL: ANSI/ISO C Specification Language Version 1.15.

[13] D. Beyer. 2017. Software Verification with Validation of Results (Report on
SV-COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331–349. https://doi.
org/10.1007/978-3-662-54580-5_20

[14] D. Beyer. 2020. Advances in Automatic Software Verification: SV-COMP 2020.
In Proc. TACAS (2) (LNCS 12079). Springer, 347–367. https://doi.org/10.1007/978-
3-030-45237-7_21

[15] D. Beyer. 2021. Software Verification: 10th Comparative Evaluation (SV-COMP
2021). In Proc. TACAS (2) (LNCS 12652). Springer, 401–422. https://doi.org/10.
1007/978-3-030-72013-1_24 preprint available.

[16] D. Beyer, A. Chakrabarti, and T. A. Henzinger. 2005. Web Service Interfaces. In
Proc. WWW. ACM, 148–159. https://doi.org/10.1145/1060745.1060770

[17] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. Gen-
erating Tests from Counterexamples. In Proc. ICSE. IEEE, 326–335. https:
//doi.org/10.1109/ICSE.2004.1317455

[18] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. The
Blast Query Language for Software Verification. In Proc. SAS (LNCS 3148).
Springer, 2–18. https://doi.org/10.1007/978-3-540-27864-1_2

[19] D. Beyer and M. Dangl. 2020. Software Verification with PDR: An Implemen-
tation of the State of the Art. In Proc. TACAS (1) (LNCS 12078). Springer, 3–21.
https://doi.org/10.1007/978-3-030-45190-5_1

[20] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In Proc. FSE. ACM, 326–337.
https://doi.org/10.1145/2950290.2950351

[21] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness
Validation and Stepwise Testification across Software Verifiers. In Proc. FSE.
ACM, 721–733. https://doi.org/10.1145/2786805.2786867

[22] D. Beyer, M. Dangl, T. Lemberger, andM. Tautschnig. 2018. Tests fromWitnesses:
Execution-Based Validation of Verification Results. In Proc. TAP (LNCS 10889).
Springer, 3–23. https://doi.org/10.1007/978-3-319-92994-1_1

[23] D. Beyer and K. Friedberger. 2020. Violation Witnesses and Result Validation for
Multi-Threaded Programs. In Proc. ISoLA (1) (LNCS 12476). Springer, 449–470.
https://doi.org/10.1007/978-3-030-61362-4_26

[24] D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim. 2022. Reproduction
Package (VM Version) for ICSE 2022 Article ‘Decomposing Software Verification
into Off-the-Shelf Components: An Application to CEGAR’. Zenodo. https:
//doi.org/10.5281/zenodo.5301636

[25] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The Software Model
Checker Blast. Int. J. Softw. Tools Technol. Transfer 9, 5-6 (2007), 505–525.
https://doi.org/10.1007/s10009-007-0044-z

[26] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional
Model Checking: A Technique to Pass Information between Verifiers. In Proc.

FSE. ACM, Article 57, 11 pages. https://doi.org/10.1145/2393596.2393664

http://gepris.dfg.de/gepris/projekt/418257054
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-319-71734-0_2
https://doi.org/10.1134/S0361768820080022
https://doi.org/10.1134/S0361768820080022
https://doi.org/10.1145/2950290.2950349
https://doi.org/10.1007/s10817-012-9246-5
http://www.smt-lib.org
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://www.sosy-lab.org/research/pub/2021-TACAS.Software_Verification_10th_Comparative_Evaluation_SV-COMP_2021.pdf
https://doi.org/10.1145/1060745.1060770
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-540-27864-1_2
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.5281/zenodo.5301636
https://doi.org/10.5281/zenodo.5301636
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

[27] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. 2007. Path Invari-
ants. In Proc. PLDI. ACM, 300–309. https://doi.org/10.1145/1250734.1250769

[28] D. Beyer, T. A. Henzinger, and V. Singh. 2007. Algorithms for Interface Synthesis.
In Proc. CAV (LNCS 4590). Springer, 4–19. https://doi.org/10.1007/978-3-540-
73368-3_4

[29] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis. In Proc. CAV (LNCS 4590). Springer, 504–518. https://doi.org/10.1007/
978-3-540-73368-3_51

[30] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program Analysis with
Dynamic Precision Adjustment. In Proc. ASE. IEEE, 29–38. https://doi.org/10.
1109/ASE.2008.13

[31] D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim. 2018. Reducer-Based
Construction of Conditional Verifiers. In Proc. ICSE. ACM, 1182–1193. https:
//doi.org/10.1145/3180155.3180259

[32] D. Beyer and S. Kanav. 2020. An Interface Theory for Program Verification. In
Proc. ISoLA (1) (LNCS 12476). Springer, 168–186. https://doi.org/10.1007/978-3-
030-61362-4_9

[33] D. Beyer and S. Kanav. 2022. CoVeriTeam: On-Demand Composition of Coop-
erative Verification Systems (forthcoming). In Proc. TACAS. Springer.

[34] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184–190. https:
//doi.org/10.1007/978-3-642-22110-1_16

[35] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Abstraction with
Adjustable-Block Encoding. In Proc. FMCAD. FMCAD, 189–197.

[36] D. Beyer and T. Lemberger. 2019. Conditional Testing: Off-the-Shelf Combina-
tion of Test-Case Generators. In Proc. ATVA (LNCS 11781). Springer, 189–208.
https://doi.org/10.1007/978-3-030-31784-3_11

[37] D. Beyer, S. Löwe, and P. Wendler. 2015. Refinement Selection. In Proc. SPIN

(LNCS 9232). Springer, 20–38. https://doi.org/10.1007/978-3-319-23404-5_3
[38] D. Beyer, S. Löwe, and P. Wendler. 2015. Sliced Path Prefixes: An Effective

Method to Enable Refinement Selection. In Proc. FORTE (LNCS 9039). Springer,
228–243. https://doi.org/10.1007/978-3-319-19195-9_15

[39] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer 21, 1 (2019), 1–29. https:
//doi.org/10.1007/s10009-017-0469-y

[40] D. Beyer and M. Spiessl. 2020. MetaVal: Witness Validation via Verification. In
Proc. CAV (LNCS 12225). Springer, 165–177. https://doi.org/10.1007/978-3-030-
53291-8_10

[41] D. Beyer and H. Wehrheim. 2020. Verification Artifacts in Cooperative Ver-
ification: Survey and Unifying Component Framework. In Proc. ISoLA (1)

(LNCS 12476). Springer, 143–167. https://doi.org/10.1007/978-3-030-61362-4_8
[42] D. Beyer and P. Wendler. 2012. Algorithms for Software Model Checking:

Predicate Abstraction vs. Impact. In Proc. FMCAD. FMCAD, 106–113.
[43] Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. 2014. Coun-

terexample to Induction-GuidedAbstraction-Refinement (CTIGAR). In Proc. CAV
(LNCS 8559). Springer, 831–848. https://doi.org/10.1007/978-3-319-08867-9_55

[44] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim. 2007.
Slicing Abstractions. In Proc. FSEN (LNCS 4767). Springer, 17–32. https://doi.
org/10.1007/978-3-540-75698-9_2

[45] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim. 2008.
Slicing Abstractions. Fundam. Inform. 89, 4 (2008), 369–392.

[46] F. Cassez and A. M. Sloane. 2017. ScalaSMT: Satisfiability modulo theory in
Scala (tool paper). In Proc. SCALA. ACM, 51–55. https://doi.org/10.1145/3136000.
3136004

[47] F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and P. González
de Aledo Marugán. 2017. Skink: Static Analysis of Programs in LLVM Interme-
diate Representation (Competition Contribution). In Proc. TACAS (LNCS 10206).
Springer, 380–384. https://doi.org/10.1007/978-3-662-54580-5_27

[48] R. Castaño, V. A. Braberman, D. Garbervetsky, and S. Uchitel. 2017. Model
Checker Execution Reports. In Proc. ASE. IEEE, 200–205. https://doi.org/10.
1109/ASE.2017.8115633

[49] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. 2003. Resource
interfaces. In Proc. EMSOFT. Springer. https://doi.org/10.1007/978-3-540-45212-
6_9

[50] N. Chong, B. Cook, J. Eidelman, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-
Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle. 2021. Code-level model
checking in the software development workflow at AmazonWeb Services. Softw.
Pract. Exp. 51, 4 (2021), 772–797. https://doi.org/10.1002/spe.2949

[51] M. Christakis, P. Müller, and V. Wüstholz. 2012. Collaborative Verification and
Testing with Explicit Assumptions. In Proc. FM (LNCS 7436). Springer, 132–146.
https://doi.org/10.1007/978-3-642-32759-9_13

[52] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. 2013. The MathSAT5
SMT Solver. In Proc. TACAS (LNCS 7795). Springer, 93–107. https://doi.org/10.
1007/978-3-642-36742-7_7

[53] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2000. Counterexample-
Guided Abstraction Refinement. In Proc. CAV (LNCS 1855). Springer, 154–169.
https://doi.org/10.1007/10722167_15

[54] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752–794. https://doi.org/10.1145/876638.876643

[55] D. R. Cok. 2011. jSMTLIB: Tutorial, Validation, and Adapter Tools for SMT-LIBv2.
In Proc. NFM (LNCS 6617). Springer, 480–486. https://doi.org/10.1007/978-3-
642-20398-5_36

[56] B. Cook, A. Podelski, and A. Rybalchenko. 2006. Terminator: Beyond Safety. In
Proc. CAV (LNCS 4144). Springer, 415–418. https://doi.org/10.1007/11817963_37

[57] W. Craig. 1957. Linear Reasoning. A New Form of the Herbrand-Gentzen
Theorem. J. Symb. Log. 22, 3 (1957), 250–268. https://doi.org/10.2307/2963593

[58] Simon Cruanes, Grégoire Hamon, Sam Owre, and Natarajan Shankar. 2013. Tool
Integration with the Evidential Tool Bus. In Proc. VMCAI (LNCS 7737). Springer,
275–294. https://doi.org/10.1007/978-3-642-35873-9_18

[59] Simon Cruanes, Stijn Heymans, Ian Mason, Sam Owre, and Natarajan Shankar.
2014. The Semantics of Datalog for the Evidential Tool Bus. In Specification,

Algebra, and Software. Springer, 256–275.
[60] M. Czech, M.-C. Jakobs, and H. Wehrheim. 2015. Just Test What You Cannot

Verify!. In Proc. FASE (LNCS 9033). Springer, 100–114. https://doi.org/10.1007/
978-3-662-46675-9_7

[61] L. de Alfaro and T. A. Henzinger. 2001. Interface automata. In Proc. FSE. ACM,
109–120. https://doi.org/10.1145/503271.503226

[62] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. 2002. Timed interfaces. In Proc.

EMSOFT. Springer, 108–122. https://doi.org/10.1007/3-540-45828-x_9
[63] W. P. de Roever, H. Langmaack, and A. Pnueli (Eds.). 1998. Compositionality:

The Significant Difference, Proc. COMPOS’97. Springer. https://doi.org/10.1007/3-
540-49213-5

[64] T. DeMarco. 1979. Structured Analysis and System Specification (facsimile ed.).
Prentice Hall. ISBN: 978-0138543808

[65] D. Dietsch, M. Heizmann, B. Musa, A. Nutz, and A. Podelski. 2017. Craig
vs. Newton in software model checking. In Proc. ESEC/FSE. ACM, 487–497.
https://doi.org/10.1145/3106237.3106307

[66] Evren Ermis, Jochen Hoenicke, and Andreas Podelski. 2012. Splitting via In-
terpolants. In Proc. VMCAI (LNCS 7148). Springer, 186–201. https://doi.org/10.
1007/978-3-642-27940-9_13

[67] Gidon Ernst, Marieke Huisman, Wojciech Mostowski, and Mattias Ulbrich. 2019.
VerifyThis: Verification Competition with a Human Factor. In Proc. TACAS

(LNCS 11429). Springer, 176–195. https://doi.org/10.1007/978-3-030-17502-3_12
[68] M. Gario and A. Micheli. 2015. PySMT: A solver-agnostic library for fast proto-

typing of SMT-Based algorithms. In Proc. SMT.
[69] P. Godefroid and K. Sen. 2018. Combining Model Checking and Testing. In

Handbook of Model Checking. Springer, 613–649. https://doi.org/10.1007/978-3-
319-10575-8_19

[70] S. Graf and H. Saïdi. 1997. Construction of Abstract State Graphs with Pvs. In
Proc. CAV (LNCS 1254). Springer, 72–83. https://doi.org/10.1007/3-540-63166-
6_10

[71] M. Greitschus, D. Dietsch, and A. Podelski. 2017. Loop Invariants from Coun-
terexamples. In Proc. SAS (LNCS 10422). Springer, 128–147. https://doi.org/10.
1007/978-3-319-66706-5_7

[72] Á. Hajdu and Z. Micskei. 2020. Efficient Strategies for CEGAR-Based Model
Checking. J. Autom. Reasoning 64, 6 (2020), 1051–1091. https://doi.org/10.1007/
s10817-019-09535-x

[73] Á. Hajdu and Z. Micskei. 2020. Efficient Strategies for CEGAR-Based Model
Checking. J. Autom. Reasoning 64, 6 (2020), 1051–1091. https://doi.org/10.1007/
s10817-019-09535-x

[74] J. Haltermann and H. Wehrheim. 2021. CoVEGI: Cooperative Verification via
Externally Generated Invariants. In Proc. FASE (LNCS 12649). 108–129. https:
//doi.org/10.1007/978-3-030-71500-7_6

[75] M. Heizmann, Y.-F. Chen, D. Dietsch, M. Greitschus, J. Hoenicke, Y. Li, A. Nutz,
B. Musa, C. Schilling, T. Schindler, and A. Podelski. 2018. Ultimate Automizer
and the Search for Perfect Interpolants (Competition Contribution). In Proc.

TACAS (2) (LNCS 10806). Springer, 447–451. https://doi.org/10.1007/978-3-319-
89963-3_30

[76] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software Model Checking
for People Who Love Automata. In Proc. CAV (LNCS 8044). Springer, 36–52.
https://doi.org/10.1007/978-3-642-39799-8_2

[77] T. A. Henzinger, R. Jhala, and R. Majumdar. 2005. Permissive Interfaces. In Proc.

FSE. ACM, 31–40. https://doi.org/10.1145/1095430.1081713
[78] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. 2004. Abstractions

from proofs. In Proc. POPL. ACM, 232–244. https://doi.org/10.1145/964001.
964021

[79] F. Herbreteau, B. Srivathsan, and I. Walukiewicz. 2013. Lazy Abstractions for
Timed Automata. In Proc. CAV (LNCS 8044). Springer. https://doi.org/10.1007/
978-3-642-39799-8_71

[80] H. Hermanns, B. Wachter, and L. Zhang. 2008. Probabilistic CEGAR. In Proc.

CAV (LNCS 5123). Springer. https://doi.org/10.1007/978-3-540-70545-1_16
[81] Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz, Jirí Simácek,

and Tomáš Vojnar. 2017. Forester: From Heap Shapes to Automata Predicates
(Competition Contribution). In Proc. TACAS (LNCS 10206). Springer, 365–369.

https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1007/978-3-540-73368-3_4
https://doi.org/10.1007/978-3-540-73368-3_4
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-61362-4_9
https://doi.org/10.1007/978-3-030-61362-4_9
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-19195-9_15
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.1007/11817963_37
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1145/503271.503226
https://doi.org/10.1007/3-540-45828-x_9
https://doi.org/10.1007/3-540-49213-5
https://doi.org/10.1007/3-540-49213-5
https://www.worldcat.org/isbn/978-0138543808
https://doi.org/10.1145/3106237.3106307
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/1095430.1081713
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-540-70545-1_16

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

https://doi.org/10.1007/978-3-662-54580-5_24
[82] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. 2012.

The International SAT Solver Competitions. AI Magazine 33, 1 (2012). https:
//doi.org/10.1609/aimag.v33i1.2395

[83] T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf. 2016. JayHorn: A Framework
for Verifying Java programs. In Proc. CAV (LNCS 9779). Springer, 352–358. https:
//doi.org/10.1007/978-3-319-41528-4_19

[84] E. G. Karpenkov, K. Friedberger, and D. Beyer. 2016. JavaSMT: A Unified
Interface for SMT Solvers in Java. In Proc. VSTTE (LNCS 9971). Springer, 139–
148. https://doi.org/10.1007/978-3-319-48869-1_11

[85] M. Mann, A. Wilson, C. Tinelli, and C. W. Barrett. 2020. SMT-Switch: A
solver-agnostic C++ API for SMT Solving. arXiv/CoRR 2007.01374 (2020).
arXiv:2007.01374 https://arxiv.org/abs/2007.01374.

[86] Tiziana Margaria. 2005. Web services-Based tool-integration in the ETI platform.
Software and Systems Modeling 4, 2 (2005), 141–156. https://doi.org/10.1007/
s10270-004-0072-z

[87] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. 2005. jETI: A Tool for
Remote Tool Integration. In Proc. TACAS (LNCS 3440). Springer, 557–562. https:
//doi.org/10.1007/978-3-540-31980-1_38

[88] T. Margaria, R. Nagel, and B. Steffen. 2005. Remote integration and coordination
of verification tools in jETI. In Proc. ECBS. 431–436. https://doi.org/10.1109/
ECBS.2005.59

[89] K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc.

CAV (LNCS 2725). Springer, 1–13. https://doi.org/10.1007/978-3-540-45069-6_1
[90] K. L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. CAV

(LNCS 4144). Springer, 123–136. https://doi.org/10.1007/11817963_14
[91] F. Pauck and H. Wehrheim. 2019. Together Strong: Cooperative Android App

Analysis. In Proc. ESEC/FSE. ACM, 374–384. https://doi.org/10.1145/3338906.
3338915

[92] Nir Piterman and Amir Pnueli. 2018. Temporal Logic and Fair Discrete Systems.
In Handbook of Model Checking. Springer, 27–73. https://doi.org/10.1007/978-3-
319-10575-8_2

[93] A. Podelski and A. Rybalchenko. 2005. Transition predicate abstraction and fair
termination. In Proc. POPL. ACM, 132–144. https://doi.org/10.1145/1040305.
1040317

[94] Z. Rakamarić and M. Emmi. 2014. SMACK: Decoupling Source Language Details
from Verifier Implementations. In Proc. CAV (LNCS 8559). Springer, 106–113.
https://doi.org/10.1007/978-3-319-08867-9_7

[95] C. Richter, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. 2020. Algorithm
selection for software validation based on graph kernels. Autom. Softw. Eng. 27,
1 (2020), 153–186. https://doi.org/10.1007/s10515-020-00270-x

[96] C. Richter and H. Wehrheim. 2019. PeSCo: Predicting Sequential Combina-
tions of Verifiers (Competition Contribution). In Proc. TACAS (3) (LNCS 11429).
Springer, 229–233. https://doi.org/10.1007/978-3-030-17502-3_19

[97] John M. Rushby. 2005. An Evidential Tool Bus. In Proc. ICFEM (LNCS 3785).
Springer, 36–36. https://doi.org/10.1007/11576280_3

[98] N. Shankar. 2018. Combining Model Checking and Deduction. In Handbook of

Model Checking. Springer, 651–684. https://doi.org/10.1007/978-3-319-10575-
8_20

[99] Bernhard Steffen, Tiziana Margaria, and Volker Braun. 1997. The Electronic
Tool Integration Platform: Concepts and Design. STTT 1, 1-2 (1997), 9–30.
https://doi.org/10.1007/s100090050003

[100] Cong Tian, Zhenhua Duan, and Zhao Duan. 2014. Making CEGARMore Efficient
in Software Model Checking. IEEE Trans. Softw. Eng. 40, 12 (2014), 1206–1223.
https://doi.org/10.1109/TSE.2014.2357442

[101] Anton R. Volkov and Mikhail U. Mandrykin. 2017. Predicate Abstractions
Memory Modeling Method with Separation into Disjoint Regions. Proceedings
of the Institute for System Programming (ISPRAS) 29 (2017), 203–216. Issue 4.
https://doi.org/10.15514/ISPRAS-2017-29(4)-13

[102] D. Wang, C. Zhang, G. Chen, M. Gu, and J. Sun. 2016. C Code Verification based
on the Extended Labeled Transition SystemModel. InMoDELS 2016 (CEUR 1725).
CEUR-WS.org, 48–55.

[103] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018. On Scheduling Con-
straint Abstraction for Multi-Threaded Program Verification. IEEE Trans. Softw.

Eng. (2018). https://doi.org/10.1109/TSE.2018.2864122

https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-48869-1_11
https://arxiv.org/abs/2007.01374
https://doi.org/10.1007/s10270-004-0072-z
https://doi.org/10.1007/s10270-004-0072-z
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1145/3338906.3338915
https://doi.org/10.1145/3338906.3338915
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1145/1040305.1040317
https://doi.org/10.1145/1040305.1040317
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/s100090050003
https://doi.org/10.1109/TSE.2014.2357442
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.1109/TSE.2018.2864122

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	3 Component-based CEGAR
	3.1 Interfaces of C-CEGAR
	3.2 Components of ccegar
	3.3 Usage of Off-the-Shelf Components

	4 Implementation
	4.1 CPAchecker's Predicate Abstraction
	4.2 Decomposing CPAchecker's Predicate Abstraction
	4.3 Implementation in CoVeriTeam
	4.4 Off-the-Shelf Components

	5 Evaluation
	5.1 Research Questions
	5.2 Evaluation Setup
	5.3 Evaluation Results
	5.4 Threats to Validity

	6 Conclusion
	References

