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Abstract. Loop abstraction is a central technique for program analysis,
because loops can cause large state-space representations if they are
unfolded. In many cases, simple tricks can accelerate the program analysis
significantly. There are several successful techniques for loop abstraction,
but they are hard-wired into different tools and therefore difficult to
compare and experiment with. We present a framework that allows us
to implement different loop abstractions in one common environment,
where each technique can be freely switched on and off on-the-fly during
the analysis. We treat loops as part of the abstract model of the program,
and use counterexample-guided abstraction refinement to increase the
precision of the analysis by dynamically activating particular techniques
for loop abstraction. The framework is independent from the underlying
abstract domain of the program analysis, and can therefore be used for
several different program analyses. Furthermore, our framework offers a
sound transformation of the input program to a modified, more abstract
output program, which is unsafe if the input program is unsafe. This allows
loop abstraction to be used by other verifiers and our improvements are
not ‘locked in’ to our verifier. We implemented several existing approaches
and evaluate their effects on the program analysis.

Keywords: Software verification · Program analysis · Loop abstraction · Preci-
sion adjustment · Counterexample-guided abstraction refinement · CPAchecker

1 Introduction

Software programs are among the most complex systems that mankind produces.
Programs tend to have a complex state space and hence verifying the correctness
of software programs is a difficult task. Abstraction is a key ingredient to every
successful approach to prove the correctness of large programs. Let us look at
a few examples: Constant propagation [21] abstracts from concrete values for
a variable if the value of the variable is not constant. Counterexample-guided
abstraction refinement (CEGAR) [14] is an algorithm to incrementally refine
the level of abstraction until the abstract model is detailed enough to prove
the correctness, while the abstract model is still coarse enough to make the
analysis feasible. Predicate abstraction [18, 20] uses an abstract domain where
the abstract state is described as a combination of predicates from a certain
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given precision [8] (a set of predicates). The precision is refined with CEGAR
by adding new predicates to the precision. Shape analysis [25] abstracts from
concrete data structures on the heap and stores only their shape for the analysis.

Finally, loop abstraction is a technique to abstract the behavior of a program
with a loop in such a way that the correctness of the abstract program implies
the correctness of the original program. There are several approaches for loop
abstraction proposed in the literature [15, 16, 19, 22]. While we will concentrate
on reachability here, this technique can also be applied to other properties.

We contribute a formalism that treats loop abstraction as an abstraction
in the sense of CEGAR: The precision is a choice of a certain approach to
loop abstraction (level of abstraction of the loop). If the abstract model of the
program defined by this precision (= loop abstraction) is too coarse to prove
correctness, then we refine the abstract model by setting the precision to a
different (more precise) loop abstraction.

Example. Let us consider the small program in Fig. 1a. The program uses one
variable x, which is initialized with some large, even value and decreased by 2
in a loop. The specification requires that the value of x is even after the loop
terminates. It is easy for a human to see that an even number, decreased by an
even number, always yields an even number, no matter how often this is done. In
other words, we discover the invariant that x is even and check if it is preserved.
However, in this example there exists an even simpler invariant: The data type of
x is unsigned int, which means values greater or equal to zero. The control flow
cannot leave the loop as long as x is greater than 0. Once the control flow leaves
the loop, we know that the value is 0, and thus, even. The loop-exit condition,
together with the above argument, implies the specification. A program analysis
that cannot discover this (e.g., bounded model checking, explicit-value analysis,
interval analysis) has to unroll the loop many times.

But we can construct the loop abstraction in Fig. 1b, which executes the new
body only if the loop condition x > 0 is fulfilled, and the new body models all
behaviors that occur when the original program enters the loop. The new body
havocs (sets to an arbitrary value) the variable x. Then it constrains the values
of x by blocking the further control flow if the loop condition still holds, i.e.,
the original program would stay in the loop. Surprisingly, since the loop-exit
condition now implies the specification, this overapproximation of the original
program still satisfies the specification.

Contributions. This paper makes the following contributions:

• We propose a framework that can express several existing approaches for
loop abstraction and makes it possible to compare those different approaches.

• The framework allows to switch dynamically, on-the-fly, between different
loop-abstraction techniques, selecting different abstraction levels.

• The framework is independent from the underlying abstract domain of the
program analysis. The loop abstractions work using transformations of the
control flow. Once implemented, a strategy for loop abstraction is applicable
to several abstract domains.



1 unsigned int x = 0x0ffffff0;
2 while (x > 0) {
3 x −= 2;
4 }
5 assert(!(x % 2)));

(a) Original program

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 x = nondet_uint();
4 if (x > 0) {
5 return 0;
6 }
7 }
8 assert(!(x % 2)));

(b) Havoc abstraction

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 long long iterations = x/2;
4 x −= 2*iterations;
5 if (x > 0) {
6 x −= 2;
7 }
8 }
9 assert(!(x % 2)));

(c) Constant extrapolation

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 x = nondet_uint();
4 if (x <= 0) {
5 return 0;
6 }
7 x −=2;
8 if (x > 0) {
9 return 0;

10 }
11 }
12 assert(!(x % 2)));

(d) Naive abstraction

Fig. 1: Application of various loop abstraction strategies on the benchmark
program simple_4-2.c from the SV-Benchmarks set; only the body of the main
function is shown here

• We export the modified C program, such that the loop-abstraction techniques
can be used by other verifiers.

• The framework is publicly available as an extension of the open-source
verification framework CPAchecker.
• We evaluate the effectiveness and efficiency of the framework on a benchmark

set from the publicly available collection of verification tasks SV-Benchmarks,
and compare it with state-of-the-art tools.

Related Work. In the following we discuss the most related existing approaches.

Loop Acceleration. As this is an obvious way to speed up verification, many
different approaches have been proposed to calculate the effects of a loop execu-
tion [17, 19, 26]. We present only a very basic form where we accelerate variables
that are incremented by a fixed value in loops with a known number of itera-
tions, since our interest is rather into gaining insights into how different existing
approaches can be combined to further improve their usefulness. As such we are in-
terested in implementing other approaches for loop acceleration as strategies into
our framework, rather than coming up with new ways of accelerating single loops.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp22/c/loop-acceleration/simple_4-2.c


Loop Abstraction. While loop acceleration is useful also in other areas, e.g., for
compiler optimizations, verifiers have the possibility of using loop abstractions
(i.e., overapproximatons) instead, for aiding the generation of correctness proofs.
Since loop abstraction is closely related to invariant generation, and this is the
main challenge in software verification, there is a large body of literature. We
will therefore look at only those publications that also make use of the idea to
encode the abstractions into the source code. The abstraction techniques we
describe in this paper are taken taken from existing publications [15, 16]. As with
loop accelerations, our goal is not to invent new strategies, but rather investigate
how existing strategies can be combined. Also VeriAbs [1] uses a variety of
loop-abstraction techniques, but only statically generates a program that is then
checked by a third-party verifier. As fallback, the original program is verified.

Encoding Loop Abstractions into the Program. We found one publication that also
encodes loop accelerations into a modified program [23]. Here, the accelerated loop
variant is added in such a way that the alternative code will be entered based on
non-deterministic choice. The main motivation is to investigate how this can cre-
ate synergies with invariant generation, i.e., whether existing invariant generators
can be improved by also providing the results of the acceleration in the program.
Compared to that, our approach is more general, as we also consider overapprox-
imating loop abstractions. Instead of non-deterministic choice, we present an
approach to determine which strategies to use automatically using CEGAR.

2 Preliminaries

We quickly introduce some notation and common concepts that will later be
used in Sect. 3.1.

Program Semantics. For simplicity we will consider a programming language
where the set Ops of possible program operations consists of simple assignments
and assumptions. We represent the programs as control-flow automata (CFA).
A CFA C = {L, l0, G} consists of a set L of program locations (modeling the
progam counter), an initial program location l0, and a relation G ⊆ L×Ops ×L
that describes the control-flow edges (each modeling the flow from one program
location via a program operation to a successor program location). The concrete
semantics of such a CFA is given by the (labeled) transition relation→ ⊆ C×G×C
over the set C of concrete program states. We will write c1

g→ c2 if the concrete
state c2 can be reached from c1 via the control-flow edge g ∈ G.

Program Analysis. Our approach will work for many different kinds of program
analysis. Typically, a program analysis is characterized by some abstract domain
D that defines a set E of abstract states as well as an abstract transfer relation
 ⊆ E ×G×E, which determines which abstract states can be reached from the
initial state e0 ∈ E. One common way to design a program analysis is to determine
the set of reachable abstract states by keeping track of a set reached ⊆ E of



already reached abstract states and a set (or list) waitlist ⊆ E of abstract
states that still need to be explored.1

CEGAR. Whenever a program analysis finds a counterexample, there are two
possibilities. Either this turns out to correspond to an actual execution trace of the
original program, and we have shown that the program violates the specification,
or the counterexample is infeasible, meaning that it is only found because the
abstraction level of the analysis is too coarse. This has led to the development of
counterexample-guided abstraction refinement, or CEGAR for short [14]. The idea
here is that one can extract information from the counterexample with which the
abstract domain can be refined. For example with predicate abstraction [2], one
can use the counterexample to compute predicates that —if tracked— rule out
the infeasible counterexample. In order to formalize CEGAR, we will introduce
the refinement operator:

refine : (reached, waitlist) 7→ (reached’, waitlist’)

Once an infeasible counterexample is found, the refinement operator is called
with the current set of reached abstract states and the waitlist. This operator
then extracts information from its inputs and returns a new set of reached states
and a new waitlist which will then be used for further state-space exploration.
In case the counterexample is feasible, the refinement operator will not remove
the violation state(s) from the set of reached abstract states, which signals that
the analysis found a bug and can terminate.

3 Loop Abstractions

We propose the approach of multi-strategy program analysis, which enables one
tool to use several different loop-abstraction strategies simultaneously in one
state-space exploration. In the following, we will first look at the theory behind
loop abstractions and some practical examples for such strategies. After that, we
will introduce our CEGAR refinement approach for loop abstractions in Sect. 3.2.

3.1 Theory

For verification, we usually use overapproximations if the goal is to find a proof
of correctness. For loop control flow, such an overapproximation is called a loop
abstraction, while precise methods are called loop acceleration. Whenever it is
not important whether the technique is precise or overapproximating, we will
just refer to the techniques as loop abstraction.

It is common to apply loop abstractions by replacing the loop statement S with
some alternative program statement S′ [1, 23]. Intuitively, it is often clear whether
this will overapproximate the program behavior, but we can also formalize this
1 In the literature, this is also know as a worklist algorithm [24]; here we will adhere
to the terminology used in the Handbook of Model Checking [6].



using strongest postconditions. We write sp(S, P ) for the strongest postcondition
of a program statement S and a predicate P . Assume we have a program
statement S that contains a loop, i.e., S = while (C) do B, where the body B
inside S may itself contain loops. For a loop abstraction, the goal is to find an
alternative program statement S′ such that {P}S{sp(S′, P )} is a valid Hoare
triple. If this requirement is fulfilled, then we can soundly replace S by S′ in the
program for the purpose of verification. In other words, S′ is an abstraction of S
if sp(S, P )⇒ sp(S′, P ). It is possible to find such rewriting schemes for a loop
without knowing the exact form of the loop. This is best shown by two examples.

Havoc Abstraction. Let us look at the rather simple loop abstraction that
served as example in Sect. 1, which we call havoc abstraction. Here we replace the
loop while C do B by a havoc statement havoc(mod(B)) that is guarded in such
a way to ensure it is only executed if the loop condition holds, and after it is exe-
cuted, the loop condition does not hold anymore. The havoc statement discards
any information about the values of a set of variables. Here we use the set mod(B)
of variables that are modified in the loop body B. We denote the strongest postcon-
dition of this havoc statement by HB,P = sp(havoc(mod(B)), P ). We can easily
prove soundness of the havoc abstraction by establishing that HB,P is actually a
loop invariant and therefore the Hoare triple {P} while C do B {HB,P ∧ ¬C}
holds.2

It is obvious that we can find an alternative statement S′ for the while-loop
that has the same post condition:

sp(havoc(mod(B));assume(!C), P ) = HB,P ∧ ¬C

We therefore have found a statement whose strongest post is an overapproximation
of the strongest post of the while loop.

Naive Abstraction. Another way to abstract a loop is the so-called naive
loop abstraction [16]. An application to the example program from Fig. 1a is
shown in Fig. 1d. Here one assigns non-deterministic values to all the variables
that are modified in the loop (provided the loop condition holds when reaching
the loop). Then the loop body is executed once, after which the negated loop
condition is added as assumption. This essentially encodes the information that
if the loop was entered, there is a “last” iteration of the loop after which the
loop condition does not hold anymore and the loop therefore terminates. This is
overapproximating the behavior of the original loop, since a loop, in general, is
not guaranteed to terminate. From the Hoare proof of the naive abstraction, we
get that sp(B,C ∧HB,P ) ∨ P is an invariant of the while loop.3

The postcondition (sp(B,C ∧HB,P ) ∨ P ) ∧ ¬C that is shown in the proof is
also the post condition of the alternative code for the loop described above:

sp(if C then {havoc(mod(B));assume(C);B;assume(!C)}, P ) =

(sp(B,C ∧HB,P ) ∨ P ) ∧ ¬C
2 Proof can be found at: https://www.sosy-lab.org/research/loop-abstraction/
3 Proof can be found at: https://www.sosy-lab.org/research/loop-abstraction/
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Observations. We can make three interesting observations by looking at these
proofs. Firstly, we eliminated the outermost loop from the statement S, at the
cost of overapproximation. If this can be achieved iteratively until no loops
are left, the resulting overapproximation can be quickly checked by a (possibly
bounded) model checker, as no loops need to be unrolled anymore.

Secondly, in the proof we actually used an invariant for applying the while-
rule. Every loop-abstraction strategy can therefore be seen as a way to generate
invariants for a loop based on some structural properties of the loop. In the
example of the havoc abstraction, we used the fact that for a precondition P ,
HB,P is always preserved by a loop (provided there is no aliasing). The invariant
depends on the precondition P , so for every precondition with which the loop
can be reached, the loop abstraction yields a different state invariant. Without
knowing P it can only be expressed as a transition invariant that may refer to
the “old” values of variables before entering the loop. One can compute a state
invariant by assuming the most general precondition P = true, but this will
often eliminate most of the useful information from the invariant. As transition
invariants can often be expressed precisely by program statements, this explains
why for loop abstraction, we choose to replace the loop statement with alternative
program statements that capture the corresponding transition invariant. This
invariant view on loop abstraction works in both ways, meaning that if an
invariant is provided for a loop, we can use this invariant for abstracting the loop.
It is even possible to construct an inductive proof this way, i.e., transforming the
loop in such a way that model checking of the resulting program will essentially
carry out a combined-case (k-)inductive proof [15].

The third observation is that the invariant of one loop abstraction might
sometimes imply the invariant of another loop abstraction. This is the case in the
two examples: the invariant for havoc loop abstraction is implied by the invariant
we use in the naive loop abstraction. This means we can build a hierarchy, where
naive loop abstraction overapproximates the original loop, and havoc abstraction
overapproximates naive abstraction. We will exploit the idea of this abstraction
hierarchy later in Sect. 3.2 for an abstraction-refinement scheme.

Constant Extrapolation. For loops where we can calculate the exact number
of iterations as well as the final values of the variables assigned in the loop
(e.g., because the loop is linear or otherwise easily summarizable) we can simply
accelerate the loop by replacing it with assignment statements for the final variable
values. The application of constant extrapolation to the program from Fig. 1a is
shown in Fig. 1c. For the program in Fig. 2, this would replace the loop with a
statement that increments the variable i by N. For programs like the one shown
in Fig. 3 that contains a potential property violation inside the loop, one has to
be careful to preserve those violations that can occur in any of the loop iterations.

3.2 Combining Strategies for Loop Abstraction

In Sect. 3.1 we already introduced various ways to abstract loops, which we will
in the following refer to as strategies. Intuitively, a strategy is a way to compute
an abstraction of a loop that is helpful to verify a program.



Since there are often many different strategies that could be applied to a loop
in the program, we need to make some choice about which strategies to use. The
simplest approach that is used in the state-of-the-art verification tool VeriAbs
is to choose the most promising that can be applied for each loop, generate a
program where the loops are rewritten according to these strategies, and hand
this program over to a (possibly bounded) verifier for verification.

This has the downside that in cases where the program contains multiple
loops, the chosen approximations might be either not abstract enough for the
verifier to calculate the proof efficiently or too abstract, such that the proof of
the property does not succeed. Choosing a good abstraction level is one of the
key challenges in software verification. One successful way how this can be solved
is counterexample-guided abstraction refinement (CEGAR) [14].

Our idea is therefore to use CEGAR in order to refine the abstraction of
the program dynamically during the program analysis, which allows us to try
multiple strategies for the same loop in the program, and even different strategies
for the same loop at different locations in the state-space exploration. Because
a program analysis operates on the CFA, and loop abstractions correspond to
transition invariants that can often be expressed naturally as a sequence of
progam instructions, we choose to encode the loop abstractions directly into
the CFA. This allows us to realize the CEGAR approach for loop abstractions
independently of the details of the exact program analysis that is used.

Encoding of Strategies.We encode strategies that are to be considered directly
into the CFA of the program. The CFA for a program statement S such as a
loop has a unique entry node α and a unique exit node ω. The application of
a strategy to this statement results in the statement S′ and a CFA with an
entry node α′ and an exit node ω′. We attach the CFA for the statement S′ of a
strategy with two dummy transitions α→ α′ and ω′ → ω, as depicted in Fig. 4.
Here, we explicitly denoted the entry edge for the strategy application with the
keyword enter followed by an identifier that makes clear which strategy was
applied (here, h stands for havoc). The resemblance to function call and return
edges is not a coincidence. By keeping track of the currently entered strategy
applications, e.g. in form of a stack, it will always be clear which parts of the
execution trace correspond to executions in the original program, and which
parts are part of some —potentially overapproximating— strategy application.
For nested loops, we can apply the strategies starting from the inner-most loop
and construct alternatives in the CFA for all possible strategy combinations.

A CFA that is augmented with strategies in this way contains all program
traces of the original program, and can non-deterministically branch into any of
the strategy applications. In order to make use of this modified CFA, the analysis
needs to be able to distinguish between the original control flow and nodes in
the CFA at which we start to apply a particular strategy. The important nodes
for this are the entry nodes for each of the strategy applications, so we augment
the modified CFA C = (L, linit, G) with a strategy map σ : L → N that maps
each CFA node l ∈ L to a strategy identifier σ(l) ∈ N and call the resulting
tuple Γ = (C, σ) a strategy-augmented CFA. The set N of strategy identifiers



1 void main() {
2 int i = 0;
3 while (i<N) {
4 i=i+1;
5 }
6 assert (i==N);
7 }

Fig. 2: Example program 1: potential
property violation outside the loop

1 void main() {
2 int i = 0;
3 while (i<N) {
4 i=i+2;
5 assert(i%2==0);
6 }
7 }

Fig. 3: Example program 2: potential
property violation inside the loop
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3 4

6

7

8

9

err

α

ω

α′

ω′

i:=0 [i<N]

i:=i+1

enter<h>

if (i<N) {
i:=nondet_int()
assume(i>=N)

}
leave<h>

[i>=N]

[i!=N][i==N]

Fig. 4: CFA C of example program from Fig. 2, with an additional application
of the havoc strategy

contains a special strategy b, which we call the base strategy. The strategy map σ
maps the entry node for each strategy application to the corresponding strategy’s
identifier, while all other nodes are mapped to the base strategy b.

In a program analysis, we can now use the strategy map for selecting exactly
the transitions we want to follow. For example, we can always follow the original
program by excluding all transitions to CFA nodes with an associated strategy
identifier that is different from the base strategy. By using a more general
selection function, we have fine-grained control over which strategies we are
applying, which we will describe in the following. As this modifies only the
transition relation of the state-space exploration, it can be seamlessly applied
to a wide variety of such algorithms.

Selection of Strategies. At any node l in an augmented CFA, we can calculate
the set A ⊆ N of available strategies as:

A = {σ(l′) | ∃g ∈ G : l
g→ l′}

In order to define which strategies should be applied (e.g., because others overap-
proximate too much and lead to false alarms), we define a precision set πS ⊆ N



which we call the strategy precision. This precision can be tracked along each
abstract state of the program analysis. In practice this precision is tracked for each
program location separately, but for simplicity of presentation, we will only con-
sider a global precision here. Semantically the precision expresses which strategies
are allowed to be taken from the current abstract state. We can now express differ-
ent selection approaches by defining a function select : P(N)× P(N)→ P(N),
which needs to fulfill the property select(A, πS) ⊆ A ∩ πS .

The exact choice of the function select depends on the use case and the set
of available strategies. One possibility which we will use is to define a partial
order v over the set of available strategy identifiers, and derive the selection
function in the following way:

select(A, πS) = {s ∈ A ∩ πs |6 ∃s′ ∈ A ∩ πs : s v s′} (1)

Such a partial order can be based on the invariant hierarchy of the loop-
abstraction strategies, as motivated in Sect. 3.1. It is of course not guaranteed
that deciding whether one invariant implies the other is actually decidable. But
depending on the strategies considered, one can also just take some design
decisions regarding the partial order. In general it is desirable to have the base
strategy as greatest lower bound, since as long as only overapproximation is
considered, this is the most precise strategy.

The selection function above will return the most abstract strategies, i.e.,
that overapproximate most. Once we rule those out by removing their strategy
identifier from the precision, more and more precise strategies will be returned.

CEGAR Refinement Chaining. We can now define the refinement operator
refine for precision-based loop acceleration on top of any refiner of an existing
analysis, which we will call the wrapped refiner refineW. This can be done by
composing the refinement operator refineW with the strategy-refinement op-
erator refineS, which updates the strategy precision with information from
the error path:

refine = refineS ◦ refineW (2)

Since the wrapped refinement operator is executed first, it gets the possibility
to remove all error states from the reached set, in which case refineS has nothing
to do and will just return its inputs. If there are still error states left in the
reached set after refineW was executed, this means that the inner refinement
has discovered a feasible error path for the augmented CFA. Now it depends on
whether any overapproximating strategies were used on the error paths that are
present in the reached set. If there are none, then the error path is indeed also
present in the real program and refineS returns the reached set with the error
state(s), indicating that a bug has been found. An example for this would be the
case where only constant extrapolation has been used along the path. If there are
overapproximating strategies such as the havoc abstraction on an error path, we
can adapt the strategy precision in order to rule out that we will find the same
error path again after the refinement. For that, we locate the first abstract state
on the path whose successor enters an overapproximating strategy (the so-called



pivot state) and adapt the strategy precision such that this strategy can not be
selected in the future. We then remove all (transitive) successor abstract states
of that pivot state from the set of reached abstract states.

Example. The chaining of the refinement operators is best visualized by looking
at an example. Using the running example from Fig. 2, we can look at the key
steps in the CEGAR refinement. Let us assume we are only using the havoc
strategy, i.e., the augmented CFA will look like shown in Fig. 4. Based on this CFA,
an example for how a generic state-space exploration could look like is depicted
in Fig. 5. In Fig. 5a we start at an abstract state with three components. The first
one encodes the program location and is set to 2, since program location 2 is the
initial progam location in the CFA. Component e0 encodes the analysis-specific
domain part of the abstract state, e.g., for predicate abstraction this could be
a set of predicates. The last component is the strategy precision. It contains
the base strategy (b) as well as the havoc strategy (h). From this state, the
state-space exploration continues to program location 3, where the selection of
strategies in the transition relation only allows us to proceed into the application
of the havoc abstraction. From there, we eventually reach the error location.

This is where the CEGAR refinement operator is first called. Since the path
formula to the error location is actually feasible, the wrapped refinement operator
return the inputs unchanged, and our strategy refinement operator takes over.
Here we discover that an overapproximating strategy was used on the path. We
update the strategy precision of the second state (the one at program location 3)
such that the havoc strategy cannot be chosen anymore. We then remove all
successors of the pivot state from the set of reached abstract states (and the
waitlist), add the modified state to the waitlist, and return both sets.

The resulting reachability graph will look like in Fig. 5b. From there, the
state-space exploration can continue as shown in Fig. 5c. We again discover an
error path, this time however the wrapped refinement operator can determine
that this error path is infeasible. In case of a predicate abstraction, a predicate like
i < N would be discovered and added to the predicate precision of e′1 at program
location 3. All successors after location 3 are removed again and the wrapped
refinement operator returns. Since there is no error state present anymore in
the set of reached states, the strategy refinement operator returns its inputs
unchanged. The state-space exploration then continues by adding a new abstract
state for program location 4 and so on, as depicted in Fig. 5d.

Transformation into Source Code. We also provide functionality to convert
the loop abstractions we found back into source code, such that our findings can
be used and validated by others. For that, we provide two different mechanisms.
The first is that whenever we are able to generate a proof using some loop-
abstraction strategy, we generate a modified version of the input program where
just the loops are changed to reflect the effect of the loop abstraction. The second
mechanism is that we provide a way to analyze a C program such that for each
loop in the program and each loop-abstraction strategy, we create a patch file
for the program (in case the strategy is applicable) that —when applied— will
apply the loop abstraction on the source-code level.



2, e0, {b, h}

3, e1, {b, h}

. . .

6, e5, {b, h}

err, e6, {b, h}

i:=0

enter<h>

[i !=N]

(a)

2, e0, {b, h}

3, e1, {b}
i:=0

(b)

2, e0, {b, h}

3, e1, {b}

4, e7, {b}6, e8, {b}

. . .err, e6, {b}

i:=0

[i<N][i >=N]

[i !=N]

(c)

2, e0, {b, h}

3, e′1, {b}

4, e′7, {b}

. . .

i:=0

[i<N]

(d)

Fig. 5: Example for constructing a reachability graph of a program analysis
on Fig. 4 using chained CEGAR refinements: (a) initial ARG until first re-
finement, (b) strategy precision updated after refinement (strategy h removed
from precision), (c) state-space exploration on the original program continues,
(d) exploration continues after a regular CEGAR refinement (e1 replaced by e′1)

4 Evaluation

As a first step, we implemented the three loop-abstraction strategies that we de-
scribed in Sect. 3.1 into the state-of-the-art verification framework CPAchecker:
havoc abstraction (h), naive abstraction (n), and constant extrapolation (c).
In addition, we also implemented so-called output abstraction (o) [15]. For
the evaluation, we define the following (partial) order on which the function
select will be based:

b v o v c v n v h (3)

We are interested in answering the following research questions:

• RQ1: Can our CEGAR-style loop-abstraction scheme soundly improve a
verifier like CPAchecker independently of the underlying analysis?
• RQ2: Are these abstractions also useful for other verifiers?

We conduct an experiment for each RQ in Sect. 4.2 to abtain answers.

4.1 Benchmark Environment

For conducting our evaluation, we use BenchExec to ensure reliable bench-
marking [12]. All benchmarks are performed on machines with an Intel Xeon
E5-1230 CPU (4 physical cores with 2 processing units each), 33GB of RAM,
and running Ubuntu 20.04 as operating system. All benchmarks are executed
with resources limited to 900 s of CPU time, 15 GB of memory, and 1 physical
core (2 processing units).
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Fig. 6: Quantile plots comparing performance of plain analyses with their versions
that use loop-abstraction strategies; only correct results are considered

4.2 Experiments

For our experiments we use verification tasks taken from the SV-Benchmarks set
of SV-COMP 2022 [3, 4]. Here we selected only the 765 reachability tasks from
the subcategory ReachSafety-Loops, as these cover a wide range of interesting
loop constructs while at the same time only using a limited set of features of the
programming language C, which allows us to focus on the algorithms instead
of having to deal with lots of special cases.

RQ1. In a first experiment, we evaluate whether our approach can improve the
overall results, and whether our new framework introduces significant overhead,
for three analyses of CPAchecker: (1) predicate analysis (PA) [5] configured to
use predicate abstraction [7, 9, 18], (2) value analysis (VA) [6, 11], which is an
extension of constant propagation [21], and (3) predicate analysis configured to
work as bounded model checking (BMC) [13]. For improvements we will look at
effectiveness as well as efficiency. By effectiveness we mean an increase in the
number of solved verification tasks while at the same time preserving soundness
of the results, i.e., no increase of the number of wrong proofs or wrong alarms.
For efficiency we will take a look at how our approach affects the verification
time of successfully verified tasks.



Table 1: Results for predicate abstraction (PA), value analysis (VA), and bounded
model checking (BMC), without vs. with loop abstraction (LA)

PA PA-LA VA VA-LA BMC BMC-LA

Total 765 765 765 765 765 765
Total proofs 533 533 533 533 533 533
Correct proofs 164 163 33 35 235 248
Incorrect proofs 0 0 0 0 0 0
Total alarms 232 232 232 232 232 232
Correct alarms 58 62 76 81 144 144
Incorrect alarms 0 0 0 0 0 0

Table 2: Impact of loop abstractions on solving capabilities of the software verifiers
UAutomizer (UA), Cbmc, and Symbiotic, without vs. with loop abstraction (LA)
via generated abstracted programs

UAutomizer UAutomizer-la Cbmc Cbmc-la Symbiotic Symbiotic-la

Total 18 18 18 18 18 18
Total proofs 14 14 14 14 14 14
Correct proofs 12 13 0 13 12 13
Incorrect proofs 0 1 0 1 0 1
Total alarms 4 4 4 4 4 4
Correct alarms 0 3 1 3 1 3
Incorrect alarms 0 0 0 0 0 0

The quantile plots in Fig. 6 show that we are able to slightly improve the
results for all analyses. Both effectiveness and efficiency is improved, and thus,
there is no noticeable overhead. We use PA-LA, VA-LA, and BMC-LA to refer to
the variants of the analyses that use our CEGAR-style loop-abstraction scheme.
As expected, the overhead of applying loop abstraction in cases where this does
not help with solving the verification task does not add a significant overhead
to the verification time. Table 1 shows that our approach is also sound, i.e., it
does not increase the number of incorrect results.

Another observation is that there are more proofs as well as property violations
found this way. The latter is possible because constant extrapolation is a precise
abstraction, meaning that a counterexample found using this strategy corresponds
to a feasible error path in the program.

The experimental data so far suggests that if loop abstraction helps with
verification, the verification will usually succeed very quickly. For all tasks where
the verdict improves, the application of loop abstraction reduces the verification
time from a timeout, i.e., more than 900 seconds, to less than 10 seconds. On closer
inspection, we find a total of 18 verification tasks where the loop abstraction is
essential in proving the program correct with the used analyses. When comparing
the different analyses, the effect is most noticeable with bounded model checking,
which is not surprising given the fact that BMC alone can not prove programs
with unbounded loops. There are 6 tasks where predicate analysis improved, 5



tasks for value analysis, and 17 tasks for BMC.4 Since our framework supports
exporting the accelerated loops into the source code, we can use the 18 abstracted
programs that improved CPAchecker’s results in the next experiment, where
we check whether these are also useful for other software verifiers.

RQ2. In the second experiment we take a look at whether our approach has
the potential to improve the results of other state-of-the-art verification tools as
well. In order to be able to do so without having to modify the existing tools, we
take those programs where loop-abstraction strategies were able to improve the
results for CPAchecker and automatically generate the abstracted programs
that can then be fed to other verifiers. In our case, we use the three well-known
verifiers Cbmc, Symbiotic, and UAutomizer.

The results of all three verifiers improve if loop abstraction is applied, as
shown in Table 2. The table shows the results for the verifiers on the original
verification tasks (columns without suffix LA) and on the abstracted programs
(column with suffix LA). Note that this will not be the case in general, but for the
selected verification tasks, we know that one of our implemented loop abstraction
strategies is actually sufficient to prove the program correct. In general, if a loop
abstraction over-approximates too much, the verifier will quickly find an error
path, in which case we would execute the verifier on the original program. There
is also one program for which our loop abstraction leads to a wrong proof, which
is due to a bug in our translation back into source code.

The main observation here regarding our research question is that the results
of all three verifiers can be improved by applying loop abstraction. We get the
largest improvement for the bounded model checker Cbmc. This is not surprising
and in line with the results from the bounded model checking with CPAchecker.

5 Conclusion

Loop abstraction is a technique for program verification that is currently not
used by many of the state-of-the-art verification tools. In our experiments we
have shown that mature verifiers can still benefit even from very simple loop
abstractions. By adding more sophisticated loop-abstraction strategies in the
future, we hope to achieve even better results that further improve the state-of-
the-art. We make the loop abstractions that we implemented available to other
tools by generating modified versions of the input programs, such that also other
tools can benefit from loop abstractions in the future.

In this paper, we have also addressed the problem of how to select the right
combination of loop abstractions for programs with multiple loops. Instead of
deciding upfront which combination to choose, we use a novel approach based on
CEGAR to automatically refine the loop abstractions as the analysis progresses.
By using the control flow as interface for program analyses, we are able to apply
our approach to a wide range of existing analyses and abstract domains, without
additional implementation overhead.
4 Detailed results at: https://www.sosy-lab.org/research/loop-abstraction/

https://www.sosy-lab.org/research/loop-abstraction/
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