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Abstract. The verification community develops two kinds of verification
tools: automatic verifiers and interactive verifiers. There are many such
verifiers available, and there is steady progress in research. However,
cooperation between the two kinds of verifiers was not yet addressed in
a modular way. Yet, it is imperative for the community to leverage all
possibilities, because our society heavily depends on software systems
that work correctly. This paper contributes tools and a modular design to
address the open problem of insufficient support for cooperation between
verification tools. We identify invariants as information that needs to
be exchanged in cooperation, and we support translation between two
‘containers’ for invariants: program annotations and correctness witnesses.
Using our new building blocks, invariants computed by automatic veri-
fiers can be given to interactive verifiers as annotations in the program,
and annotations from the user or interactive verifier can be given to
automatic verifiers, in order to help the approaches mutually to solve the
verification problem. The modular framework, and the design choice to
work with readily-available components in off-the-shelf manner, opens up
many opportunities to combine new tools from existing components. Our
experiments on a large set of programs show that our constructions work,
that is, we constructed tool combinations that can solve verification tasks
that the verifiers could not solve before.

Keywords: Software verification, Program analysis, Invariant generation, Auto-
matic verification, Interactive verification, CPAchecker, Frama-C

1 Introduction

Software verification becomes more and more important, and large IT companies
are investing into this technology [5, 25, 29]. There was a lot of progress in
the past two decades and many software-verification tools exist [7, 8, 15, 34, 42].
But there are also obstacles that hinder the application of new technology in
practice [3, 35]. The verification tools can roughly be divided into two different
flavors: automatic verifiers, which are more suited for automatic settings such
as continuous-integration checks, and interactive verifiers, which can be fed
with proof hints to solve verification tasks. These different tools have different
strengths and often one verifier alone is not able to prove the correctness. Yet, the
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potential from cooperation between different kinds of verifiers is a largely unused
technology, although it is expected to significantly improve the state of the art.

In this paper, we contribute ideas to bridge the gap between automatic and
interactive verifiers by introducing cooperation between tools of both kinds. As a
starting point, we identify invariants as the objects that we need to exchange.
Then we investigate which interfaces are supported by different verification
tools. As a result, we choose verification witnesses [12] and annotations [6] as
containers for the invariants. We implement various transformers for exchanging
invariants between the different interfaces. This results in a modular composition
framework that is based on off-the-shelf components (in binary format). We
can use existing components because we base our work on existing interfaces
(witnesses and annotations).

Automatic verifiers, such as Cbmc [28], CPAchecker [18], Goblint [49],
Korn [32], PeSCo [48], Symbiotic [26], Ultimate Automizer [39], and VeriAbs [1]
(alphabetic order, just to name a few, for a larger list we refer to a competition
report [8]), usually take as input a program and a specification (a.k.a. verification
task) and compute invariants, in order to prove correctness. The above-mentioned
verifiers can save the computed invariants into a standard witness file for later
use (e.g., for result validation).

Interactive verifiers, such as Dafny [46], Frama-C [30], KeY [2], KIV [33],
and VeriFast [43] (alphabetic order, just to name a few, for a larger list we
refer to a competition report [34]), usually take as input a program with an
inlined specification (contracts, asserts), and during the verification process, the
verification engineer can interact with the verifier by providing invariants and
other information as annotations in the program.

The automatic verifiers use a standardized exchange format for verification
witnesses [12], and thus, we can easily plug-in all of them. The interactive verifiers
come each with their own annotation language. We decided to consider only
ACSL [6], which is supported by Frama-C [30], as a starting point for our study,
because it is well documented. In practice, many of these annotation languages
are similar, so our results apply to other annotation languages as well.

Contributions. This paper contributes the following in order to enable new
verification technology:

• We develop a novel compositional design to construct new tools for software
verification from existing ‘off-the-shelf’ components:
1. We construct interactive verifiers from automatic verifiers and validators.
2. We construct result validators from interactive verifiers.
3. We improve interactive verifiers by feeding them with invariants computed

by automatic verifiers.
• We identified an appropriate benchmark set of verification tasks with verifica-

tion witnesses that contain provably useful invariants. We also created second
benchmark set with manually added ACSL annotations containing (inductive)
loop invariants and assertions. In order to make our evaluation reproducible
and to offer the invariants to other researchers for further experiments, we
make both benchmark sets available.



• We make all components and transformations available as open source, such
that other researchers and practitioners can reuse and experiment with them,
and verify our results (see Sect. 5 for the data-availability statement).

• We perform a sound experimental evaluation on a large benchmark set to
investigate the effectivity of the new compositions. The results are promising
and suggest that such compositions are worth to be considered in practice.

Combinations like the proposed cooperation approach can significantly impact
the way in which verification tools are used in practice. Currently, engineers need
to use both kinds of verifiers, automatic and interactive, in isolation, but our
study has shown that there is much potential in leveraging cooperation.

Related Work. In the following we discuss the most related existing approaches.

Transform Programs. This is not the first work to convert the semantics of witness
validation into a program. Some existing approaches [14] focus on violation
witnesses, while we solely focus on correctness witnesses. Most similar in this
regard is MetaVal [21]. The main difference is that we preserve the program
structure while MetaVal does an automaton product between the control-flow
automaton (CFA) of the program and witness automaton, and turns the result
back into a C program, which will result in a different syntactic structure.

Interact via Conditions. The approach conditional model checking [16] also
achieves cooperation between verifiers, but is limited to automatic verifiers
that support the condition format and the verifier that comes second uses the
condition to restrict the part of the state space that is explored. Our framework
supports more tools via the usage of standardized exchange formats, also considers
interactive verifiers, and the second verifier still performs a full proof. Another
approach that builds on conditions is alternating conditional analysis [36, 37].
Here, the witness format is also used as standardized exchange format and multiple
verifiers are supported. However, the focus is on violation witnesses whereas we
are focussing on correctness witnesses. Instead of removing parts of the state
space, we actually extend the property that needs to be checked, such that it is
(potentially) easier to be proven. The same holds if we compare our component
Witness2Assert to reducer-based conditional model checking [17]. While both
approaches encode the important information into the original program, we
actually would need to assume the invariants instead of asserting them in order
to act as a reducer. Conditions are also used to improve testing [19, 27, 31].

Store and Exchange Proofs. Another parallel can be drawn to proof-carrying
code [44, 45, 47], where the proof of correctness is stored alongside the program.
We do the same here in cases where the added annotations actually suffice for
a full proof by Frama-C, but we also have the possibility to generate partial
proofs. Correctness witnesses are used to store intermediate results and to
validate results [11]. Proofs are also stored in the area of theorem provers [38]
(https://www.isa-afp.org/) and SAT solvers [40, 41].

https://www.isa-afp.org/


1

2 int main() {
3 unsigned int x = 0;
4 unsigned int y = 0;
5

6 while (nondet_int()) {
7 x++;
8

9 y++;
10 }
11 assert(x==y);
12 return 0;
13 }

Fig. 1: Example program with
loop invariant x==y

1 //@ensures \return==0;
2 int main() {
3 unsigned int x = 0;
4 unsigned int y = 0;
5 //@loop invariant x==y;
6 while (nondet_int()) {
7 x++;
8 //@assert x==y+1;
9 y++;

10 }
11 assert(x==y);
12 return 0;
13 }

Fig. 2: Example program with
ACSL annotations

2 Preliminaries

For our framework that enables cooperation between automatic and interactive
verifiers we need to take into account the interfaces that each of them provide, i.e.,
how the information important for the verification process is communicated. For
automatic verifiers there exists a common exchange format [12] in which verifiers
export the program invariants they found. For interactive verifiers, we look at
ACSL [6], the specification language that is e.g. used by Frama-C. In the following,
we will quickly introduce these formats and the general verification problem we
are looking at using a small example program that is depicted in Fig. 1.

For the rest of the paper, we will focus on reachability properties, though our
approach can also be extended to work for other properties as well.1 The crucial
part of verifying reachability properties is to find the right loop invariants. In the
example program this would be the fact that x==y always holds before each loop
iteration. Please note that while this invariant is also present in the assertion
in line 11, for more complicated programs it is generally not the case that we
can find the invariants written in the code. Also, since there might be more than
one loop in a program, a verifier might only partially succeed and therefore only
be able to provide invariants for some of these loops, or only invariants that are
not yet strong enough to prove the program correct. This is why cooperation by
exchange of these discovered invariants can potentially lead to better results.

2.1 Verification Witnesses

In case an automatic verifier can prove our example program correct, information
like a discovered invariant is normally made available as shown in Fig. 3a in
1 Also, we will concentrate only on intraprocedural analysis, though our approach
works for interprocedural analysis as well.



1 . . .
2 <node id="q1">
3 <data key=" inva r i an t ">( y == x )</data>
4 <data key=" inva r i an t . scope ">main</data>
5 </node>
6 <edge source="q0" ta rg e t="q1">
7 <data key="enterLoopHead">true </data>
8 <data key=" s t a r t l i n e ">6</data>
9 <data key=" end l in e ">6</data>

10 <data key=" s t a r t o f f s e t ">157</data>
11 <data key=" endo f f s e t ">165</data>
12 </edge>
13 . . .

(a) Encoding of an invariant in a GraphML-based correctness witness

q0true

q1

x == y

q2

true
q3

x == y

o/w

4, y = 0

o/w

7, x++
6, else

o/w
9, y++;

o/w

(b) Example witness automaton for the program from Fig. 1

Fig. 3: Example of the witness format and automaton; o/w stands for otherwise,
i.e., all other possible program transitions

the standard witness exchange format (described in [12], maintained at https:
//github.com/sosy-lab/sv-witnesses) as correctness witness. There are also
violation witnesses in case a violation has been found, but since we are mainly
interested in the invariants, we will focus on correctness witnesses and omit the
prefix “correctness” for the rest of the paper.

Such a witness contains a graph representation of an observer automaton.
Invariants can be given for nodes if they always hold when the witness automaton
is in the corresponding state. The semantics of the witness is given by constructing
the product of the witness automaton and the CFA of the program. This might
lead to edge cases where the exact semantics depends on how the tool interpreting
the witness constructs a CFA from the program, but in practice a witness
can be written such that it is mostly robust against those differences. For
further details on the semantics of the witness automata we refer the reader
the existing literature [12].

There are currently some restrictions on the contents of an invariant: An
invariant has to be a valid C expression that can be evaluated to an int at
the current scope in the program. It may contain conjunctions and disjunctions
but no function calls.

https://github.com/sosy-lab/sv-witnesses
https://github.com/sosy-lab/sv-witnesses


2.2 ACSL

Interactive verifiers rely on the user to provide the (non-trivial) invariants for
the proof. An example can bee seen in Fig. 2, where the loop invariant has been
added as ACSL annotation in line 5. Only when this information is externally
provided (usually by the user), an interactive verifier like Frama-C is able to
prove that the assertion in line 11 can never be violated.

Loop annotations are only one of many kinds of annotation in ACSL. For
example we can see a function contract in line 1 and an assertion in line 8. These
annotations usually represent specifications which the implementation should
adhere to, but they can also be seen as invariants, since they should hold for
every possible program execution.

The basic building blocks of ACSL annotations are logic expressions that repre-
sent the concrete properties of the specification, e.g., a + b > 0 or x && y == z.
Logic expressions can be subdivided into terms and predicates, which behave
similarly as terms and formulas in first-order logic. Basically, logic expressions
that evaluate to a boolean value are predicates, while all other logic expressions
are terms. The above example a + b > 0 is therefore a predicate, while a + b
is a term. We currently support only logic expressions that can also be expressed
as C expressions, as they may not be used in a witness otherwise. Finding ways
to represent more ACSL features is a topic of ongoing research.

ACSL also features different types of annotations. In this paper we will only
present translations for the most common type of annotations, namely function
contracts, and the simplest type, namely assertions. Our implementation also
supports statement contracts and loop annotations.

All types of ACSL annotations when placed in a C source file must be given
in comments starting with an @ sign, i.e., must be in the form //@ annotation
or /*@ annotation */. ACSL assertions can be placed anywhere in a program
where a statement would be allowed, start with the keyword assert and contain
a predicate that needs to hold at the location where the assertion is placed.

3 A Component Framework for Cooperative Verification

The framework we developed consists of three core components that allow us to
improve interaction between the existing tools.
Witness2ACSL acts as transformer that converts a program and a correctness
witness given as witness automaton where invariants are annotated to certain
nodes, into a program with ACSL annotations.
ACSL2Witness takes a program that contains ACSL annotations, encodes
them as invariants into a witness automaton and produces a correctness witness
in the standardized GraphML format.
Witness2Assert is mostly identical to Witness2ACSL. The main difference
is that instead of adding assertions as ACSL annotations to the program, it
actually encodes the semantics of the annotations directly into the program such
that automatic verifiers will understand them as additional properties to prove.
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(e) Interactive Verifier from Automatic Verifier

Fig. 4: Graphical visualization of the developed components to improve coop-
eration; we use the notation introduced in previous work [24]: p represents a
program, φb a behavior specification, ω a witness, and r a verification result

On the one hand, this component enables us to check the validity of the ACSL
annotations for which ACSL2Witness generated a witness, with tools that do not
understand the annotation language ACSL. On the other hand, this component is
also useful on its own, since it allows us to validate correctness witnesses and give
witness producers a better feedback on how their invariants are interpreted and
whether they are useful (validator developers can inspect the produced program).

These three components now enable us to achieve cooperation in many
different ways. We can utilize a proposed component framework [24] to visualize
this as shown in Fig. 4. The use case shown in Fig. 4a is to use Frama-C as a
correctness witness validator. This is interesting because it can further reduce
the technology bias (the currently available validators are based on automatic
verifiers [4, 11, 13, 21], test execution [14], and interpretation [50]). By using
Witness2Assert instead of Witness2ACSL as shown in Fig. 4b we can also
configure new correctness witness validators that are based on automatic verifiers,
similar to what metaval [21] does, only with a different transformer. Figure 4c
illustrates the use of Witness2ACSL (or similarly for Witness2Assert) to inspect
the information from the witness as annotations in the program code.

The compositional framework makes it possible to leverage existing correctness
witness validators and turn them into interactive verifiers that can understand
ACSL, as shown in Fig. 4d. Since we also have the possibility now to construct a
validator from an automatic verifier (Fig. 4b) we can turn automatic verifiers



into interactive ones as depicted in Fig. 4e. While automatic verifiers can already
make use of assertions that are manually added to the program, this now also
allows us to use other types of high-level annotations like function contracts
without having to change the original program.

3.1 Witness2ACSL

To create an ACSL annotated program from the source code and a correctness
witness, we first need to extract location invariants from the witness, i.e., in-
variants that always hold at a certain program location (with program locations
we refer to the nodes of the CFA here). We can represent location invariants as
a tuple (l, φ) consisting of a program location l and an invariant φ. In general
there is no one-to-one mapping between the invariants in the witness and this
set of location invariants, since there might be multiple states with different
invariants in the witness automaton that are paired with the same program
location in the product with the CFA of the program. For extracting the set of
location invariants, we calculate this product and then take the disjunctions of
all invariants that might hold at each respective location.

3.2 ACSL2Witness

In order to convert the ACSL annotations present in a given program, we
transform each annotation into a set of ACSL predicates that capture the
semantics of those annotations and use the predicates as invariants in a witness.
This mode of operation is based on two observations: Firstly, for a given ACSL
annotation it is usually possible to find a number of ACSL assertions that are
semantically equivalent to that annotation. For example, a loop invariant can
be replaced by asserting that the invariant holds at the loop entry, i.e., before
each loop iteration. Secontly, most ACSL assertions are logically equivalent
to a valid invariant and can therefore be used in a witness. As mentioned in
Sect. 2.2, we currently only support those predicates which can be converted
into C expressions, which is a limitation of the witness format and might be
lifted in future versions of the format.

3.3 Witness2Assert

This component is very similar to Witness2ACSL. The main difference is that
instead of generating ACSL annotations we generate actual C code that encodes
the invariants as assertions (i.e., additional reachability properties). This transla-
tion is sound since assertions added this way do not hide violations, i.e., every
feasible trace that violates the original reachability property in the program
before the modification will either still exist or have a corresponding trace that
violates the additional reachability properties of the modified program. It is worth
mentioning that this is an improvement compared to existing transformations
like the one used in MetaVal [21], where the program is resynthesized from
the reachability graph and the soundness can therefore easily be broken by a
bug in MetaVal’s transformation process.



4 Evaluation

We implemented the components mentioned in Sect. 3 in the software-verification
framework CPAchecker. In our evaluation, we attempt to answer the follow-
ing research questions:

• RQ1: Can we construct interactive verifiers from automatic verifiers, and
can they be useful in terms of effectiveness?

• RQ2: Can we improve the results of, or partially automate, interactive
verifiers by annotating invariants that were computed by automatic verifiers?
• RQ3: Can we construct result validators from interactive verifiers?
• RQ4: Are verifiers ready for cooperation, that is, do they produce invariants

that help other verifiers to increase their effectiveness?

4.1 Experimental Setup

Our benchmarks are executed on machines running Ubuntu 20.04. Each of
these machines has an Intel E5-1230 processor with 4 cores, 8 processing units,
and 33GB of RAM. For reliable measurements we use BenchExec [20]. For the
automatic verifiers, we use the available tools that participated in the ReachSafety
category of the 2022 competition on software verification (SV-COMP) in their
submission version2. Frama-C will be executed via Frama-C-SV [22], a wrapper
that enables Frama-C to understand reachability property and special functions
used in SV-COMP. Unless otherwise noted we will use the EVA plugin of Frama-
C. We limit each execution to 900 s of CPU time, 15GB of RAM, and 8 processing
units, which is identical to the resource limitations used in SV-COMP.

4.2 Benchmark Set with Useful Witnesses

In order to provide meaningful results, we need to assemble an appropriate
benchmark set consisting of witnesses that indeed contain useful information,
i.e., information that potentially improves the results of another tool.

As a starting point, we consider correctness witnesses from the final runs of
SV-COMP 2022 [8, 10]. This means that for one verification task we might get
multiple correctness witnesses (from different participating verifiers), while for
others we might even get none because no verifier was able to come up with a
proof. We select the witnesses for tasks in the subcategory ReachSafety-Loops,
because this subcategory is focussed on verifying programs with challenging
loop invariants. This selection leaves us with 6242 correctness witnesses (without
knowing which of those actually contain useful information).

For each of the selected witnesses we converted the contained invariants into
both ACSL annotations (for verification with Frama-C) and assertions (for verifi-
cation with automatic verifiers from SV-COMP 2022). Here we can immediately
drop those witnesses that do not result in any annotations being generated, which
results in 1931 witnesses belonging to 640 different verification tasks.
2 https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22/2022

https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22/2022


Table 1: Impact of cooperation: in each row, a ‘consuming’ verifier is fed with
information from witnesses of our benchmark set; ‘Baseline’ reports the number
of programs that the verifier proved correct without any help; ‘Improved via
coop.’ reports the number of programs that the verifier can prove in addition, if
the information from the witness is provided

Consuming
verifier

Benchmark tasks (434 total) Projection on programs (230 total)
Baseline Improved via coop. Baseline Improved via coop.

2ls 157 179 83 111
UAutomizer 360 47 186 31
Cbmc 281 53 142 28
CPAchecker 300 69 149 53
Dartagnan 280 82 139 51
Esbmc 239 133 121 76
gazer-theta 266 118 135 64
Goblint 38 106 21 47
UKojak 191 134 97 76
Korn 183 46 98 27
PeSCo 180 162 87 99
Pinaka 258 105 127 59
Symbiotic 349 51 174 32
UTaipan 334 65 172 37
VeriAbs 343 31 186 28

Frama-C 211 31 105 20

We then run each verifier for each program where annotations have been
generated, once with the original, unmodified program, and n times with the
transformed program for each of the n witnesses. This allows us determine whether
any improvement was achieved, by looking at the differences between verification
of the unmodified program versus verification of a program that has been enhanced
by information generated from some potentially different tool. Using this process,
we further reduce our benchmark set of witnesses to those that are useful for
at least one of the verifiers and thus enable cooperation. This leads to the final
set of 434 witnesses that evidently contain information that enables cooperation
between verifiers. These witnesses correspond to 230 different programs from the
SV-Benchmarks repository (https://github.com/sosy-lab/sv-benchmarks).
We made this benchmark set available to the community in a supplementary
artifact of this paper [23].

4.3 Experimental Results

RQ1. For the first research question, we need to show that we can construct
interactive verifiers from automatic verifiers, and that they can be useful in
terms of effectiveness. By “interactive verifier”, we mean a verifier that can verify

https://github.com/sosy-lab/sv-benchmarks


more programs correct if we feed it with invariants, for example, by annotating
the input program with ACSL annotations. Using our building blocks from
Sect. 3, an interactive verifier can be composed as illustrated in Fig. 4e (that
is, configurations of the form ACSL2Witness|Witness2Assert|Verifier). For
a meaningful evaluation we need a large number of annotated programs, which
we would be able to get if we converted the witnesses from SV-COMP using
Witness2ACSL in advance. But since the first component ACSL2Witness in
Fig. 4e essentially does the inverse operation, we can generalize and directly
consider witnesses as input, as illustrated in Fig. 4b (that is, configurations of
the form Witness2Assert|Verifier).

Now we look at the results in Table 1: The first row reports that cooperation
improves the verifier 2ls in 179 cases, that is, there are 179 witnesses that contain
information that helps 2ls to prove a program that it could not prove without
the information. In other words, for 179 witnesses, we ran Witness2Assert
to transform the original program to one in which the invariants from the
witness were written as assertions, and 2ls was then able to verify the program.
Since there are often several witnesses for the same program, 2ls verified in
total 111 unique programs that it was not able to verify without the annotated
invariants as assertion.

In sum, the table reports that many programs that could not be proved
by verifiers when ran on the unmodified program, could be proved when the
verifier was given the program with invariants. Since we were able to show the
effect using generated witnesses, it is clear that manually provided invariants
will also help the automatic verifiers to prove the program. We will continue
this argument in Sect. 4.4.

RQ2. For the second research question, we need to show that our new design
can improve the results of interactive verifiers by annotating invariants that
were computed by automatic verifiers. Using our building blocks from Sect. 3,
we assemble a construction as illustrated in Fig. 4a (i.e., configurations of the
form Witness2ACSL|Verifier). We take a program and a witness and transform
the program to a new program that contains the invariants from the witness
as ACSL annotations.

Let us consider the last row in Table 1: Frama-C is able to prove 20 programs
correct using invariants from 31 witnesses. Those 31 witnesses were computed by
automatic verifiers, and thus, we can conclude that our new design enables using re-
sults of automatic verifiers to help the verification process of an interactive verifier.

RQ3. For the third research question, we need to show that we can construct
result validators from interactive verifiers and that they can effectively complement
existing validators. A results validator is a tool that takes as input a verification
task, a verdict, and a witness, and confirms or rejects the result. In essence,
due to the modular components, the answer to this research question can be
given by the same setup as for RQ2: If the interactive verifier (Frama-C) was
able to prove the program correct, then it also has proved that the invariants
provided by the witnesses were correct, and thus, the witness should be confirmed.
Frama-C has confirmed 31 correctness witnesses.



Table 2: Proof of cooperation: for each ‘producing’ verifier, we report the number
of correctness witnesses that help another verifier to prove a program which it
otherwise could not; we also list the number of cases where this cooperation
was observed (some witnesses improve the results of multiple verifiers); we omit
producers without improved results

Producing verifier Useful witnesses Cases of cooperation

2ls 1 1
Cbmc 20 22
CPAchecker 148 533
Goblint 2 3
Graves-CPA 151 823
Korn 10 15
PeSCo 78 271
Symbiotic 5 10
UAutomizer 19 70

Sum 434 1 748

New validators that are based on a different technology are a welcome com-
plement because this reduces the technology bias and increases trust. Also, the
proof goals for annotated programs might be interesting for verification engineers
to look at, even or especially when the validation does not succeed completely.

RQ4. For the fourth research question, we report on the status of cooperation-
readiness of verifiers. In other words, the question is if the verifiers produce
invariants that help other verifiers to increase their effectiveness.

In Table 2 we list how many useful witnesses each verifier contributed to
our benchmark set of useful witnesses. The results show that there are several
verifiers that produce significant amounts of witnesses that contain invariants
that help to improve results of other verifiers.

4.4 Case Study on Interactive Verification with Manual Annotations

So far, we tested our approach using information from only the SV-COMP
witnesses. For constructing interactive verifiers, we would also like to evaluate
whether our approach is useful if the information is provided by an actual human
in the form of ACSL annotations.

ACSL Benchmark Set. To achieve this, we need a benchmark set with tasks
that contain sufficient ACSL annotations and also adhere to the conventions of
SV-COMP. Since to our knowledge such a benchmark set does not exist yet, we
decided to manually annotate assertions and loop invariants to the tasks from
the SV-Benchmarks collection ourselves. While annotating all of the benchmark
tasks is out of scope, we managed to add ACSL annotations to 125 tasks from the
ReachSafety-Loops subcategory. This subcategory is particularly relevant, since



Table 3: Case study with 125 correct verification tasks where sufficient, inductive
loop invariants are manually annotated to the program; we either input these to
Frama-C or automatically transform the annotations into witnesses and try to
validate these witnesses using CPAchecker’s k -induction validator (with k fixed
to 1); the listed numbers correspond to the number of successful proofs in each
of the sub-folders; we also list the number of successful proofs if no invariants
are provided to the tools

Subfolder Tasks
Frama-C k -induction

with invs. without invs. with invs. without invs.

loop-acceleration 17 3 1 11 4

loop-crafted 2 0 0 2 2

loop-industry-pattern 1 0 0 1 1

loop-invariants 8 3 0 8 0

loop-invgen 5 0 0 2 0

loop-lit 11 6 0 10 2

loop-new 5 1 0 5 2

loop-simple 6 6 0 1 1

loop-zilu 20 9 0 19 7

loops 23 13 6 17 15

loops-crafted-1 27 0 0 12 1

total 125 41 7 88 35

it contains a selection of programs with interesting loop invariants. The loop
invariants we added are sufficient to proof the tasks correct in a pen-and-paper,
Hoare-style proof. Our benchmark set with manually added ACSL annotations
is available in the artifact for this paper [23].3

Construction of an Interactive Verifier. With our ACSL benchmark set,
we can now convert a witness validator into an interactive verifier as depicted in
Fig. 4d. For the validator we use CPAchecker, which can validate witnesses by
using the invariants for a proof by k -induction. By fixing the unrolling bound of
the k -induction to k = 1, this will essentially attempt to prove the program correct
via 1-induction over the provided loop invariants. If we do not fix the unrolling
bound, the k-induction validation would also essentially perform bounded model
checking, so we would not know whether a proof succeeded because of the
provided loop invariants or simply because the verification task is bounded to
a low number of loop iterations.

Since this 1-induction proof is very similar to what Frama-C’s weakest-
precondition analysis does, we can directly compare both approaches. As some
3 Our benchmark set is continuously updated and can also be found at: https://
gitlab.com/sosy-lab/research/data/acsl-benchmarks

https://gitlab.com/sosy-lab/research/data/acsl-benchmarks
https://gitlab.com/sosy-lab/research/data/acsl-benchmarks


tasks from the benchmark set do not require additional invariants (i.e., the
property to be checked is already inductive) we also analyze how both tools
perform on the benchmark set if we do not provide any loop invariants.

The experimental setup is the same described in Sect. 4.1, except that we use
a newer version of Frama-C-SV in order to use the weakest-precondition analysis
of Frama-C. The results are shown in Table 3, which lists the number of successful
proofs by subfolder. We can observe that both Frama-C and our constructed
interactive verifier based on CPAchecker can make use of the information from
the annotations and prove significantly more tasks compared to without the
annotated loop invariants. This shows that the component described in Fig. 4d
is indeed working and useful.

5 Conclusion

The verification community integrates new achievements into two kinds of tools:
interactive verifiers and automatic verifiers. Unfortunately, the possibility of
cooperation between the two kinds of tools was left largely unused, although
there seems to be a large potential. Our work addresses this open problem,
identifying witnesses as interface objects and constructing some new building
blocks (transformations) that can be used to connect interactive and automatic
verifiers. The new building blocks, together with a cooperation framework from
previous work, make it possible to construct new verifiers, in particular, automatic
verifiers that can be used interactively, and interactive verifiers that can be fed
with information from automatic verifiers: Our new program transformations
translate the original program into a new program that contains invariants in
a way that is understandable by the targeted backend verifier (interactive or
automatic). Our combinations do not require changes to the existing verifiers:
they are used as ‘off-the-shelf’ components, provided in binary form.

We performed an experimental study on witnesses that were produced in the
most recent competition on software verification and on programs with manually
annotated loop invariants. The results show that our approach works in practice:
We can construct various kinds of verification tools based on our new building
blocks. Instrumenting information from annotations and correctness witnesses
into the original program can improve the effectivity of verifiers, that is, with the
provided information they can verify programs that they could not verify without
the information. Our results have many practical implications: (a) automatic
verification tools can now be used in an interactive way, that is, users or other
verifiers can conveniently give invariants as input in order to prove programs
correct, (b) new validators based on interactive verifiers can be constructed in
order to complement the set of currently available validators, and (c) both kinds
of verifiers can be connected in a cooperative framework, in order to obtain more
powerful verification tools. This work opens up a whole array of new opportunities
that need to be explored, and there are many directions of future work. We hope
that other researchers and practitioners find our approach helpful to combine
existing verification tools without changing their source code.
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