(Competition Contribution)

Dirk Beyer “ B and Martin Spiessl

LMU Munich, Munich, Germany

Abstract. Frama-C is a well-known platform for source-code analysis of
programs written in C. It can be extended via its plug-in architecture by
various analysis backends and features an extensive annotation language
called ACSL. So far it was hard to compare Frama-C to other software
verifiers. Our competition participation contributes an adapter named
Frama-C-SV, which makes it possible to evaluate Frama-C against other
software verifiers. The adapter transforms standard verification tasks
(from the well-known SV-Benchmarks collection) in a way that can be
understood by Frama-C and produces a verification witness as output.
While Frama-C provides many different analyses, we focus on the Evolved
Value Analysis (EVA), which uses a combination of different domains to
over-approximate the behavior of the analyzed program.

Keywords: Software verification - Program analysis - Formal methods - Compe-
tition on Software Verification - Comparative Evaluation - SV-COMP - Frama-C

1 Approach

This competition contribution is based on Frama-C [12], a program-analysis
platform for C programs. The purpose of the participation in the comparative
evaluation SV-COMP is to show the strengths of Frama-C when applied to
the problem of verifying C programs from the SV-Benchmarks [4] collection of
verification tasks.

2 Architecture

Although Frama-C has a large configuration space, it does not support standard
specifications as used in SV-COMP, and it does not produce verification witnesses
as default. In order to overcome this obstacle we implemented an adapter for
Frama-C using input and output transformers, and the adaption architecture
is illustrated in Fig. 1. In the following, we describe the artifacts and actors of
the participating verifier: in Sect. 2.1 we describe all the components that are
developed as part of the adapter, while in Sect. 2.2 we describe in more detail
how the used EVA analysis of Frama-C works.

https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://orcid.org/0000-0002-9169-9130
https://frama-c.com
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

FRAMA-C-SV

! | TRUE !

N v ot

| Input Configuration Frawa-c [OURUE) Output L1 jvenowN
Transformer Options j Transformer | |

| . {— |
Specification 1 N\ (FALSE

Fig. 1: Architecture of FrRama-C-SV: the inputs and outputs of Frama-C are
translated to interface with the established standards as used by SV-COMP; the
components that are necessary to adapt Frama-C for comparison with other
verifiers amount to 678 lines of code mostly written in Python

2.1 Frama-C-SV

Input Transformer. The input transformer takes the program p and speci-
fication s and creates a new program p’ in which the specification s has been
expressed as FraMma-C-specific annotations. FRama-C uses ACSL [1] as language
to specify annotations. The input transformer also selects configuration param-
eters for Frama-C that are best suited for the verification task. Currently we
encode reachability tasks into signed integer overflows by adding an artificial
overflow to the body of the function reach_error. This works well in practice
and is also sound, since if there were any other overflows, the task would contain
undefined behavior and would not be a valid reachability task in the first place.

Configuration Options. Depending on the input program and specification, we
can choose different options that are passed to Frama-C. In essence, this acts like
an algorithm selection [14] and, e.g., allows us to choose a different configuration
of Frama-C depending on the specified property.

Harness. Some programs in the SV-Benchmarks collection use specific func-
tions to model non-determinism. We provide implementations for those functions
(__VERIFIER_x) in a separate C program such that the semantics of those func-
tions can be understood by Frama-C. This separate C program is passed to
FraMa-C together with the transformed program p'.

Output Transformer. The output of Frama-C needs to be interpreted regard-
ing the original specification, and depending on the outcome, a verification witness
needs to be generated. Thus, we need an output transformer for (a) providing a
verdict for the verification task and (b) providing a verification witness. Regard-
ing (a), the output transformer interprets the CSV report that can be generated
by Frama-C to determine whether the program was proven to be safe (verdict
TRUE), whether a specification violation occurred (verdict FALSE), or whether
no such statement can be made (verdict UNKNOWN). We also generate a minimal
correctness or violation witness for the verdicts TRUE and FALSE, respectively.

The witness automata consist of only one node, which for violation witnesses is
marked as violation node. In the future we plan to augment these witnesses with
information such as invariants that have been found by Frama-C.

2.2 Frama-C

One of the strengths of Frama-C is its modular architecture [10], which allows
a configuration of the best possible analysis backends for a certain verification
problem. We choose the plug-in EVA [9], which is well suited for an automatic
analysis. Other plug-ins such as the Weakest-Preconditions (WP) plug-in require
hints from the user in order to be effective. In the following we will briefly describe
the most important aspects of the EVA analysis configuration that we use. For a
more detailed description, we refer the reader to the relevant literature [7,8, 9].

Frama-C provides a meta-option called -eva-precision for the EVA plug-in
with possible values ranging from 0 to 11. With higher values for this option more
precise domains and thresholds are used, at the cost of increased computation
time. We currently use the maximum value of 11 in order to make the best use
of the 900s CPU time limit. In the future we might want to iteratively increase
this value starting at lower precisions.

Domains. The EVA analysis always uses the domain cvalue, which tracks values
of variables either as constant values, sets, or intervals of possible values (including
modular congruence constraints). For pointer addresses, these are either tracked
as addresses with offsets or as so-called garbled mix, which overapproximates the
set of possible memory locations. In addition, depending on the precision level,
various other domains are used that we describe in the following. The domain
symbolic-locations tracks a map of symbolic locations to values, which is, e.g.,
helpful for analyzing expressions containing array accesses such as al[il<al[j].
The equality domain tracks equalities of C expressions found in the code, whereas
the gauges domain tracks relations between variables in a loop with the goal
to discover linear inequality invariants [16]. Lastly the octagon domain tracks
certain linear constraints between pairs of variables [13]. As we use the highest
precision level, all of these domains are used in our contribution.

Precision of the State-Space Exploration. Apart from the domains, the
precision of state-space exploration in Frama-C is affected by various options. We
will describe some of these in the following; a complete list of affected settings and
values is always printed by Frama-C when the option eva-precision is specified
by the user. Option slevel (set to 5000) determines how many separate states
are kept before new states will be joined into existing ones. Option ilevel (set
to 256) determines how many different values are tracked per variable before
overapproximating the value range. Option plevel (set to 2000) affects the size
up to which arrays are tracked. The option auto-loop-unroll (set to 1024) will
determine up to which bound a loop is considered for unrolling.

3 Strengths and Weaknesses

The competition contribution shows the strengths of Frama-C in checking C pro-
grams for overflows and also —in the currently supported sub-categories ' — for
reachability. Here we are able to show that our results are comparable and often
surpass those of other tools based on abstract interpretation [11] such as Gos-
LINT [15]. While the EVA analysis of FRama-C that we use is based on abstract
interpretation, the precision options described in Sect. 2.2 allow for a more precise
state-space exploration, which behaves more like model checking. More details
about the results can be found in the competition report [2] and artifact [3].

The approach that we describe in this paper creates a compatibility
layer between the abilities used by Frama-C and the standards used in the
SV-Benchmarks collection. While still a work in progress, we have shown that
it is possible to bridge this gap while preserving overall soundness. It is also
interesting to consider the results on verification tasks from the SV-Benchmarks
collections for a tool that did not participate before.

Although our approach is sound in general, we are likely not showcasing the full
potential of Frama-C. One aspect to consider here is the large configuration space,
which means there might be ways to verify more tasks with a better heuristic
for selecting the configuration options. The other aspect is that Frama-C also
provides different plug-ins such as the WP plug-in, which requires more (manual)
annotations, but can also potentially solve more tasks than the more automatic
EVA plug-in.

4 Software Project and Contributors

The software project Frama-C is developed at https://git.frama-c.com/
pub/frama-c/ and our adapter Frama-C-SV is developed at https://gitlab.
com/sosy-lab/software/frama-c-sv, both being released under open-source
licenses. The exact version of the adapter that participated in SV-COMP 2022
is also archived in the competition’s tool-archive repository ? [6]. Frama-C was
funded by the European Commission in program Horizon 2020. The adapter
FraMmA-C-SV was funded by the DFG. We thank the FrRama-C authors ® for their
contribution to the software-verification community.

Data Availability Statement. All data of SV-COMP 2022 are archived as described
in the competition report [2] and available on the competition web site. This includes
the verification tasks [4], competition results [3], verification witnesses [5], scripts, and
instructions for reproduction. The version of Frama-C-SV as used in the competition is
archived together with other participating tools [6].

Funding Statement. This work was funded in part by the Deutsche Forschungsge-
meinschaft (DFG) — 378803395 (ConVeY).

! 'We opted out of subcategories with unsound results caused by Frama-C making
assumptions that are different from the conventions of SV-COMP.

2 https://gitlab.com/sosy-1lab/sv-comp/archives-2022/blob/svcomp22/2022/frama-c-sv.zip

3 https://frama-c.com/html/authors.html

https://git.frama-c.com/pub/frama-c/
https://git.frama-c.com/pub/frama-c/
https://gitlab.com/sosy-lab/software/frama-c-sv
https://gitlab.com/sosy-lab/software/frama-c-sv
https://sv-comp.sosy-lab.org/2022/
https://gepris.dfg.de/gepris/projekt/378803395
https://gitlab.com/sosy-lab/sv-comp/archives-2022/blob/svcomp22/2022/frama-c-sv.zip
https://frama-c.com/html/authors.html

References

1.

10.

11.

12.

13.

14.

15.

16.

Baudin, P., Cuoq, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C specification language version 1.17 (2021), available at
https://frama-c.com/download/acsl-1.17.pdf

Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS (2).
Springer (2022)

Beyer, D.: Results of the 11th Intl. Competition on Software Verification (SV-COMP
2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5831008

Beyer, D.: SV-Benchmarks: Benchmark set for software verification and testing (SV-
COMP 2022 and Test-Comp 2022). Zenodo (2022). https://doi.org/10.5281/
zenodo.5831003

Beyer, D.: Verification witnesses from verification tools (SV-COMP 2022). Zenodo
(2022). https://doi.org/10.5281/zenodo.5838498

Beyer, D.: Verifiers and validators of the 11th Intl. Competition on Software
Verification (SV-COMP 2022). Zenodo (2022). https://doi.org/10.5281/zenodo.
5959149

Blazy, S., Biihler, D., Yakobowski, B.: Structuring abstract interpreters through
state and value abstractions. In: Proc. VMCAL pp. 112-130. LNCS 10145, Springer
(2017). https://doi.org/10.1007/978-3-319-52234-0_7

Biihler, D.: Structuring an Abstract Interpreter through Value and State Abstrac-
tions: EVA, an Evolved Value Analysis for Frama-C. Ph.D. thesis, University
of Rennes 1, France (2017), available at https://tel.archives-ouvertes.fr/
tel-01664726

Biihler, D., Cuoq, P., Yakobowski, B., Lemerre, M., Maroneze, A., Perelle, V.,
Prevosto, V.: Eva: The Evolved Value Analysis plug-in (2020), available at https:
//frama-c.com/download/frama-c-eva-manual.pdf

Correnson, L., Cuoq, P., Kirchner, F., Maroneze, A., Prevosto, V., Puccetti, A.,
Signoles, J., Yakobowski, B.: Frama-C user manual (2020), available at https:
//frama-c.com/download/frama-c-user-manual.pdf

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. In: Proc.
POPL. pp. 238-252. ACM (1977)

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Proc. SEFM. pp. 233-247. Springer (2012). https://doi.org/10.
1007/978-3-642-33826-7_16

Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1), 31-100 (2006). https://doi.org/10.1007/s10990-006-8609-1

Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65-118
(1976). https://doi.org/10.1016/S0065-2458(08)60520-3

Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R.., Vojdani, V.: GOB-
LINT: Thread-modular abstract interpretation using side-effecting constraints (com-
petition contribution). In: Proc. TACAS (2). pp. 438-442. LNCS 12652, Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_28

Venet, A.: The gauge domain: Scalable analysis of linear inequality invariants. In:
Proc. CAV. pp. 139-154. LNCS 7358, Springer (2012). https://doi.org/10.1007/
978-3-642-31424-7_15

Open Access. This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.

https://frama-c.com/download/acsl-1.17.pdf
https://doi.org/10.5281/zenodo.5831008
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5838498
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.1007/978-3-319-52234-0_7
https://tel.archives-ouvertes.fr/tel-01664726
https://tel.archives-ouvertes.fr/tel-01664726
https://frama-c.com/download/frama-c-eva-manual.pdf
https://frama-c.com/download/frama-c-eva-manual.pdf
https://frama-c.com/download/frama-c-user-manual.pdf
https://frama-c.com/download/frama-c-user-manual.pdf
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
http://creativecommons.org/licenses/by/4.0/

0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The Static Analyzer Frama-C in SV-COMP (Competition Contribution)

