
The Static Analyzer Infer in SV-COMP
(Competition Contribution)

Matthias Kettl(�) and Thomas Lemberger

LMU Munich, Germany

Abstract. We present Infer-sv, a wrapper that adapts Infer for SV-
COMP. Infer is a static-analysis tool for C and other languages, developed
by Facebook and used by multiple large companies. It is strongly aimed
at industry and the internal use at Facebook. Despite its popularity, there
are no reported numbers on its precision and efficiency. With Infer-sv,
we take a first step towards an objective comparison of Infer with other
SV-COMP participants from academia and industry.

1 Facebook Infer

Infer [6] is a compositional and incremental static-analysis tool developed at
Facebook. Infer supports a wide array of analyses; this includes memory safety,
buffer overruns, performance constraints and different reachability analyses for
C, C++, Objective C, Java, C#, and .Net. For memory analysis, Infer uses
bi-abduction [7] with separation logic [14]. Infer supports the integration of
new abstract domains through the abstract-interpretation framework Infer:AI.
Infer analyzes programs compositionally (building method summaries) and
incrementally (only analyzing changed program parts). In contrast to most other
tools that participate in SV-COMP, Infer is not an academic verifier. Instead, it is
aimed at practical use during software development. This has direct implications
on the development focus: When Infer is told to incrementally analyze software,
it outputs only newly discovered bugs and does not re-report bugs found in
previous analyses. This allows developers to ignore warnings not deemed relevant
and reduces the cognitive burden on developers due to false alarms. Multiple
large companies use Infer—among others: Amazon Web Services, Facebook,
Microsoft, Mozilla, and Spotify. At the time of this writing, Infer has more than
12 000 stars on GitHub and was forked over 1 500 times. Despite its popularity,
there are no reported numbers on Infer’s precision and soundness. With the
participation of Infer in the C language track of SV-COMP ’22, we hope to take
a first step towards an objective comparison of Infer with other verifiers.

The following other commercial verifiers participate in SV-COMP ’22: 2ls [16],
Cbmc [10], Crux 1, Frama-C [5], VeriAbs [12], and VeriFuzz [9].

1 https://crux.galois.com/

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 451–456, 2022.
https://doi.org/10.1007/978-3-030-99527-0_30

https://orcid.org/0000-0001-7365-5030
https://orcid.org/0000-0003-0291-815X
https://crux.galois.com/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_30&domain=pdf


2 Infer in SV-COMP

2.1 Infer-SV

Verification. We provide the wrapper Infer-sv to adapt Infer to the SV-COMP
specification format for program properties. Infer-sv parses the property to
analyze, adjusts the program under analysis for Infer, runs Infer with fitting
analyses, and reports a verification verdict based on the feedback produced by
Infer. Infer-sv supports the following SV-COMP program properties:

no-overflow. The aim is to check for arithmetic overflows on signed-integer types.
Infer-sv runs Infer’s buffer-overrun analysis 2 to detect these.

unreach-call. The aim is to check for reachable calls to function reach_error.
Infer provides a function-call reachability analysis 3, but this analysis proved very
imprecise. To mitigate this, Infer-sv performs a program transformation 4: It
replaces each call to function reach_error with an overflow-provoking statement
int __reach_error_x = 0x7fffffff + 1. No task with property unreach-call
contains a signed-integer overflow, so the original reachability property holds if
and only if any of the introduced overflows is reachable. Infer-sv runs Infer’s
buffer-overrun analysis on the transformed program to check this.

valid-memsafety. The aim is to check for invalid pointer dereferences, invalid
frees of memory, and memory leaks. To analyze memory safety, Infer-sv uses
two analyses: bi-abduction 5 and Infer:Pulse 6. SV-COMP requires verifiers to
report the concrete type of violation detected: valid-deref, valid-memtrack, or
valid-free. Infer-sv analyzes the error codes reported by Infer to determine the
exact violation found. If Infer reports multiple fitting warnings, we take the first.
Witnesses. SV-COMP requires participants to report GraphML verification-
result witnesses [3, 4] in tandem with each result, and these witnesses must be
successfully validated by at least one participating witness validator. Natively,
Infer does not support the generation of GraphML witnesses. To mitigate this,
Infer-sv creates generic witnesses: When reporting a violation, it generates a
violation witness [4] that represents all possible program paths. When reporting a
program safe, it generates a correctness witness [3] that only contains the trivial
invariant ‘true’. These witnesses do not helpfully guide towards a violation or
proof, but are valid according to the SV-COMP rules.
Participation. Infer-sv participates hors concours in the categories ReachSafety,
ConcurrencySafety, NoOverflows, and SoftwareSystems. Because of missing sup-
port, we exclude Infer-sv from categories aimed at float handling, as well as
category MemSafety-MemCleanup.

2 https://fbinfer.com/docs/checker-bufferoverrun
3 https://fbinfer.com/docs/checker-annotation-reachability
4 https://github.com/facebook/infer/issues/763
5 https://fbinfer.com/docs/checker-biabduction
6 https://fbinfer.com/docs/checker-pulse

452 M. Kettl and T. Lemberger

https://fbinfer.com/docs/checker-bufferoverrun
https://fbinfer.com/docs/checker-annotation-reachability
https://github.com/facebook/infer/issues/763
https://fbinfer.com/docs/checker-biabduction
https://fbinfer.com/docs/checker-pulse


.1 1 10 100

.1

1

10

100

900

900

CPU Time CPAchecker (s)

C
P
U

T
im

e
In

fe
r

(s
)

.1 1 10 100

.1

1

10

100

900

900

CPU Time Symbiotic (s)

C
P
U

T
im

e
In

fe
r

(s
)

.1 1 10 100

.1

1

10

100

900

900

CPU Time VeriAbs (s)

C
P
U

T
im

e
In

fe
r

(s
)

Fig. 1: Comparison of the run time (in CPU time seconds) of three SV-COMP ’22
medalists and Infer, across all tasks correctly solved by the respective pair

1 int main() {
2 if (0) {
3 int x = 0x7fffffff + 1;
4 }
5 }

(a) Infer correctly reports safety

1 void reach_error () {
2 int x = 0x7fffffff + 1;
3 }
4 int main() {
5 if (0) {
6 reach_error ();
7 }
8 }

(b) Infer incorrectly reports an alarm

1 int main() {
2 int x = 0x7fffffff;
3 int y = -1;
4 while (x > 0) {
5 x = x - 2*y;
6 }
7 }

(c) Infer correctly reports an alarm

1 int main() {
2 int x = 0x7fffffff;
3 int y = -1;
4 while (x > 0) {
5 x = x - 2*y;
6 y = y + 2;
7 }
8 }

(d) Infer incorrectly reports safety

Fig. 2: Examples of Infer’s inconsistent results

2.2 Strengths of Infer

Infer scales well [6]. This shows in the SV-COMP results: For 6 000 out of
8 000 tasks with a verification verdict, Infer finishes the analysis in less than
one second of CPU time. The remaining 2 000 tasks each take less than 100 s
of CPU time. This means that Infer stays significantly below the time limit of
900 s per task. Figure 1 compares the run time of Infer (in CPU-time seconds)
to the best SV-COMP ’22 tools in the categories that Infer participated in:
CPAchecker [11], Symbiotic [8], and VeriAbs [12]. Each plot shows the
run time for all tasks that are correctly solved by both Infer and the respective
other verifier (independent of result validation). It is visible that Infer (y-axis) is
significantly faster than the other tools (x-axis) for almost all tasks. This speed
makes Infer integrate well in continuous-integration development systems [13, 15].

The Static Analyzer Infer in SV-COMP (Competition Contribution) 453



2.3 Weaknesses of Infer

Infer demonstrates low analysis precision. Figures 2a and 2b illustrate a low
precision across function calls (intraprocedural analysis): Both programs contain
an unreachable, signed integer overflow. The only difference is the indirection in
Fig. 2b due to the additional function call. Infer correctly reports Fig. 2a safe,
but incorrectly reports an alarm for Fig. 2b. We assume that the intraprocedural
analysis of Infer does not check whether reach_error is reachable from the
program entry. Infer-sv mitigates this issue for property unreach-call through
the mentioned program transformation, but this imprecision still leads Infer to
report wrong alarms across all program properties.

Infer can also show imprecision within a single function. Consider Figs. 2c
and 2d: The only change between Fig. 2c and Fig. 2d is the addition of a
statement in line 6, y = y + 2. This has no influence on the integer overflow in
line 5, so both programs contain an overflow. Infer correctly reports the overflow
for Fig. 2c, but wrongly reports Fig. 2d safe.

These imprecisions strongly reflect in the SV-COMP results of Infer, leading
to many incorrect proofs and alarms.

3 Usage

Infer-sv requires Python 3.6 or later. Script setup.sh downloads and extracts
version 1.1.0 of Infer. From the tool’s directory, Infer-sv can be run with the
following command:

./infer -wrapper.py \
--data -model {ILP32 or LP64} \
--property path/to/property.prp \
--program path/to/program.c \

Setting the data model is optional. Infer-sv will print the recognized property
and the command line it uses to call Infer. Infer-sv prints the full output of
Infer, including all warnings, and the final verification verdict on the last line.
The verification verdict can be true, false, unknown or error.

4 Conclusion

The participation of Infer in SV-COMP allows an objective comparison with
other verifiers for C. This shows that the selected analyses of Infer are very
efficient, but suffer from strong imprecision on the considered benchmark tasks.
Contributors. Infer 7 is developed by Facebook and the open-source community
under the MIT license, and Infer-sv 8 is developed under the Apache 2.0 license at
the Software and Computational Systems Lab at LMU Munich, led by Dirk Beyer.

7 https://github.com/facebook/infer
8 https://gitlab.com/sosy-lab/software/infer-sv

454 M. Kettl and T. Lemberger

https://github.com/facebook/infer
https://gitlab.com/sosy-lab/software/infer-sv


Funding Statement. This work was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 418257054 (Coop).

Data Availability Statement. All data of SV-COMP 2022 are archived as
described in the competition report [1] and available on the competition web site.
This includes the verification tasks, results, witnesses, scripts, and instructions
for reproduction. The version of our verifier as used in the competition is archived
together with other participating tools [2].

References

1. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
Springer (2022)

2. Beyer, D.: Verifiers and validators of the 11th Intl. Competition on Software Verifi-
cation (SV-COMP 2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5959149

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

5. Beyer, D., Spiessl, M.: The static analyzer Frama-C in SV-COMP (competition
contribution). In: Proc. TACAS (2). Springer (2022)

6. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

7. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional
shape analysis by means of bi-abduction. ACM 58(6), 26:1–26:66 (2011).
https://doi.org/10.1145/2049697.2049700

8. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zaoral, L., Strejček, J.: Symbiotic
9: Parallelism and invariants (competition contribution). In: Proc. TACAS (2).
Springer (2022)

9. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: Verifuzz: Program aware fuzzing
- (competition contribution). In: Proc. TACAS, part 3. pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

10. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc.
TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.1007/978-3-
540-24730-2_15

11. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp.
423–425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0_34

12. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A tool for scalable verification
by abstraction (competition contribution). In: Proc. TACAS (2). pp. 458–462.
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_32

13. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses at
Facebook. Commun. ACM 62(8), 62–70 (2019). https://doi.org/10.1145/3338112

The Static Analyzer Infer in SV-COMP (Competition Contribution) 455

https://gepris.dfg.de/gepris/projekt/418257054
https://sv-comp.sosy-lab.org/2022/
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1145/3338112


14. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on sepa-
ration logic. In: Proc. TACAS. LNCS, vol. 3920, pp. 287–302. Springer (2006).
https://doi.org/10.1007/11691372_19

15. Harman, M., O’Hearn, P.W.: From start-ups to scale-ups: Opportunities and open
problems for static and dynamic program analysis. In: Proc. SCAM. pp. 1–23. IEEE
(2018). https://doi.org/10.1109/SCAM.2018.00009

16. Malík, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis and memory safety (com-
petition contribution). In: Proc. TACAS (2). pp. 368–372. LNCS 12079, Springer
(2020). https://doi.org/10.1007/978-3-030-45237-7_22

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

456 M. Kettl and T. Lemberger

https://doi.org/10.1007/11691372_19
https://doi.org/10.1109/SCAM.2018.00009
https://doi.org/10.1007/978-3-030-45237-7_22
http://creativecommons.org/licenses/by/4.0/

	The Static Analyzer Infer in SV-COMP(Competition Contribution)
	1 Facebook Infer
	2 Infer in SV-COMP
	3 Usage
	4 Conclusion
	References


