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1 INTRODUCTION
The omnipresent dependency on software in society and industry makes it necessary to ensure
reliable and correct functioning of the software. This trend will continue and become even more
important in the future. During the last decade, various conceptual breakthroughs in verifica-
tion research were achieved, and, as showcased by the annual TACAS International Competition
on Software Verification (SV-COMP 2012–2020) 1 [9, 10, 11, 12, 13], many successful software
verifiers are already available.

Despite the success stories of software verification in academia and industry [5, 55, 63, 100],
the wide adoption of verification technology in software-development industry is still slow. There
are several frequently mentioned reasons for this disconnect between engineering theory and
practice [2]. One concern is connected with wrong results: Sometimes the verification result
contradicts the expectation of the developer, either because a bug in the verification algorithm
causes a genuinely incorrect result, or because of difficult-to-understand technicalities (e.g., caused
by an inaccurate or vague specification) dismissed as unrealistic by the developer. In both cases, the
developers lose trust in the verification results and consider the effort spent on investigating these
results too expensive. Another concern is that even if the verification result matches the expectation,
no value is added to the software-engineering process if the developer does not understand the
verification result, or the result is not helpful for improving the software system.

Moreover, it is unlikely that future software verifiers are going to be more trustworthy, thereby
resolving the issue of lack of trust in verification results. Software-verification systems constitute
complex software, often with many known flaws and presumably many more unknown flaws.
Future, more efficient and effective verification systems with more complex features can be expected
to exacerbate this problem. Consider, for example, that scientists are exploring the application
of machine learning to formal verification, with the goal to develop new verification tools by
automatically learning rules for formally analyzing systems from large data sets [48]. While
experiences in other fields, such as image recognition, suggest that machine learning may be a
promising solution for tasks that were previously considered to be too complex for machines
to solve, they also reveal weaknesses: The decision process of deep neural networks is often
incomprehensible, and experiments have shown that they sometimes exhibit a significant lack of
robustness [93]. If applied to formal verification, these techniques may therefore even amplify the
previously outlined difficulties of understanding and trusting verification results.
Thus, it is imperative to require verification results to conform to an established, machine-

readable, and exchangeable standard format that can be used to store, compare, explain, visualize,
and validate verification results. For this purpose, we present the community-agreed standard
exchange format for verification witnesses that was designed with these goals in mind, has been
implemented in over 30 different software verifiers [11, 12], and has been used for visualization [22,
114] and validation [23, 25] of verification results. Using a validation step after verification enables
a whole new area of verification research, enabling approximate verification algorithms (such
as based on neural networks, or run on approximate hardware) because the imprecision is not
problematic if all verification results are validated in a second phase of the verification work flow.

Violation witnesses [25] are verification witnesses that document bugs detected by a verifier and
address the problem of false alarms that imprecise verification tools sometimes produce: Formerly, a
verification tool reported found bugs as error traces in a tool-specific manner; those bug reports were
often difficult to read and understand, and therefore hardly usable. As a consequence, determining
whether the reported bug was a false alarm that could be ignored by the developer or described an
actual programming error that needed to be fixed was a tedious manual process. Exchangeable

1http://sv-comp.sosy-lab.org/
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violation witnesses resolve this issue, because several validators have been developed to use these
witnesses to validate verification results [25, 26, 44, 122] and the general syntax of the exchange
format allows new tools for presentation to be developed and used [22, 114].
Correctness witnesses [23] are verification witnesses that describe proofs found by a verifier

and address the problem that proofs are sometimes incomprehensible or, for unsound verification
tools, even wrong. Formerly, many verification tools did not report any auxiliary information
about their proofs, while others output only algorithm- and implementation-specific proof data,
such as SMT queries, that are a tool-specific aid for checking the consistency of some of the
intermediate steps that lead to the reported result. But because the verifiers usually provided no
means of validating the translation of the original verification task into the tool-specific model, the
reports could not serve as a certificate for the correctness of the verification result. Exchangeable
proof witnesses resolve this issue, because several validators have been developed to use these
witnesses to re-establish the proof of correctness [23, 44].

Verification witnesses should be considered as first-class verification objects that have much
more value than the plain verification result true or false. A verification result should only be
trusted if a reason for the result is provided and the result can be re-established with the additional
information. Therefore, we require a verifier to augment a verification result with an exchangeable
and machine-readable verification witness, such that both claims of correctness and bug alarms
may be validated. With this technique, a trusted validator can establish trust in the verification
results produced by an untrusted verifier, and even in the absence of a trusted validator a user’s
confidence in a verification result can be increased by applying different, independent validators
to a verification witness. The process of witness validation is fully automatic. Witnesses can also
be read by humans (perhaps using an inspection or visualization tool [22, 114]).

One example of the practical application of witness validation is the annual TACAS International
Competition on Software Verification (SV-COMP), which for the last few years (since 2015 [10])
has used witness-based result validation as an integral component of the scoring process: Full
points are only awarded for a verification result that is accompanied by a verification witness that
helped an independent validator to confirm (re-establish) the verification result. This rule may be
one of the incentives that caused tool developers to improve the precision and soundness of their
competition submissions over the last years, even though the direct score penalties for incorrect
results have not been increased: In 2016, ten out of 13 participating verifiers in the category ‘Overall’
reported false alarms for more than ten tasks that were known to be safe, one submission even
claimed safety for 962 out of 2 348 verification tasks that were known to contain a bug, another
submission claimed safety for 872 tasks known to contain a bug, and a third submission claimed
safety for 336 tasks known to contain a bug [11]. In 2018, the second year after the introduction of
correctness witnesses, on the other hand, only four out of 14 participating verifiers in the category
‘Overall’ reported bugs for more than ten tasks known to be safe, and the highest amount of
incorrect claims of safety reported by any of these submissions was 21.

This article discusses the conceptual principles of verification witnesses, presents four different
violation-witness-based result validators and two correctness-witness-based result validators,
and provides a technical specification of the common format for exchangeable witnesses. On
the syntactic level, we use XML, more specifically GraphML [51], as a language to represent
verification witnesses. On the semantic level, we use the standard concept of (non-deterministic)
finite automata to represent verification witnesses. To demonstrate the practical applicability of
verification witnesses for witness-based result validation, we perform an extensive experimental
study using the validators CPAchecker, UAutomizer, CPA-witness2test, and FShell-witness2test. As such,
this article expands on the authors’ work on verification witnesses previously published in three
conference papers [23, 25, 26] by (1) unifying the different aspects of verification witnesses that were
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presented in isolation in the conference papers, (2) adding an in-depth discussion of the conceptual
background, (3) formally defining the involved concepts in more detail, (4) illustrating all presented
approaches using a common running example, and (5) providing a significantly extended thorough
experimental evaluation using updated implementations and benchmarks.

2 BACKGROUND
In this section, we introduce the basic concepts on which verification witnesses are based.

2.1 Program Representation using Control-Flow Automata
We restrict our presentation to a simple imperative programming language that contains only
assignment, assumption declaration, function-call and function-return operations, andwhere all pro-
gram variables range over integers (Z). We implemented our concepts in the tools CPAchecker [38],
CPA-witness2test [26], FShell-witness2test [26], and UAutomizer [83, 84], all of which support C
programs. We use control-flow automata (CFA) to represent programs [30]. A control-flow au-
tomaton (𝐿, linit,𝐺) consists of a finite set 𝐿 of program locations that model the program counter
(to relate the CFA to the source code, we denote the program location before the operation on
line 𝑖 as l𝑖 ), the initial program location linit (program entry), and a set𝐺 ⊆ 𝐿 × Ops × 𝐿 of control-
flow edges, each of which models an operation op of the set Ops of program operations that is
executed during the flow of control from one program location to another. All variables that occur
in an operation op ∈ Ops are contained in the set 𝑋 of program variables. A variable assignment
𝑣 : 𝑋 → Z is a mapping that assigns to each variable from 𝑋 a value from Z.

A sequence ⟨(l0, op1, l1), . . .⟩ of consecutive edges from𝐺 is called program path if it starts at the
initial location, i.e., l0 = linit . A test vector [19] specifies the input values to a program. A program
path is called feasible, if a test vector exists for which this program path is executed, otherwise
the program path is called infeasible. A concrete program path is a feasible program path with
variable assignments from a test vector attached to the locations along the path. An error path
is a program path that violates a given specification.2

Example 1 (Program and Control-Flow Automaton). Figure 1 shows the source code (Fig. 1a)
of an example C program that computes the sum of a number of input values and the corre-
sponding CFA (Fig. 1b). Location linit = l3 is the initial location of this program. The program
contains four variables: n is the number of values to sum up, v is used to hold input values for the
computation, s is the aggregation variable for the sum, and i is a loop counter. The type of the
variables n and v is unsigned char, the type of the variables s and i is unsigned int, and for all
our examples we will assume a data-type model where the type unsigned char has a bit width
of 8, such that the values of this type range between 0 and 255, and the type unsigned int

has a bit width of 32, such that the values of this type range between 0 and 4294967295.
The CFA starts with the function entry in line 3, modeled by the edge from l3 to l4. The next
CFA edge, (l4 to l5), shows that the number of values to sum up, n, is initialized via the input func-
tion __VERIFIER_nondet_char(void) in line 4. In line 5, the program checks the value of n and
immediately terminates in line 6 if it is 0, which indicates that there are no values to be summed
up. This check is modeled in the CFA by the branching at l5, which goes from l5 over l6 to l25
in the early-return case and from l5 to l8 in the other case. In lines 8–10, the remaining vari-
ables v, s, and i are all initialized to 0, which corresponds to the CFA edges from l8 to l11. The
loop that computes the sum of input values read via __VERIFIER_nondet_char(void) in lines
11–15 is modeled by the CFA nodes l11, l12, l13, and l14, with l11 being the loop head. After the

2Details of how we represent and use specifications can be found in Sect. 3.2.1.
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1 extern void __VERIFIER_error(void);

2 extern unsigned char

↩→ __VERIFIER_nondet_char(void);

3 int main() {

4 unsigned char n =

↩→ __VERIFIER_nondet_char();

5 if (n == 0) {

6 return 0;

7 }

8 unsigned char v = 0;

9 unsigned int s = 0;

10 unsigned int i = 0;

11 while (i < n) {

12 v = __VERIFIER_nondet_char();

13 s += v;

14 ++i;

15 }

16 if (s < v) {

17 __VERIFIER_error();

18 return 1;

19 }

20 if (s > 65025) {

21 __VERIFIER_error();

22 return 1;

23 }

24 return 0;

25 }

(a) Program source code

𝑙3start

𝑙4

𝑙5

𝑙6

𝑙8

𝑙9

𝑙10

𝑙11

𝑙12

𝑙13

𝑙14

𝑙16

𝑙17

𝑙18

𝑙20

𝑙21

𝑙22

𝑙24

𝑙25

int main()

unsigned char n =
__VERIFIER_nondet_char();

[n == 0]

[!(n == 0)]

return 0;

unsigned char v = 0;

unsigned int s = 0;

unsigned int i = 0;

[i < n]
[!(i < n)]

v = __VERIFIER_nondet_char();

s += v;
++i;

[s < v]
[!(s < v)]

__VERIFIER_error();

return 1;

[s > 65025]

[!(s > 65025)]

__VERIFIER_error();

return 1;

return 0;

(b) CFA

Fig. 1. Example C program linear-inequality-inv-a.c as source code (a) and as a CFA (b)
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loop, there are two assertions: In line 16, the program checks that the sum is not less than the
last value added to it, which seems like a sensible requirement given that all added values are
non-negative. If the check fails, the program calls the function __VERIFIER_error(void) in
line 17 to indicate an error and terminates in line 18. This check is modeled in the CFA by the
branching at l16, which goes from l16 over l17 and l18 to l25 in the failing case and from l16 to l20
in the other case. In line 20, the program checks that the sum is not greater than 65025, which
is the product of the maximum value of n and therefore the maximum number of values that
are added up, 255, and the maximum value of each value being added up, which is also 255. If
the check fails, the program calls the function __VERIFIER_error(void) in line 21 to indicate
an error and terminates in line 22. This check is modeled in the CFA by the branching at l20,
which goes from l20 over l21 and l22 to l25 in the failing case and from l20 to l24 in the other case,
where the program terminates with return code 0 (success).

2.2 Configurable Program Analysis
The concept of configurable program analysis (CPA) [30, 34] allows the separation of the definition
of the abstract domain that is used for a program analysis from the analysis algorithm. A CPA D =

(𝐷,⇝,merge, stop) specifies an abstract domain 𝐷 , a transfer relation⇝, a merge operatormerge,
and a stop operator stop, all of which configure the CPA algorithm and are explained in the
following. The CPA algorithm can be used with any CPA and is an algorithm for reachability
analysis. It is possible to combine a set of CPAs into a single, composite, CPA (see Sect. 2.2.2).
The abstract domain 𝐷 = (C, E, [[·]]) is composed of a set C of concrete states where each

concrete state 𝑐 ∈ C is a total function of type 𝑋 → Z (i.e., a concrete state is a mapping from
program variables to integers), a semilattice E = (𝐸, ⊑) over a set 𝐸 of abstract states (i.e., abstract-
domain) and a partial order ⊑ (the join ⊤ (least upper bound) of all elements and the join ⊔
of two elements are unique, but a unique element ⊥ (greatest lower bound) is not required),
and a concretization function [[·]] that maps each abstract state to the set of concrete states
represented by that abstract state. The transfer relation⇝ ⊆ 𝐸 ×𝐺 × 𝐸 specifies for each abstract
state 𝑒 ∈ 𝐸 and control-flow edge 𝑔 ∈ 𝐺 its abstract successor states, i.e., the abstract states
that overapproximate the concrete successor states of all concrete states represented by 𝑒 via the
control-flow edge 𝑔. The merge operator merge : 𝐸 × 𝐸 → 𝐸 defines if and how to merge two
abstract states 𝑒, 𝑒 ′ ∈ 𝐸 when control flow meets. The stop operator stop : 𝐸 × 2𝐸 → B decides for
an abstract state 𝑒 ∈ 𝐸 and a given set 𝑅 ⊆ 𝐸 of abstract states whether 𝑒 is covered by 𝑅. The level
of abstraction the analysis operates on can be configured by choosing the operatorsmerge and stop
appropriately. Two common choices for these operators are merge

sep (𝑒, 𝑒 ′) = 𝑒 ′, which does not
combine abstract states, and stop

sep (𝑒, 𝑅) = (∃𝑒 ′ ∈ 𝑅 : 𝑒 ⊑ 𝑒 ′), which checks whether the given
abstract state 𝑒 is less than or equal to (“covered by”) any abstract state 𝑒 ′ from 𝑅 according to
the semilattice E to determine coverage.

2.2.1 CPA Algorithm. The CPA algorithm takes a CPA and an initial abstract state as in-
put (Alg. 1). Essentially, the algorithm performs a classic fixed-point iteration by computing
successor states of reached abstract states until the set waitlist of unprocessed states is empty
(i.e., until all reachable abstract states have been completely processed) and returns the set reached
of reachable abstract states. In each major iteration, the algorithm takes one abstract state 𝑒 from
the waitlist, computes all its abstract successors, and processes each of them separately: For each
successor abstract state 𝑒 ′ the algorithm uses the operatormerge to check if an already explored ab-
stract state 𝑒 ′′ with which the successor abstract state 𝑒 ′ should be merged exists in the set reached
of reached states (e.g., at meet points where the control flow of different paths meets after completed
branching). If the operatormerge decides that the two abstract states should be combined, then the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Algorithm 1 CPA(D, 𝑒init), taken from [34]
Input: a CPA D = (𝐷,⇝,merge, stop),

where 𝐸 is the set of elements of the semilattice of 𝐷 ,
and an initial abstract state 𝑒init ∈ 𝐸,

Output: a set of reachable abstract states
Variables: two sets reached and waitlist of elements of 𝐸
1: reached := {𝑒init}
2: waitlist := {𝑒init}
3: while waitlist ≠ ∅ do
4: pop 𝑒 from waitlist

5: for all 𝑒 ′ with 𝑒⇝𝑒 ′ do
6: for all 𝑒 ′′ ∈ reached do
7: 𝑒new := merge(𝑒 ′, 𝑒 ′′)
8: if 𝑒𝑛𝑒𝑤 ≠ 𝑒 ′′ then
9: waitlist :=

(
waitlist ∪ {𝑒new}

)
\ {𝑒 ′′}

10: reached :=
(
reached ∪ {𝑒new}

)
\ {𝑒 ′′}

11: if not stop(𝑒 ′, reached) then
12: waitlist := waitlist ∪ {𝑒 ′}
13: reached := reached ∪ {𝑒 ′}
14: return reached

existing abstract state 𝑒 ′′ is substituted by the new, merged abstract state 𝑒new in both sets reached
and waitlist. The stop operator implements the detection of a fixed point. The CPA algorithm
uses it to check if the new abstract state 𝑒 ′ is already covered by an existing abstract state in the
set reached, and only if the result is negative it inserts the new abstract state 𝑒 ′ into the work
sets waitlist and reached, i.e., only if this is necessary to explore this abstract state further.

2.2.2 Composite CPA. A Composite CPA [34] can be used to combine a set of CPAs into a single,
composite, CPA. An abstract state of the Composite CPA is a tuple composed of one component
abstract state for each component CPA and the operatorsmerge and stop are defined to delegate to
the component CPAs’ respective operators, such that the merge operator combines abstract states
according to how the components’ merge operators combine the component abstract states, and
the operator stop only returns true if all components agree that their component abstract states
are already covered by their respective existing component abstract states in the set reached.
Consequently, such a combination of CPAs automatically causes all used CPAs to implicitly

cooperate on discarding infeasible program paths during the program analysis, because a composite
abstract successor state for a given composite abstract state is only produced if all component
CPAs produce a component abstract successor state for their respective component abstract state.
Thus, if one component CPA is able to prove that a specific program path is infeasible, that path no
longer needs to be considered by any other component CPA either, and the composite analysis
will only find program paths that all component CPAs consider feasible. Note that no explicit
communication between the component CPAs is required and that the component CPAs do not
even need to know their sibling components exist to achieve this effect. If desired, however, such
an explicit information exchange is possible via the strengthen operator ↓ [34] of the Composite
CPA, which can be used to further improve precision.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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2.2.3 Location CPA. A very basic CPA that we will use for all our analyses is the Location CPA L,
which tracks the program counter. The Location CPA uses a flat lattice over all program loca-
tions and the operators merge

sep and stop
sep. Using this component, we are able to effectively

separate the concern of tracking program locations from other concerns 3 and do not need to
re-implement this feature for every analysis.

3 CONCEPTS
The purpose of verification witnesses is to represent information about verification results in such
a manner that it is machine-readable, reproducible, and exchangeable between verification tools.
There are two types of verification witnesses: Violation witnesses, which represent error paths
that violate a specification, and correctness witnesses, which represent the artifacts of a proof that
a program satisfies a specification. In this section, we present the basic concepts for verification
witnesses whereas the specifics of violation witnesses and correctness witnesses will be discussed
in a later section on design and implementation (Sect. 4).

3.1 Protocol Automata
We define protocol automata [25, 30, 45], which we instantiate later to witness automata to represent
witnesses, and to observer automata to represent specifications.

A protocol automaton 𝐴 = (𝑄, Σ, 𝛿, 𝑞init, 𝐹 ) for a CFA (𝐿, linit,𝐺) is a nondeterministic finite
automaton and its components are defined as follows:
(1) The set 𝑄 ⊆ Γ × Φ is a finite set of control states, where each control state 𝑞 ∈ 𝑄 has a

unique name 𝛾 from a set Γ of names, which can be used to uniquely identify a control
state 𝑞 within 𝑄 , and an invariant 𝜑 from the set Φ of predicates of a given theory.

(2) The set Σ ⊆ 2𝐺 × Φ is the alphabet, in which each symbol 𝜎 ∈ Σ is a pair (𝑆,𝜓 ) that comprises
a finite set 𝑆 ⊆ 𝐺 of CFA edges and a state condition𝜓 ∈ Φ.

(3) The set 𝛿 ⊆ 𝑄 × Σ ×𝑄 contains the transitions between control states, where each transition
is a triple (𝑞, 𝜎, 𝑞′) with a source state 𝑞 ∈ 𝑄 , a target state 𝑞′ ∈ 𝑄 , and a guard 𝜎 = (𝑆,𝜓 ) ∈ Σ
comprising a source-code guard 𝑆 (see Example 3), which restricts a transition to the specific
set 𝑆 ⊆ 𝐺 of CFA edges, and a state-space guard 𝜓 ∈ Φ, which restricts the state space to
be considered by an analysis that consumes the protocol automaton. We also write 𝑞 𝜎−→𝑞′

for (𝑞, 𝜎, 𝑞′) ∈ 𝛿 .
(4) The control state 𝑞init ∈ 𝑄 is the initial control state of the automaton.
(5) The subset 𝐹 ⊆ 𝑄 contains the accepting control states.
We define a number of properties for protocol automata:

Sink Control State. A state 𝑞 ∈ 𝑄 is called sink control state, if 𝑞 ∉ 𝐹 and �𝑞 𝜎−→𝑞′ ∈ 𝛿 , i.e., sink
states are not accepting and do not have outgoing transitions.

Stutter-Enabled State. A state 𝑞 ∈ 𝑄 is called stutter-enabled, if there is a special self-transition
𝑞

o/w−−→𝑞 ∈ 𝛿 (with the special guard symbol “o/w” short for “otherwise”), which is defined as
follows: Let 𝛿𝑞,other be the set of all outgoing transitions of 𝑞 except those with the guard o/w,
i.e., 𝛿𝑞,other =

{
𝑞

𝜎−→𝑞′
�� 𝜎 ≠ o/w

}
. The transition 𝑞

o/w−−→𝑞 is a self-transition where the state-space
guard 𝜓 is true and the source-code guard 𝑆 matches the set of all CFA edges that are either
(a) not matched by the source-code guard of any other outgoing transition of 𝑞 or (b) are matched
by the source-code guard of some other outgoing transition of 𝑞 that also matches a successor
CFA edge. Thus, a stutter-enabled state ensures that for every CFA edge, there is always at least
one outgoing transition of the state where the source-code guard matches the transition, which is
3Specifically, the semantics of the program is analyzed and tracked in other CPAs, not in the Location CPA.
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a requirement of our witness automata (see Sect. 3.1.2). Moreover, the mechanism can be used to
support nondeterminism, because if there is a transition with a source-code guard that ambiguously
matches two (or, transitively, more) consecutive CFA edges, there is also a matching self-transition
that does not impose a state-space guard. More formally, the transition 𝑞

o/w−−→𝑞 is equivalent to
a transition 𝑞

(𝑆𝑞,stutter,true)−−−−−−−−−−→𝑞 with 𝑆𝑞,stutter = (𝐺 \ 𝑆𝑞,other) ∪ 𝑆𝑞,ambig, where 𝑆𝑞,other is the set of all
CFA edges that are matched by the source-code guard 𝑆 ′ of any other outgoing transition of 𝑞,
i.e., 𝑆𝑞,other =

⋃ {
𝑆 ′

��� 𝑞 (𝑆′, ·)−−−−→𝑞′ ∈ 𝛿𝑞,other
}
, and 𝑆𝑞,ambig is the set of those CFA edges matched by any

other outgoing transition of 𝑞 that have a successor CFA edge that is matched by the same transition,
i.e., 𝑆𝑞,ambig =

{
𝑠 ∈ 𝐺

��� ∃𝑞 (𝑆, ·)−−−→𝑞′ ∈ 𝛿𝑞,other, 𝑠, 𝑠 ′ ∈ 𝑆 : 𝑠 = (·, ·, l𝑏) ∧ 𝑠 ′ = (l𝑏, ·, ·)
}
.

3.1.1 Control-Flow Automata. A control-flow automaton can be seen as a special kind of
protocol automaton for which
• all states are accepting (i.e., 𝐹 = 𝑄),
• no sink states exist,
• all invariants are true, formally: ∀(·, 𝜑) ∈ 𝑄 : 𝜑 = true, and
• the transition labels contain only a singleton of one control-flow edge and all guards are true,
formally: ∀(𝑆,𝜓 ) ∈ Σ : |𝑆 | = 1,𝜓 = true.

As a consequence, control-flow automata are non-restricting protocol automata, because they cannot
be used to restrict state-space exploration when used in a protocol analysis as defined in Sect. 3.3.

3.1.2 Witness Automata. Awitness automaton is a protocol automatonwith the requirement that
there must be an outgoing transition from every non-sink control state for every CFA edge, such that
every program path can be simulated in the automaton unless the simulation is explicitly terminated
by a sink state, i.e., for every non-sink control state 𝑞 ∈ 𝑄 and for every CFA edge 𝑔 ∈ 𝐺 , some
transition 𝑞 (𝑆, ·)−−−→𝑞′ ∈ 𝛿 must exist with𝑔 ∈ 𝑆 . To fulfill the requirement above and as a mechanism to
allow ambiguity (because in practice, it is not always convenient or even feasible for the producer of a
protocol automaton to precisely describe the source-code guard of a transition), we require that every
non-sink control state 𝑞 ∈ 𝑄 is stutter-enabled, i.e., ∀𝑞 ∈ {𝑟 ∈ 𝑄 | 𝑟 ∈ 𝐹 ∨ ∃𝑟 𝜎−→𝑟 ′ ∈ 𝛿} : 𝑞 o/w−−→𝑞 ∈ 𝛿 .
In the exchange format for verification witnesses (see Sect. 5), these o/w-transitions are not written
explicitly, because they exist by definition.

Example 2 (Handling Ambiguity). Consider a C program with the following statements:
1 int c = 0;

2 int x = 1; ++x; ++x;

3 if (c == 0) { __VERIFIER_error(); }

Assume that there is a verifier that knows that the assumption 𝑥 = 3 holds after line 2 and
wants to produce a protocol-automaton transition to convey this information. The best way to
precisely convey this information would be to use a source-code guard that matches only the
CFA edge for the last statement in line 2. If, however, the program representation used internally
by the verifier only retains the line numbers of statements, the verifier is only able to specify
that the assumption 𝑥 = 3 holds after some statement in line 2. If the protocol automaton would
then (deterministically) enforce the state-space restriction 𝑥 = 3 after the first statement (first
match) in line 2, the restricted state space would be empty due to the contradiction with the
fact that 𝑥 = 1. However, because of the requirement that every control state of the protocol
automaton must handle such ambiguous matches nondeterministically, the automaton can
“wait” until the last statement in line 2 to apply the state-space guard. The downside of this
approach is that the non-determinism inflates the search space through the automaton. This
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downside can be mitigated by strong state-space guards that lead to contradictions early on
wrong paths through the automaton.
When a consumer of a protocol automaton, e.g., a witness-based result validator, uses the

automaton to guide its exploration of the state space, the exploration can be restricted either by
restricting the state space using state-space guards at transitions or by a transition to a sink control
state (that, by definition, has no outgoing transition, and thus the path exploration ends).

3.1.3 Observer Automata. An observer automaton (also called ‘monitor automaton’ [118]) for a
given CFA𝐶 = (𝐿, linit,𝐺) is a protocol automaton (𝑄, Σ, 𝛿, 𝑞init, 𝐹 ) that satisfies the following condi-
tions:
(1) there are no sink control states,
(2) all invariants are true, formally: ∀(·, 𝜑) ∈ 𝑄 : 𝜑 = true, and
(3) for every control state 𝑞 ∈ 𝑄 \ 𝐹 and every CFA edge 𝑔 of 𝐺 , the disjunction∨ {

𝜓
�� ∃𝑞 (𝑆,𝜓 )−−−−→ · ∈ 𝛿 : 𝑔 ∈ 𝑆

}
of all state-space guards for 𝑞 and 𝑔 evaluates to true,

i.e., state-space guards may be used to partition the state space of the program, but not to
restrict it. There must be at least one transition for every 𝑞 and 𝑔 to satisfy this condition.

Note that it might be useful to have several transitions in the observer automaton for one CFA
edge. To ensure that the disjunction of the guards evaluates to true, users can use a SPLIT tran-
sition (syntactic sugar, see Sect. 5.4 of [30]).

3.1.4 Abstract Reachability Graphs. An abstract reachability graph (ARG) [31] can be seen
as a protocol automaton where the set of states is given by the set reached of reachable abstract
states that were discovered by a reachability analysis. A transition 𝑒

𝜎−→𝑒 ′ exists if 𝑒 ′ is either an
abstract successor state of 𝑒 or 𝑒 ′ is the result of merging an abstract successor of 𝑒 with some other
abstract state(s). For an abstract state 𝑒 = (·, 𝜑), the invariant describes the set of concrete states
that the abstract state represents. The transition label 𝜎 = (𝑆,𝜓 ) consists of a guard that is always
true (𝜓 = true) and a set of control-flow edges 𝑆 that is either a singleton 𝑆 = {𝑔} that contains
the control-flow edge 𝑔 ∈ 𝐺 that was taken from 𝑒 to 𝑒 ′ or the empty set 𝑆 = {} that indicates a
coverage relation if 𝑒 ⊑ 𝑒 ′. An abstract path through an ARG is a sequence ⟨𝑒0, . . . , 𝑒𝑛⟩ of abstract
states such that every pair (𝑒𝑖 , 𝑒𝑖+1) with 𝑖 ∈ {0, . . . , 𝑛 − 1} is an edge in the ARG. ARGs are used
in software verification to represent correctness proofs (if the invariants in the abstract states are
inductive) and violation proofs (if it contains an abstract path that represents an error path).

3.1.5 Floyd-Hoare Automata. A Floyd-Hoare automaton [84] is an observer automaton with
the following constraints:
• the initial state has the invariant true,
• all state-space guards are true,
• for each transition (·, 𝜑𝑞) (𝑆,true)−−−−−→(·, 𝜑𝑞′) ∈ 𝛿 and each operation op ∈ {op | ∃(·, op, ·) ∈ 𝑆}, the
triple {𝜑𝑞} 𝑜𝑝 {𝜑𝑞′} is a valid Hoare triple, and
• each accepting state has the invariant false.
Hence, a Floyd-Hoare automaton accepts only sequences of operations that are infeasible. 4 Floyd-
Hoare automata are used in software verification to represent correctness proofs.

3.1.6 Run. Let 𝑝 = ⟨(l0, op1, l1), . . .⟩ be a path with l0 = linit , i.e., a program path, and let 𝑝 be
a concrete program path for 𝑝 . A run for this concrete program path 𝑝 , and thus, also for 𝑝 , is
a simulation sequence ⟨𝑞init 𝜎1−→𝑞1, . . .⟩ such that for all program locations l𝑖 ≠ l0 of 𝑝 , the 𝑖-th
CFA edge (𝑙𝑖−1, op𝑖 , 𝑙𝑖 ) of 𝑝 is matched by the 𝑖-th transition 𝑞𝑖−1

𝜎𝑖−→𝑞𝑖 of the simulation sequence,

4Note that the invariants of such a Floyd-Hoare automaton can be computed using Craig interpolation [31, 66, 108, 109].
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with 𝜎𝑖 = (𝑆,𝜓 ) and (𝑙𝑖−1, 𝑜𝑝𝑖 , 𝑙𝑖 ) ∈ 𝑆 and all variable assignments that are attached to the 𝑖-th
program location of 𝑝 satisfy 𝜓 .

3.1.7 Acceptance. Protocol automata provide flexibility regarding the acceptance criterion in
that they allow a choice: If the goal is to accept finite runs (e.g., for the witness-based validation of
verification results for reachability problems, as in the examples in this article), a protocol automa-
ton𝐴 can be defined to accept the run ⟨. . . , 𝑞𝑛−1 𝜎𝑛−−→𝑞𝑛⟩ if 𝑞𝑛 ∈ 𝐹 . If the goal is to accept infinite runs
(e.g., for the witness-based validation of verification results for termination problems), we can define
the protocol automaton𝐴 as a Büchi automaton that accepts an infinite run 𝜌 if there exists a control
state 𝑞 ∈ 𝐹 that occurs infinitely often in 𝜌 . We say 𝐴 accepts a program path 𝑝 if there exists an
accepting run of𝐴 for 𝑝 . The projection of an accepted finite run to the sequence ⟨𝜎1, . . . , 𝜎𝑛⟩ of its al-
phabet symbols is called accepted word, as is the projection of an accepted infinite run to the sequence
⟨𝜎1, . . .⟩ of its alphabet symbols. The set of all accepted words of 𝐴 defines the language L(𝐴).

3.1.8 Graphical Representation. In this article, we will give several graphical examples of
protocol automata. We draw them as graphs where the control states are circular nodes. We mark
the initial control state with an incoming edge that has no source node and is labeled “start”. We
label each control state with its name and present its invariant as a boolean expression in a green-
colored box next to the state, except if every control state in the automaton has the invariant true,
in which case we omit the invariants from the figure. We mark sink states by coloring them blue.
We mark accepting control states with a double border. If a control state is intended to represent a
specification violation, we color it red. We draw the transitions as edges and label each of them
with the following syntax: The label is split into two parts by a colon. The first part (i.e., the part
before the colon) corresponds to the source-code guard, which is given as a comma-separated list
of tokens that define a set of matched CFA edges conjunctively. A numerical token describes a line
number and restricts the set of matched CFA edges to edges that represent an operation on that
source-code line. The second part of the edge label (i.e., the part after the colon) corresponds to the
state-space guard and is given as a boolean expression, except if it is true, in which case we omit it.

Example 3 (Source-Code Guards). In the CFA in Fig. 1b, the token “4” matches the CFA edge
from l4 to l5, whereas the token “5” matches the edges from l5 to l6 and from l5 to l8. A
token “enterFunction(𝑓 )” restricts the set of matched edges to edges that represent a function-
call operation to function 𝑓 . In Fig. 1b, the token “enterFunction(main)”matches the edge l3 to l4,
and the token “enterFunction(__VERIFIER_error)” matches the edges l17 to l18 and l21 to l22.
The tokens “then” and “else” restrict the set of edges to edges that correspond to the positive
case of a conditional branching (“then”, where the condition evaluates to true), or the negative
case of the branching (“else”, where the condition evaluates to false). For example, such a
branching may be a loop condition or an if statement. In Fig. 1b, the edges l5 to l6, l11 to l12,
l16 to l17, and l20 to l21 are matched by the token “then”, whereas the edges l5 to l8, l11 to l16,
l16 to l20, and l20 to l24 are matched by the token “else”. A token “enterLoopHead” restricts the
set of edges to those that precede a loop head. In Fig. 1b, the edges l10 to l11 and l14 to l11 are
matched by the token “enterLoopHead”.

3.2 Automata Representations
The various kinds of protocol automata are used to represent specifications, violation witnesses,
and correctness witnesses. Table 1 gives an overview of the kinds of automata that are used
conceptually as representation, and the specific characteristcs (cf. also [45]).
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Table 1. Mapping artifacts related to software analysis to their representing types of automata and to

examples of analyses that use these artifacts

Artifact Type of Automaton Type of Analysis al
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Program CFA location analysis (cf. Sect. 2.2.3) ✓ ✓ ✓ ✓

Specification observer automaton observer analysis (cf. Sect. 3.3) ✓ ✓ ✓

Violation Witness witness automaton protocol analysis (cf. Sect. 3.3) ✓

Correctness Witness witness automaton observer analysis (cf. Sect. 3.3) ✓ ✓ ✓

Proof ARG composite analysis (cf. Sect. 2.2.2) ✓ ✓ ✓

Proof Floyd-Hoare auto-
maton

Floyd-Hoare analysis (cf. Sect. 4.1.2) ✓ ✓

𝑠0start 𝑠𝐸
enterFunction(__VERIFIER_error):

o/w o/w

Fig. 2. Specification that forbids calls to the function __VERIFIER_error(void), represented as observer

automaton that accepts all program paths that enter control state 𝑠𝐸 , i.e., violate the specification

3.2.1 Specifications Represented by Observer Automata. Using observer automata to model
formal specifications is an established concept [6, 20, 38, 118, 120]; consequently, we also use an
observer automaton to model safety specifications. Separating the specification from the imple-
mentation follows the best-practice of separation of concerns. As a result, we can check a given
program against different specifications without changing the source code, and we can also use a
given specification to check different programs. We call a given pair of program and specification
a verification task. Note that for practical reasons we configure the observer automata such that
they accept paths that violate the specification (cf. [45]).

Example 4 (Specification). Figure 2 shows an example of a specification represented by
an observer automaton that forbids calls to a function __VERIFIER_error(void), i.e., this
specification is violated by a program if there is a feasible program path that contains a call to
the function __VERIFIER_error(void). The program represented by the CFA in Fig. 1b does
not violate this specification because both CFA nodes l18 and l22 are not reachable.

3.2.2 ViolationWitnesses Represented byWitness Automata. A violation-witness automaton
is a witness automaton, i.e., a protocol automaton that represents a witness, in this case more
specifically, a violation witness. Violation-witness automata use the state-space restricting features
of protocol-automata to guide the exploration towards the specification violation. In a violation-
witness automaton, the set of accepting (violation) control states contains only those states that
correspond to violating program states detected by the producing verifier.
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A violation-witness automaton is a witness automaton for which
• all invariants are true, formally: ∀(·, 𝜑) ∈ 𝑄 : 𝜑 = true.

3.2.3 Correctness Witnesses Represented by Witness Automata. A correctness-witness
automaton is a witness automaton, i.e., a protocol automaton that represents a witness, in this case
more specifically, a correctness witness. Correctness-witness automata do not use the state-space
restricting features of protocol-automata: While a violation-witness automaton may restrict the
successor states to those successor states that lead the exploration to the specification violation, a
correctness-witness automaton has abstract successor states for all concrete successor states. The
correctness-witness automaton annotates each abstract program state 𝑒 with an invariant 𝜑 , i.e., a
predicate that holds at 𝑒 on every program path that passes 𝑒 . In a correctness-witness automaton,
the set of accepting control states is equivalent to the (whole) set of control states.
A correctness-witness automaton is a witness automaton for which
• all states are accepting (i.e., 𝐹 = 𝑄),
• there are no sink control states, and
• for every control state 𝑞 ∈ 𝑄 and every CFA edge 𝑔 of 𝐺 , the disjunction∨ {

𝜓
�� ∃𝑞 (𝑆,𝜓 )−−−−→ · ∈ 𝛿 : 𝑔 ∈ 𝑆

}
of all state-space guards for 𝑞 and 𝑔 evaluates to true,

i.e., state-space guards may be used to partition the state space of the program, but not to
restrict it.

3.3 Automaton CPA: A Configurable Program Analysis for Protocol Automata
A protocol analysis is an Automaton CPA O = (𝐷O,⇝O,mergeO, stopO) for a protocol automa-
ton 𝐴 = (𝑄, Σ, 𝛿, 𝑞init, 𝐹 , 𝐵). An Automaton CPA is a CPA (cf. Sect. 2.2) that tracks the control state
of 𝐴. The Automaton CPA comprises the following components, for a given CFA 𝐶 = (𝐿, linit,𝐺)
(cf. [30]):

(1) 𝐷O = (C,Q, [[·]]) is an abstract domain comprising the set C of concrete states, the semi-
lattice Q over abstract data states, and a concretization function [[·]]. The semi-lattice Q =

(𝑍, ⊑) consists of the set 𝑍 of abstract data states and a partial order ⊑ (the join ⊔ and the
top element ⊤Q = (⊤, true) are unique). An abstract state of 𝑍 = (𝑄 ∪ {⊤Q}) is either a
control state from 𝑄 (a pair of a name from Γ and an invariant from Φ, the set of predicates
of a given theory) or the special lattice element ⊤Q . The definition of the partial order ⊑ is
that (𝛾, 𝜑) ⊑ (𝛾 ′, 𝜑 ′) if (𝛾 ′ = ⊤∨𝛾 = 𝛾 ′) ∧𝜑 ⇒ 𝜑 ′. The join operator ⊔ is defined as the least
upper bound of two abstract data states. The top element ⊤Q is the least upper bound of all
abstract data states, i.e., ∀(𝛾, 𝜑) ∈ 𝑍 : (𝛾, 𝜑) ⊑ ⊤Q . The concretization function [[·]] : 𝑍 → 2C
assigns to each abstract data state (𝛾, 𝜑) the corresponding set [[𝜑]] of concrete states.

(2) ⇝O ⊆ 𝑍 ×𝐺 × 𝑍 is the transfer relation. A transfer (𝛾, ·)
𝑔
⇝O (𝛾 ′, 𝜑 ′) exists if the protocol

automaton 𝐴 has a matching transition (𝛾, ·) (𝑆,𝜓
′)

−−−−→(𝛾 ′, 𝜑 ′) with 𝜑 ′ = 𝜓 ′ and 𝑔 ∈ 𝑆 . Because
the condition𝜓 ′ of the protocol-automaton transition is stored in the successor abstract data
state, it is accessible to other component analyses via the composite strengthening operator
(cf. Sect. 2.2.2) and can be used by them to strengthen their own successor abstract data states.

(3) Only elements with the same control-state name are combined by the merge operator:

mergeO ((𝛾, 𝜑), (𝛾 ′, 𝜑 ′)) =
{
(𝛾 ′, 𝜑 ∨ 𝜑 ′) if 𝛾 = 𝛾 ′

(𝛾 ′, 𝜑 ′) otherwise
(4) stopO ((𝛾, 𝜑), 𝑅) is the termination check. It terminates the state-space exploration of the

current path (i.e., it returns true) if the abstract data state (𝛾, 𝜑) is covered by an existing
abstract data state in 𝑅: stopO ((𝛾, 𝜑), 𝑅) = ∃(𝛾, 𝜑 ′) ∈ 𝑅 : 𝜑 ⇒ 𝜑 ′

Witness Analysis. A witness analysis is an Automaton CPA for a witness automaton.
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Observer Analysis. An observer analysis is an Automaton CPA for an observer automaton, i.e., an
observer analysis only ‘observes’ (or ‘monitors’) the paths of the analyzed program, but it does
not restrict the exploration performed by the program analysis. One use case for such an observer
analysis is to observe whether an analyzed program path violates the specification, i.e., to determine
whether it is an error path. The accepted program paths are those that violate the specification.
An observer CPA can also be used to split abstract paths and observe them separately.

3.4 Constructing Witness Automata from Proofs
A verification tool can produce witnesses by transforming the desired paths of the constructed
proof (which is available from most types of program analysis, including the configurable program
analysis described in Sect. 2.2) into a witness automaton.

3.4.1 Witness Automata from ARGs. The nodes of the ARG become control states in the
witness automaton, with the root node of the ARG as the initial control state 𝑞init of the witness
automaton. The edges of the ARG become transitions in the witness automaton. Edges that leave
the desired paths of the ARG become transitions to a sink state, i.e., a state with no outgoing
transitions. To each transition, the verifier should add a source-code guard that describes the
CFA edge represented by the corresponding ARG edge as precisely as possible. Constraints on
variable values at the target state of an ARG edge may be encoded as state-space guards of the
corresponding transition (for violation witnesses), or as control-state invariant of the corresponding
control state (for correctness witnesses). After producing the witness automaton from the ARG,
several minimizations can be performed. For example, control states that are connected only by
transitions without any guards and have the same control-state invariant can be merged, because
they do not convey any useful information.

3.4.2 Witness Automata from Floyd-Hoare Automata. Witness automata can also be derived
from Floyd-Hoare automata using a similar construction.

3.5 Application Scenarios
In the following, we describe scenarios where the concept of verification witnesses is applied.

3.5.1 Verification with Witnesses. Good practice requires a verifier, whenever it reaches a
conclusion regarding a given verification task, to produce a verification witness that provides
information about the verification result. The purpose of the verification witness is to document
the verification result and to make valuable verification artifacts available for reuse instead of
leaving unused the effort the verifier has already spent on them. The primary use case we discuss
in this article is witness-based result validation. Another use case is the visualization of verification
results [22, 114]. Figure 3 illustrates the process of verification with witnesses, and it also shows one
key feature of the concept of having a common representation of verification results: there is no risk
of technology lock-in, because the verifiers are interchangeable according to the needs of the user.

3.5.2 Witness-Based Result Validation. A witness-based result validator can independently
re-establish a verification result of a verifier using the guidance of a verification witness. We
describe a program analysis for this purpose using the CPA concept by configuring a Composite
CPA with the following components: One component is an Automaton CPA that performs a
protocol analysis (cf. Sect. 3.3) for a witness automaton (which we also call witness analysis,
because it simulates the witness automaton). One of the other component CPAs is an Automaton
CPA that performs an observer analysis (cf. Sect. 3.3) and encodes the specification, which is
represented by an observer automaton (cf. Sect. 3.1.3), i.e., which only observes but does not
restrict how the program’s state space is explored by the program analysis. The composed program
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Fig. 3. Software verifiers produce witnesses
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Fig. 4. Witness-based result validation

analysis only considers specification violations signaled by this CPA if the CPA that simulates the
witness automaton agrees, i.e., if both the specification automaton and the witness automaton
accept the corresponding run. Another component CPA is the Location CPA, which is used to
track the program counter, i.e., the location in the CFA, for the analysis. Further components
can be added to the composition, for example to track information about the values of program
variables. These components can then use the operator ↓ of the Composite CPA to compute the
intersection of their component abstract states with the state-space guards from the witness
automaton to achieve a restricted, more precise state space, or they can check the validity of
the state invariants of the witness automaton, and, if successful, use these invariants as proof
lemmas. Figure 4 illustrates the process of witness-based result validation and shows four existing
implementations of validators. A verification result is confirmed by a witness-based result validator
if the validator is able to re-establish the verification result.

We illustrate witness-based result validation with Fig. 5: First, the verifier receives the verification
task 𝑃 |= 𝜑 as input and constructs a proof 𝜋 for proving or disproving the statement. In the
former case the verifier produces a correctness witness (which contains invariants) and in the
latter case the verifier produces a violation witness (which contains an error path). Second, a
validator receives the same verification task 𝑃 |= 𝜑 and the witness as input but constructs a
new proof 𝜋 ′ which might be different from the verifier’s proof 𝜋 . However, the validator is
allowed to look into the verification witness in order to obtain information to support the proving
process. If it receives a correctness witness as input, then it tries to use the invariants (i.e., using
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Verifier
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Fig. 5. In witness-based result validation, a verification witness is produced by a verifier that is able to find

a proof 𝜋 that proves or disproves 𝑃 |= 𝜑 . The verification witness carries information that may guide the

validator to find its own proof 𝜋 ′ that also proves or disproves 𝑃 |= 𝜑 .
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Fig. 6. Witness refinement

inductiveness checks); if it receives a violation witness as input, then it tries to use the error
path (i.e., using a simulation to check feasibility).

3.5.3 Witness Refinement. Witness refinement is the iterative process of improving witnesses,
by augmenting the verification artifacts represented by an input witness using new, potentially
more detailed, information computed by a witness-based result validator. This process combines
the concept of witness-producing verification with the concept of witness-based result validation.
Figure 6 illustrates the process of witness refinement and shows the two existing implementations
of witness refinement. We call a tool that is able to perform witness refinement a witness refiner.
By using the common exchange format for verification witness, witness refinement can be applied
using any desired sequence of witness refiners that are available to a user.

3.5.4 Witnesses for Concurrent Systems. For the ease of presentation, we restrict our de-
scriptions to non-concurrent systems. The presented concepts, however, are also applicable to
concurrent systems [29]: State-space guards and state invariants can be specified for specific threads.
In a context-bounded view of a concurrent system (which is sufficient to describe a violation of a
reachability property, for example), we can consider a concurrent CFA as a product of the original
CFA and the (maximum) number of concurrent threads, and describe a schedule by using source-
code guards to specify the set of CFA edges in the concurrent CFA as a combination of a set of
CFA edges from the original CFA and the set of potentially active threads.
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3.5.5 Witnesses for Termination. While we use a reachability specification for our running
example, the presented concepts are also applicable to termination. Instead of using the acceptance
criterion for finite runs, we can treat the witness automata as Büchi automata and use the acceptance
criterion for infinite runs, as described in Sect. 3.1.7.

4 DESIGN AND IMPLEMENTATION
In the following, we will explain how we use protocol automata to represent verification re-
sults and how we can validate and refine these verification results by applying witness-based
verification-result validators.

4.1 Verifiers
Over the last decades, a multitude of automated software verifiers has been developed. We now
give a brief introduction to two verification tools that we will use to generate witnesses for our
evaluation and that three of the four violation-witness-based result validators and both of the
correctness-witness-based result validators we present in the following sections are based on.

4.1.1 CPAchecker. The configurable software-verification framework CPAchecker [38] is based on
configurable program analysis [30, 34] and supports many different verification approaches, such as
predicate abstraction [21, 39, 77], lazy abstraction with interpolants [46, 109], 𝑘-induction [27,
69], bounded model checking [49], explicit-value analysis [42], and symbolic execution [40].
CPAchecker won the category Overall of the competition on software verification (SV-COMP)
seven times from 2012–2021.5

Architecture. Its architecture is designed to explicitly reflect the concepts of configurable program
analysis (cf. Sect. 2.2) in its components, as visualized by Fig. 7: The left side of the figure shows
the input, which is a verification task that consists of a program and a specification. The source
code of a verification task is parsed and converted into a CFA (cf. Sect. 2.1), the specification is
5https://cpachecker.sosy-lab.org/achieve.php
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parsed and converted into an observer automaton (cf. Sect. 3.2.1). Then, the desired algorithm is
run on the verification task. After the algorithm completes, the computed results, for example
the verification outcome, are delivered. The core algorithm of the CPAchecker framework is the
CPA algorithm (data-flow analysis/abstract interpretation [65, 101, 113]). As examples of CPAs
implemented in CPAchecker, the figure shows the Location CPA and the Composite CPA, which were
already introduced in Sect. 2.2, as well as the Automaton CPA, which is described in Sect. 3.3. The
dotted line symbolizes that more CPAs that are not discussed in this article are available, for example,
a CPA for predicate analysis [28] or a CPA for explicit-state model checking [42]. Besides the CPA
algorithm, Fig. 7 depicts two additional algorithms as examples of further implemented verification
approaches: counterexample-guided abstraction refinement (CEGAR) [59] and k-induction [27].
Both of these algorithms delegate parts of their work to the CPA algorithm. For example, CPAchecker
can be configured to perform predicate abstraction [77] with counterexample-guided abstraction
refinement by combining the CEGAR algorithm with a CPA that implements predicate abstraction.
CPAchecker can also be configured to perform k-induction with auxiliary-invariant generation,
by combining the k-induction algorithm with a program analysis that produces invariants. For a
detailed and formal discussion on how these approaches are implemented in CPAchecker, we refer
the reader to the literature [28] and briefly introduce the concept of k-induction, only because it is
a non-trivial but integral component of one of the validation approaches that we will later present.
k-Induction. To obtain unbounded proofs of safety, k-induction combines techniques from bounded
model checking [50] with induction. Consider a verification task that contains an unbounded loop
and a candidate invariant 𝑃 for that task. It is possible (a) to check using a bounded model check
with bound 𝑘 = 1 whether a program path of length 𝑘 = 1 exists for which 𝑃 is violated, but
this check cannot prove the absence of longer counterexample paths. However, it is possible
(b) to prove that 𝑃 is an invariant using induction if 𝑃 is inductive, i.e., if 𝑃 holds before a given
loop iteration, 𝑃 also holds after that iteration, by taking (a) as the base case of the induction
proof and (b) as the inductive-step case.
An extension to greater values of 𝑘 lifts (1-)induction to k-induction, where the invariant 𝑃 is

asserted not only before one loop iteration, but before each of 𝑘 consecutive loop iterations in the
step case to conclude that it also holds after the 𝑘-th loop iteration. For 𝑘 > 1, (𝑘 − 1)-inductiveness
implies 𝑘-inductiveness. In practice, k-induction may therefore succeed more often to prove cor-
rectness than (𝑘 − 1)-induction [127], because k-induction uses a stronger induction hypothesis. A
drawback of k-induction is that the approach cannot succeed if 𝑃 is not 𝑘-inductive for any 𝑘 . It is
therefore desirable to strengthen 𝑃 with auxiliary invariants to try making the assertion inductive.

KI ⟲⟲⟲←−DF and KI ⟲⟲⟲←−KI [27] are two k-induction techniques that are implemented in CPAchecker
and use auxiliary invariants. In both techniques, an invariant generator runs in parallel to the
k-induction procedure and successively provides invariants that are then used to strengthen the
induction hypothesis. As time progresses, stronger invariants are generated, until the auxiliary
invariants sufficiently strengthen the induction hypothesis to successfully prove the invariant 𝑃
by induction. In KI ⟲⟲⟲←−DF, the auxiliary-invariant generator is based on a data-flow analysis. Over
time, the precision used by the analysis is increased, causing stronger invariants to be generated. In
the k-induction technique KI ⟲⟲⟲←−KI, the auxiliary-invariant generator is itself based on k-induction
and attempts to prove invariants from a set of candidate invariants (either derived from a template
or provided by a user). As time progresses, more confirmed candidates may become available as
auxiliary invariants, until the induction hypothesis is strong enough to prove the safety property.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:20 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

Example 5 (Verification with CPAchecker). Consider a verification task consisting of the pro-
gram shown in Fig. 1 and the specification from Fig. 2. No feasible path to the call of the func-
tion __VERIFIER_error(void) in line 17 exists, because after the loop, the sum s of non-negative
summands is always at least as great as its last summand v. Since the type of s is unsigned int,
no overflow is caused by computing and storing the sum of at most 255 (maximum value of n)
values, each of which is at most 255 (maximum value of v) itself, which in total is at most 65025.
Consequently, no feasible path to the call of the function __VERIFIER_error(void) in line 21
exists either. Therefore, the program satisfies the specification. CPAchecker is able to prove this by
applying the KI ⟲⟲⟲←−KI technique for k-induction and using a template for linear inequalities to
produce candidate invariants for KI ⟲⟲⟲←−KI: Knowing that 0 ≤ 𝑖 ≤ 255 due to the types of i and n,
CPAchecker can prove that the linear inequality 𝑠 ≤ 𝑖 · 255 is an invariant, and consequently also
that 𝑠 ≤ 65025 (and therefore also that s cannot overflow), which proves the program safe.

4.1.2 UAutomizer. The automata-based verification approach of UAutomizer [84] constructs a
correctness proof as a sequence of automata. UAutomizer uses the concept of Floyd-Hoare automata
(cf. Sect. 3.1.5) instead of an ARG. UAutomizer won the category Overall of the competition on
software verification (SV-COMP) two times from 2012–2020.6

Architecture. Like CPAchecker, UAutomizer transforms the given program into a CFA and the
given specification into an observer automaton, and uses the specification to determine whether a
program path is an error path. The automaton product of the CFA and the observer automaton for
the specification yields a new CFA that describes a formal language over the alphabet𝐺 , where𝐺 is
the set of control-flow edges, and where the accepting states are defined by the observer automaton
for the specification. Hence, the words accepted by this automaton are exactly those paths through
the program that violate the specification, i.e., the error paths (cf. Sect. 2.1).

Verification Using Floyd-Hoare Automata. To solve a verification task, UAutomizer iteratively
constructs Floyd-Hoare automata instead of an ARG. The Floyd-Hoare automata A1, . . . ,A𝑛 are
constructed such that each automaton accepts only words that correspond to infeasible paths. If,
at some point of this iterative process, the union of the languages of these automata becomes a
superset of the language accepted by the product of the CFA and the observer automaton for the
specification, the verification is complete and the constructed Floyd-Hoare automata A1, . . . ,A𝑛

represent a correctness proof for the program.
Given a CFA A𝑃 and the Floyd-Hoare automata A1, . . . ,A𝑛 from the above-mentioned correct-

ness proof, the following approach can be used to construct invariants: First, an automata-theoretical
product of the automata A𝑃 and A1, . . . ,A𝑛 is constructed. We make sure that in the product
construction no Floyd-Hoare automaton is blocking and make each automaton total beforehand
(that is, they are observer automata). The totalization is implemented by implicitly adding for each
missing outgoing transition (in the automata in Fig. 8) an outgoing transition whose target is the
initial state. Because the initial state is labeled by 𝑡𝑟𝑢𝑒 , the totalized automata are still Floyd-Hoare
automata. The states of the product are tuples of the form (l, 𝑠1, . . . , 𝑠𝑛) where the first component
is a program location of the CFA, and the 𝑖 + 1-th component 𝑠𝑖 is a state of the Floyd-Hoare
automatonA𝑖 . Each tuple in the product is annotated by a formula that is the 𝑛-ary conjunction of
the invariants of all 𝑠𝑖 , that is, the annotation of the tuple (l, 𝑠1, . . . , 𝑠𝑛) is the conjunction

∧𝑛
𝑖=1 𝜑𝑠𝑖 .

Then, the invariant for a location l is computed as the disjunction of all annotations of those tuples
that are reachable in the product and where the first component is location l.

6https://ultimate.informatik.uni-freiburg.de/Automizer
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𝑞0

start

𝑡𝑟𝑢𝑒

𝑞1𝑛 ≠ 0

𝑞2𝑛 ≠ 0 ∧ 𝑖 = 0

𝑞3𝑓 𝑎𝑙𝑠𝑒

int main(),
unsigned char n =

__VERIFIER_nondet_char();

[!(n == 0)]

unsigned char v = 0;,
unsigned int s = 0;

unsigned int i = 0;

[!(i < n)]

all

(a) Floyd-Hoare automaton A1

𝑝0

start

𝑡𝑟𝑢𝑒

𝑝1𝑠 ≥ 𝑣

𝑝2𝑓 𝑎𝑙𝑠𝑒

int main(),
unsigned char n =
__VERIFIER_nondet_char();,

[!(n == 0)],
unsigned char v = 0;,
unsigned int s = 0;,
unsigned int i = 0;,
[i < n],
[!(i < n)],
v = __VERIFIER_nondet_char();

s += v;

v = __VERIFIER_nondet_char();

[s < v]

all

++i;,
[i < n],
[!(i < n)]

(b) Floyd-Hoare automaton A2

𝑟0

start

𝑡𝑟𝑢𝑒

𝑟1𝑠 = 0

𝑟2𝑠 = 0 ∧ 𝑠 ≤ 𝑖 · 255

𝑟3
𝑠 = 0 ∧ 𝑖 < 𝑛

∧ 𝑠 ≤ 𝑖 · 255

𝑟4 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255 + 255

𝑟5𝑖 ≤ 𝑛 ∧ 𝑠 ≤ 𝑖 · 255

𝑟6 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255

𝑟7𝑠 ≤ 65025

𝑟8𝑓 𝑎𝑙𝑠𝑒

int main(),
unsigned char n =

__VERIFIER_nondet_char();,
[!(n == 0)],
unsigned char v = 0;

unsigned int s = 0;

unsigned int i = 0;

[i < n]

s += v;

v = __VERIFIER_nondet_char();

[i < n]

[!(i < n)]

v = __VERIFIER_nondet_char();

s += v;

++i;

[!(s < v)]

[s > 65025]

all

(c) Floyd-Hoare automaton A3

Fig. 8. Proof that the program whose CFA is depicted in Fig. 1 satisfies the specification depicted in Fig. 2.

We construct a product of these automata in order to obtain invariants for the program.

Example 6 (Verification with UAutomizer). The three Floyd-Hoare automata depicted in Fig. 8
are a proof that the program whose CFA is depicted in Fig. 1 satisfies the specification depicted
in Fig. 2. The observer automaton (Fig. 2) for the specification considers the locations after the
function __VERIFIER_error(void)was called, i.e., 𝑙18 and 𝑙22, accepting. The three Floyd-Hoare
automata are a proof of correctness, because each word that is accepted by the CFA is also
accepted by A1, A2, or A2.
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Table 2. Reachable states in the product automaton of A𝑃 , A1, A2, and A3 together with their annotation

State Annotation

(𝑙3, 𝑞0, 𝑝0, 𝑟0) 𝑡𝑟𝑢𝑒

(𝑙4, 𝑞0, 𝑝0, 𝑟0) 𝑡𝑟𝑢𝑒

(𝑙5, 𝑞0, 𝑝0, 𝑟0) 𝑡𝑟𝑢𝑒

(𝑙8, 𝑞1, 𝑝0, 𝑟0) 𝑛 ≠ 0
(𝑙9, 𝑞1, 𝑝0, 𝑟0) 𝑛 ≠ 0
(𝑙10, 𝑞1, 𝑝0, 𝑟1) 𝑛 ≠ 0 ∧ 𝑠 = 0
(𝑙11, 𝑞2, 𝑝0, 𝑟2) 𝑛 ≠ 0 ∧ 𝑖 = 0 ∧ 𝑠 = 0 ∧ 𝑠 ≤ 𝑖 · 255
(𝑙16, 𝑞3, 𝑝0, 𝑟0) false
(𝑙12, 𝑞0, 𝑝0, 𝑟3) 𝑠 = 0 ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
(𝑙13, 𝑞0, 𝑝0, 𝑟3) 𝑠 = 0 ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
(𝑙14, 𝑞0, 𝑝1, 𝑟4) 𝑠 ≥ 𝑣 ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255 + 255
(𝑙11, 𝑞0, 𝑝1, 𝑟5) 𝑠 ≥ 𝑣 ∧ 𝑖 ≤ 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
(𝑙12, 𝑞0, 𝑝1, 𝑟6) 𝑠 ≥ 𝑣 ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
(𝑙13, 𝑞0, 𝑝0, 𝑟6) 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
(𝑙14, 𝑞0, 𝑝1, 𝑟4) 𝑠 ≥ 𝑣 ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255 + 255
(𝑙16, 𝑞0, 𝑝1, 𝑟7) 𝑠 ≥ 𝑣 ∧ 𝑠 ≤ 65025
(𝑙17, 𝑞0, 𝑝2, 𝑟0) false
(𝑙20, 𝑞0, 𝑝0, 𝑟7) 𝑠 ≤ 65025
(𝑙21, 𝑞0, 𝑝0, 𝑟8) false

Table 3. Invariants for the program depicted in Fig. 1

Location Invariant

𝑙3 𝑡𝑟𝑢𝑒

𝑙4 𝑡𝑟𝑢𝑒

𝑙5 𝑡𝑟𝑢𝑒

𝑙8 𝑛 ≠ 0
𝑙9 𝑛 ≠ 0
𝑙10 𝑛 ≠ 0 ∧ 𝑠 = 0
𝑙11 (𝑛 ≠ 0 ∧ 𝑖 = 0 ∧ 𝑠 = 0 ∨ 𝑠 ≥ 𝑣 ∧ 𝑖 ≤ 𝑛) ∧ 𝑠 ≤ 𝑖 · 255
𝑙12 (𝑠 = 0 ∨ 𝑠 ≥ 𝑣) ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
𝑙13 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255
𝑙14 𝑠 ≥ 𝑣 ∧ 𝑖 < 𝑛 ∧ 𝑠 ≤ 𝑖 · 255 + 255
𝑙16 𝑠 ≥ 𝑣 ∧ 𝑠 ≤ 65025
𝑙17 false
𝑙20 𝑠 ≤ 65025
𝑙21 false

Intuitively, the Floyd-Hoare automatonA1 says that we cannot leave the while loop without
passing the body at least once. The Floyd-Hoare automaton A2 says that after running the
while loop (at least) once, the value of s is not smaller than the value of v and hence the
program cannot reach the first call of the __VERIFIER_error(void) function. The Floyd-Hoare
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automaton A3 says that 𝑠 ≤ 𝑖 · 255 is a loop invariant and since the loop counter i is bounded
by an unsigned char, the value of s is bounded by 65025 and the program cannot reach the
second call of the __VERIFIER_error(void) function.
Table 2 shows the annotations for the reachable states in the product of the automata from

Fig. 8, and Table 3 shows the invariants that we obtain for the program depicted in Fig. 1. We do
not show the locations 𝑙6, 𝑙24, and 𝑙25, because UAutomizer detects beforehand that these locations
do not occur on any path from the initial location to an error location and assigns the invariant
true to these locations. In Table 2 we leave out all successors of all tuples that are annotated
with false (𝑙18 and 𝑙22). Because each Floyd-Hoare automaton has a self-loop for locations with
the invariant false, each successor of a tuple annotated by false is also annotated by false.

4.2 Result Validation Based on Violation Witnesses
Violation witnesses are verification witnesses that represent error paths, i.e., paths through the
program source code that violate the specification (Sect. 3.2.2).

4.2.1 Principles. A violation-witness based result validator can attempt to validate the verifica-
tion result false if the result is supported by a violation witness. In 2019, four implementations
of such validators existed: CPAchecker, UAutomizer, CPA-witness2test, and FShell-witness2test. Con-
ceptually, all of these validators are based on the principle of witness-based result validation as
described in Sect. 3.5.2. We classify the four validators into two categories, namely the category
of static (model-checking-based) validators, and the category of dynamic (execution-based) val-
idators, as indicated in Fig. 4.
Static Validation. CPAchecker and UAutomizer are static validators, because they are based on
purely static analysis and do not actually execute the program to confirm a violation. The ad-
vantages of static validators are that (1) they do not strictly require precise witnesses but can
also be used with imprecise witnesses and can even be used to refine them, using witness re-
finement (cf. Sect. 3.5.3), because they can use model-checking techniques to detect invariants
or even find concrete value assignments for program variables, (2) they can be used to validate
results for verification tasks of systems with arbitrary target architectures, independent from
the environment the validator is executed in, because they do not need to execute the analyzed
program, and (3) they can be used for arbitrary specifications and are not limited to specifications
with finite counterexamples (cf. dynamic validators). The main disadvantage of static validators
is that accurately modeling all features of a complex programming language (such as C) is often
difficult, and static validators therefore may exhibit the same imprecisions that also contribute
to false alarms in verifiers. Thus, they may be less trustworthy than dynamic validators, which
actually run the analyzed program to confirm a violation.

Example 7 (Violation-Witness Construction, Validation, and Refinement). We illustrate how
violation witnesses are constructed, validated, and refined across verifiers: We start with an
overview of an example scenario and then describe the process of producing, consuming, and
refining violation witnesses in more detail.
In this example, we first run three verifier instances in sequence. Each of them takes the

verification task that consists of the program depicted in Fig. 9a and the specification shown
in Fig. 2 as input, and produces a violation witness. The program in Fig. 9a differs from the
program in Fig. 1a (and described in Sect. 2.1) in only one line: In line 9 of the original program,
variable s is declared as type unsigned int, whereas in line 9 of the modified program, s is
declared as type unsigned char; therefore, the only difference between the CFA of the original
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1 extern void __VERIFIER_error(void);
2 extern unsigned char __VERIFIER_nondet_char(void);
3 int main() {

4 unsigned char n = __VERIFIER_nondet_char ();

5 if (n == 0) {

6 return 0;

7 }

8 unsigned char v = 0;

9 unsigned char s = 0;

10 unsigned int i = 0;

11 while (i < n) {

12 v = __VERIFIER_nondet_char ();

13 s += v;

14 ++i;

15 }

16 if (s < v) {

17 __VERIFIER_error ();

18 return 1;

19 }

20 if (s > 65025) {

21 __VERIFIER_error ();

22 return 1;

23 }

24 return 0;

25 }

(a) Unsafe program linear-inequality-inv-b.c (adapted from Fig. 1a)
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(d)Witness 3

Fig. 9. Example C program with a bug (a) and violation witnesses for it (b, c, and d)
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program (cf. Fig. 1b) and the CFA of the modified program is that the label of the CFA edge
between l9 and l10 is changed to unsigned char s = 0. The specification requires that no call
to the function __VERIFIER_error() must be reachable from the program entry. The program
violates this specification: Recall from Sect. 2.1 that the program attempts to compute the sum
of a number of input values. However, the variable s that is used to store the computed sum
is now declared to be of type unsigned char, which in our setting means that it is only 8 bits
wide and can only store values between 0 and 255. It is therefore not suitable for the task of
storing the sum of up to 255 values in the range of 0 to 255 and is susceptible to arithmetic
overflows. As a result, it is possible —depending on the actual input values— that in line 16,
the condition s < v actually holds and the function __VERIFIER_error() is called, thereby
violating the specification.

In this example scenario, all three verifiers are configured as a composite CPA (cf. Sect. 2.2.2).
The first verifier runs an analysis that considers only control-flow information and does not
track any variable values, and produced Witness 1 (Fig. 9b). The second verifier then takes this
witness and the verification task as input, runs an analysis based on an interval domain [64], and
produces the violationwitness in Fig. 9c. In the third step, we run a test-case generator [19, 26, 35]
that takes the violation witness from Fig. 9c and the verification task as input and produces the
test vector that is represented by the witness in Fig. 9d.
Verification. The Composite CPA used by the first verifier is composed of a Location CPA that
tracks the program counter and an observer analysis (i.e., an Automaton CPA for an observer
automaton, cf. Fig. 7) that tracks the control state of the observer automaton for the specification.
Abstract states of this composite analysis are tuples (l, (𝑠,𝜓𝑠 )), where l represents the current
location in the CFA, i.e., the component abstract state tracked by the Location CPA, and (𝑠,𝜓𝑠 )
is the component abstract state tracked by the observer analysis, which consists of the current
control state 𝑠 of the observer automaton for the specification and the current state-space
restricting condition𝜓𝑠 . Because the specification is represented as an observer automaton, the
observer analysis does not restrict the state space. This analysis will detect a violation if its
abstract state is (·, (𝑠𝐸, ·)), i.e., if the observer analysis that monitors the observer automaton
for the specification transitions into an accepting state. The initial state is (l3, (𝑠0, true)), i.e., the
CFA is in its initial location l3 and the observer automaton is in its initial state 𝑠0. The first
witness automaton (Fig. 9b) is produced by this verifier. The analysis marks the program entry
in line 3 by writing an automaton transition with the source-code guard (l3, int main(), l4)
and the state-space guard true, which is described by the label 3,enterFunction(main): in our
graphical representation a. The analysis detects that taking the then-branch in line 5 cannot lead
to a violation of the specification, and thus, writes a transition to the sink state 𝑞⊥1 , and similarly
for the else-branch in line 20. Because the analysis does not include any information about
program variables, it is unable to eliminate any infeasible program path to the function-call
operations in lines 17 and 21, and thus, it writes transitions to the accepting states 𝑞𝐸1 and 𝑞𝐸2 to
represent each of these violations. Consequently, the resulting witness only overapproximates
the set of feasible error paths: In fact, all of the error paths that lead to the violation in line 21
are actually infeasible, and there is no restriction on the values of program variables or the
number of loop unrollings, because the analysis is very imprecise.
Witness Refinement. In the next step of our example scenario, we use a verifier that runs
an analysis based on an interval domain, and we give it as input the verification task and
the witness from Fig. 9b, which was produced in the previous step. The Composite CPA we
use for this analysis consists of the following component CPAs: A Location CPA to track
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the program counter, an observer analysis to track the control state of the observer au-
tomaton for the specification, a witness analysis (Automaton CPA for a witness automa-
ton) to track the control state of the witness automaton, and an Interval CPA to track the
values of variables using an interval domain. Abstract states of this Composite CPA are tu-
ples (l, (𝑠,𝜓𝑠 ), (𝑞,𝜓𝑤), 𝑒), where l and (𝑠,𝜓𝑠 ) again represent the component abstract states of
the Location CPA and the observer analysis for the observer automaton for the specification,
respectively, (𝑞,𝜓𝑤) is the component abstract state of the witness analysis that consists of
the current control state 𝑞 and state-space condition𝜓𝑤 from the witness automaton, and 𝑒 is
the component abstract state of the Interval CPA, that is, a mapping from the set 𝑋 of pro-
gram variables to intervals. Because we are consuming a violation-witness automaton, we will
only consider specification violations where both the observer automaton for the specification
and the witness automaton for the violation witness are in an accepting state. The initial
state is (l3, (𝑠0, true), (𝑞init, true), {𝑛 ↦→ [−∞,∞], 𝑣 ↦→ [−∞,∞], 𝑠 ↦→ [−∞,∞], 𝑖 ↦→ [−∞,∞]}),
i.e., the CFA is in its initial location l3, the observer automaton for the specification is in
its initial state 𝑠0, the witness automaton is in its initial state 𝑞init , and there is currently no
information on variable values. From the initial program location l3, the Location CPA only
allows a transition via the CFA edge to l4, which means that the first analyzed operation is
the program entry in line 3. In the specification automaton, only the self transition on state 𝑠0
labelled “o/w” matches; recall from Sect. 3.1 that such self-transitions only match if no other
transitions are applicable, and that they impose no state-space restrictions. In the witness
automaton, the transition from 𝑞init to 𝑞1 labeled 3,enterFunction(main):matches. We do not
gain any information on variable values. Therefore, the successor composite abstract state is
(l4, (𝑠0, true), (𝑞1, true), {𝑛 ↦→ [−∞,∞], 𝑣 ↦→ [−∞,∞], 𝑠 ↦→ [−∞,∞], 𝑖 ↦→ [−∞,∞]}). Next, the
analysis progresses via the operation on line 4, which declares the variable n of type unsigned
char and initializes it via an input value by calling the function __VERIFIER_nondet_char(void).
Hence, the new location in the CFA is l5, the observer automaton for the specification again
takes the self-transition and stays in 𝑠0, the witness automaton also has no matching transition
other than the self-transition o/w at 𝑞1 and therefore stays in 𝑞1, and the new interval abstract
state is {𝑛 ↦→ [0, 255], 𝑣 ↦→ [−∞,∞], 𝑠 ↦→ [−∞,∞], 𝑖 ↦→ [−∞,∞]}. At l5, the CFA branches. We
first consider the branch to l6. The observer automaton for the specification stays in 𝑠0 again,
but the witness automaton has a matching transition to 𝑞⊥1 . The interval analysis detects that
due to the branching condition, 𝑛 ↦→ [0, 0] and updates its successor component abstract state
accordingly. However, since 𝑞⊥1 is a sink state, the witness analysis that tracks the control
state of the witness automaton will not produce any further successors on this branch, so
we can eliminate all corresponding program paths and need not consider them any more.
We now consider the branch from l5 to l8. Here, the observer automaton for the specifica-
tion also stays in 𝑠0, the witness automaton stays in 𝑞1, and the new interval abstract state
is {𝑛 ↦→ [1, 255], 𝑣 ↦→ [−∞,∞], 𝑠 ↦→ [−∞,∞], 𝑖 ↦→ [−∞,∞]}. After the next two operations on
lines 8 and 9, which declare the variables v and s of type unsigned char and initializes them both
to 0, the composite abstract state is (l10, (𝑠0, true), (𝑞1, true), {𝑛 ↦→ [1, 255], 𝑣 ↦→ [0, 0], 𝑠 ↦→ [0, 0],
𝑖 ↦→ [−∞,∞]}. The next operation, in line 10, declares the variable i of type unsigned char

and initializes it to 0. The CFA is then in location l11, which is a loop head. Therefore, the
witness-automaton transition from 𝑞1 to 𝑞2 matches, and the composite abstract state is
(l11, (𝑠0, true), (𝑞2, true), {𝑛 ↦→ [1, 255], 𝑣 ↦→ [0, 0], 𝑠 ↦→ [0, 0], 𝑖 ↦→ [0, 0]}. Next, we follow the
branch from the loop head l11 to l12, i.e., into the loop, which leads over the locations l12, l13, and l14
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and the witness-automaton state 𝑞3 eventually back to the loop head l11 and the witness-
automaton state 𝑞2. We assume that the analysis is able to compute a fixed point, but at the loss
of precision: When entering the loop, imust be lower than n, which is at most 255, so imust be
at most 254, and since i is incremented within the loop, it must be between 1 and 255 at the end
of each loop iteration. The most precise single abstract state in our current composite abstract
domain that covers all reached states at the loop head l11, however, is (l11, (𝑠0, true), (𝑞2, true),
{𝑛 ↦→ [1, 255], 𝑣 ↦→ [0, 255], 𝑠 ↦→ [0, 255], 𝑖 ↦→ [0, 255]}. After reaching this fixed point for the
loop, we continue with the branch from l11 to l16, which matches the source-code guard 11,else
on the witness-automaton transition from 𝑞2 to 𝑞4. At this point, we encounter another branch-
ing. We first take the branch from l16 to l17, which matches the source-code guard 16,then on
the witness-automaton transition from 𝑞4 to 𝑞𝐸1 , but since the specification automaton still
stays in 𝑠0, which is not an accepting state, we continue to the following operation, which is the
function call to __VERIFIER_error(void) on line 17. This operation matches the source-code
guard enterFunction(__VERIFIER_error) on the observer-automaton transition from 𝑠0 to the
accepting state 𝑠𝐸 . Because the witness automaton stays in the accepting state 𝑞𝐸1 , the analysis
has now found a program path to a specification violation that is described by the input witness,
and it writes a transition to the corresponding accepting control state 𝑞𝐸1 into its output wit-
ness (Fig. 9c).We now follow the branch from l16 to l20. For this operation, we compute the succes-
sor state (l20, (𝑠0, true), (𝑞5, true), {𝑛 ↦→ [1, 255], 𝑣 ↦→ [0, 255], 𝑠 ↦→ [0, 255], 𝑖 ↦→ [0, 255]}). We
then encounter another branching. When attempting to compute the successor abstract state
via the branch from l20 to l21, the interval component will detect that all program paths along
this branch are infeasible. Therefore, no successor abstract state for this branch is computed.
Along the other branch from l20 to l24, the source-code guard 20,else on the witness-automaton
transition to 𝑞⊥2 matches, so that the analysis does not continue along this branch either and
the state-space exploration is complete. Because the analysis did not encounter any violation
states via the else-branch in line 16, it writes a corresponding transition to a sink state into its
output witness. The new witness (Fig. 9c) is more precise than the input witness (Fig. 9b), as it
does not contain the infeasible error paths to line 21 and puts restrictions on variable values,
but it is still an overapproximation of the set of feasible error paths. For example, it contains
infeasible error paths that never enter the loop and therefore cannot trigger the overflow that
makes the violation in line 17 reachable.
Execution-Based Witness Validation. In the third step of our example scenario, the violation
witness from Fig. 9c is used to restrict a test-case generator [26] to derive a specific test vector for
the program path to the call to __VERIFIER_error(void) in line 17. The test vector is derived
by extracting a satisfying assignment of the formula that represents the program path to l18.
The third witness automaton (Fig. 9d) represents the result of the test-case generation, i.e., a
test vector, which contains all the input data necessary to execute a test of the program that
triggers the described violation of the specification. This witness precisely represents exactly
one feasible error path, and is therefore an underapproximation of the set of feasible error paths,
because there are also other paths that would lead to a violation, for example with more than
two loop iterations or with a different pair of summands.
aWhile the token enterFunction(main) would already be sufficient to unambiguously describe the source-code

guard, we always add the line number for the reader’s convenience.

Dynamic Validation. We call CPA-witness2test and FShell-witness2test dynamic validators, because
they perform only very light-weight static analysis to extract a test vector from a violation witness,
and then compile, link, and execute the program with a corresponding test harness to dynamically
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1 struct _IO_FILE;

2 typedef struct _IO_FILE FILE;

3 extern struct _IO_FILE *stderr;

4 extern int fprintf(FILE *__restrict __stream, const char *__restrict __format,

↩→ ...);

5 extern void exit(int __status) __attribute__ ((__noreturn__));

6 void __VERIFIER_error() {

7 fprintf(stderr, "cpa_witness2test: violation\n");

8 exit(107);

9 }

10 unsigned char __VERIFIER_nondet_char() {

11 static unsigned int test_vector_index = 0;

12 unsigned char retval;

13 switch (test_vector_index) {

14 case 0: retval = (unsigned char)2; break;
15 case 1: retval = (unsigned char)224; break;
16 case 2: retval = (unsigned char)63; break;
17 }

18 ++test_vector_index;

19 return retval;

20 }
Fig. 10. Test harness generated from the witness of Fig. 9d for the C program of Fig. 9a

observe whether the specification is actually violated during the execution. The advantages of
dynamic validators are that (1) they can be much more efficient than static validators, because
they do not require expensive model-checking techniques, (2) they can be more precise than static
validators, because a violation that can be observed during an actual execution of a program
undeniably exists, (3) an executable produced by a dynamic validator can be used by developers
to analyze a bug by applying standard tools they already know and are well-trained in, such as
debuggers, and (4) a test harness produced by a dynamic validator can directly be used by developers
to improve their test suite and prevent regressions once the bug is fixed. There are, however, also
some disadvantages: A dynamic validator requires as input a witness that represents a test vector,
i.e., a witness that specifies concrete value assignments for all program inputs, which may not
be available from all verifiers. To obtain a suitable witness, it is possible to first apply witness
refinement to the original witness, but, because witness refinement uses the expensive techniques
of static validators, this solution negates the first advantage of dynamic validators over static
validators (i.e., their efficiency). A second disadvantage of dynamic validators is that they require a
concrete and secure execution environment 7 that matches the target environment of the analyzed
system, whereas static validators can, conceptually, also be used in any (unrelated) other execution
environment. Lastly, dynamic validators can only confirm a violation if the time required to execute
the program and trigger the bug is finite (and reasonably brief). If, for example, the specification is
that the program must always terminate, a validator for a violation would need to confirm that
there is a path that does not terminate; this cannot be observed from a finite execution.

Example 8 (Execution-Based Validation). We now demonstrate execution-based validation of
verification results as it would be performed by the validator CPA-witness2test when applied to
the verification task composed of the program from Fig. 9a and the specification from Fig. 2,
and the third and most precise witness from our previous example shown in Fig. 9d. To extract
the input values from the witness, match them to the input functions of the program, and

7Test-suite validators (such as TestCov [41]) can be used for safe and secure execution of tests.
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Fig. 11. Architecture of the violation-witness-based result validator implemented in CPAchecker

generate the test harness depicted in Fig. 10, the validator first runs a light-weight program
analysis configured as a Composite CPA composed of the following components: a Location
CPA that tracks the program counter, an observer analysis that tracks the control state of the
observer automaton for the specification, and a witness analysis that tracks the control state of
the witness automaton for the violation witness. The analysis traces the program paths that
are described by the witness automaton and matches the values of input variables on these
paths to the corresponding input functions of the program in the correct order. In the example,
the automaton specifies that in line 4, the value assigned to the variable n (which controls
how many further input values will be read) should be 2; that in the first loop iteration in
line 12, the value assigned to the variable v should be 224; and that in the second loop iteration
in line 12, the value assigned to the variable v should be 63. Consequently, the validator
produces the test harness listed in Fig. 10, which contains an implementation of the input
function __VERIFIER_nondet_char(void) that returns exactly those values in that order, and
an implementation of the function __VERIFIER_error(void) that, if called, allows the validator
to detect the specification violation through a custom program output. In the next step, the
validator compiles and links the source code of the C program and the produced test harness,
and executes the resulting program. As expected, the validator can observe the specification
violation during execution, because the sum of 224 and 63 is 287, which exceeds the value range
of the type unsigned char of variable s and therefore wraps around to the value 31. Because 31
is less than the last input value 63, the function __VERIFIER_error() is called at line 17. The
validator detects this function call and confirms the verification result.

4.2.2 Tool Implementations. We implemented violation-witness-based result validation in the
two static validators CPAchecker and UAutomizer, and in the two dynamic validators CPA-witness2test
and FShell-witness2test.

Static Violation-Witness-Based Result Validation with CPAchecker. Figure 11 shows a section
of the architecture of CPAchecker that implements violation-witness-based result validation. The left
side of the figure shows the inputs, consisting of the verification task (i.e., program and specification)
and the violation witness. The program is parsed and converted into a CFA, the specification into an
observer automaton, and the violation witness into a witness automaton. Then, the CPA algorithm
is run with a composite program analysis that is composed of at least a Location CPA and two
Automaton CPAs, one for the observer automaton for the specification and one for the witness
automaton for the violation witness. As mentioned in Sect. 4.1.1, further CPAs are available and
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Fig. 12. Flow of violation-witness-based result validation with dynamic validators (witness2test)

can optionally be added to the composition to enhance the capabilities of the program analysis; in
our evaluation (cf. Sect. 6), we add predicate analysis [28] and explicit-state model checking [42].
After the CPA algorithm completes, the computed results are delivered. This may either be a

simple confirmation (or refutation) of the validated result, or it may be a refined violation witness
if the validated result was confirmed and the validation process was able to add information to
an imprecise input witness. The witness is confirmed if the observer automaton and the witness
automaton both reached one of their accepting contol states.

Static Violation-Witness-Based Result Validation with UAutomizer. While we formalized
witness-based result validation using the concept of configurable program analysis, other ap-
proaches are also applicable: UAutomizer performs the validation in two steps. In the first step,
a new CFA is constructed that represents those paths of the original CFA that comply with the
source-code guards of the witness automaton, i.e., the new CFA is constructed as a product of
the original CFA and the witness automaton. The states of this product automaton are pairs (𝑙, 𝑞),
where 𝑙 is a location of the original CFA and 𝑞 is a control state of the witness automaton. The
product contains a transition from (𝑙, 𝑞) to (𝑙 ′, 𝑞′) labeled with 𝑜𝑝 if
• (𝑙, 𝑜𝑝, 𝑙 ′) is a CFA edge and
• 𝑞 (𝑆,𝜓 )−−−−→𝑞′ is a transition in the witness automaton such that (𝑙, 𝑜𝑝, 𝑙 ′) ∈ 𝑆 .
In the second step, UAutomizer verifies if the resulting CFA satisfies the specification using its
automata-theoretic verification approach [84]. The witness is confirmed if a violation of the specifi-
cation is found, that is, the observer automaton for the specification reached an accepting control
state and the new CFA also reached an accepting control state.

Dynamic Violation-Witness-Based Result Validation with CPA-witness2test. Figure 12 shows
the witness2test-workflow for violation-witness-based result validation with dynamic validators:
The validator receives as input the verification task and the violation witness produced by a verifier,
and synthesizes from these inputs a test harness for the program. This test harness and the program
source code are compiled and linked with a C compiler to produce an executable program, which
is then executed. Assuming that the witness represents a precise test vector and the validator
correctly translates the witness into a test harness, if the validator observes a violation, then the
bug found by the verifier and described by the witness is realizable and the result is therefore
confirmed; otherwise, it is refuted. Because an executable program that triggers an actual bug
is always available after a successful validation, the developer can immediately start debugging,
for example by running the executable with a debugger like GDB.
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For CPA-witness2test, the step of extracting the test vector from the verification task and witness is
conceptually similar to the validation performed by static validators, except that the static analysis is
used only to assign the input values from the witness to the correct input functions of the program,
not to perform any further semantic reasoning about the program. In fact, CPA-witness2test uses
also the architecture displayed in Fig. 11 for the step of matching the input values from the witness
to the input functions of the program. Unlike the static validators, however, it does not add further
CPAs and its result in this step is the test harness.

Dynamic Violation-Witness-Based Result Validation with FShell-witness2test. The key
design principle of FShell-witness2test, on the other hand, is independence from existing verifica-
tion infrastructure: the results of FShell-witness2test are by design unbiased towards any existing
software-analysis framework. Consequently, FShell-witness2test is another example that shows
that while we formalize witness-based result validation using the CPA concept, implementations
that follow other paradigms are also applicable in practice. The architecture of FShell-witness2test
consists of two major parts: (1) a Python-based processor of the violation witness and the program
source code, using pycparser,8 to generate a test vector in a format compatible with FShell [89]
(hence the name of the validator), and (2) a Perl script to convert such a test vector into a test
harness that can be compiled and linked with the input program. For a given violation witness
and verification task, FShell-witness2test first parses the specification to determine the expected
type of violation. The witness and the C program are then handed to the Python-based processor.
Because pycparser cannot handle various GCC extensions, input programs are preprocessed and
sanitized by performing text replacement and removal. FShell-witness2test then obtains the abstract
syntax tree and iterates over its nodes to gather data types and source locations of input-value
assignments. Finally, FShell-witness2test builds a linear sequence of states from the witness automa-
ton. Traversing this sequence, any match of line numbers against the input-value assignments
triggers an attempt to extract values from assumptions in the witness. If the assumption represents
a precise value assignment, an input value is recorded.

4.3 Result Validation Based on Correctness Witnesses
Correctness witnesses are verification witnesses that represent the artifacts of a proof that a program
satisfies a specification, i.e., invariants for certain program locations that are intended to help
reconstruct a correctness proof (Sect. 3.2.3).

4.3.1 Principles. The program analysis of a correctness-witness-based result validator checks
if the given invariants indeed hold at their corresponding abstract program states; validation of
a correctness witness fails if the validator refutes the invariant 𝜑 for an abstract program state
or if it detects a violation of the specification, i.e., a feasible error path.

There are only two differences between violation-witness validation and correctness-witness vali-
dation:
• Violation-witness-based result validation uses assumptions at the witness automaton’s transi-
tions to constrain the state space; a correctness witness does not constrain the state space but
contains at each control state in the witness automaton a state invariant.
• Violation-witness-based result validation attempts to replay an error path through the program,
while correctness-witness-based result validation tries to replay the correctness proof: after
confirming a witness invariant, it may use it as an auxiliary lemma to prove the correctness of
the program or further witness invariants.

8https://github.com/eliben/pycparser
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4.3.2 Tool Implementations. Currently, two implementations of correctness-witness-based
result validators exist. We describe the two different strategies employed by CPAchecker and UAu-
tomizer (out of the many possible strategies to implement a validator), which are implemented in
two different verification frameworks to demonstrate the potential and flexibility of the approach.

CPAchecker’s Correctness-Witness-Based Result Validator. Like the CPAchecker-based verifier
from Sect. 4.1.1, the CPAchecker-based validator for correctness witnesses uses the KI ⟲⟲⟲←−KI technique
for k-induction. In a preparatory step, the invariants are extracted from the correctness witness and
mapped to their corresponding program locations. By design, a witness may be imprecise, therefore
it is possible that an invariant is mapped to several program locations. The invariant generator
then uses these invariants as candidate invariants, and, if it is able to prove inductiveness of such
a candidate invariant, it supplies it as an invariant to the main k-induction procedure. If, on the
other hand, the invariant generator is able to refute a candidate at all program locations described
by its corresponding state in the witness automaton, the validation fails, i.e., refutes the result.
One of the advantages of using k-induction for correctness-witness-based result validation is

that for non-trivial software-verification tasks, k-induction is known to perform well only if it
is supplied with the necessary auxiliary invariants [27, 99]. By design, all techniques that are
implemented in CPAchecker to generate its own auxiliary invariants (e.g., from data-flow analysis)
are turned off for the validation. Consequently, the validator’s success in confirming a proof result
depends on the quality of the invariants given by the witness.

Within each iteration of the k-induction procedure of the KI ⟲⟲⟲←−KI technique’s invariant genera-
tor, CPAcheckerwill try to refute each invariant provided by the witness by finding a counterexample
of the current length 𝑘 before trying to prove its correctness. Hence, CPAchecker is guaranteed to
find incorrect invariants with counterexamples that are at most as long as the value of 𝑘 required to
prove that the program conforms to its specification, and it is also guaranteed to only use supplied
invariants that it can prove to be correct. CPAchecker does not guarantee, however, that it will detect
incorrect witness-supplied invariants if the length of their shortest counterexample exceeds the
value of 𝑘 required to prove that the program itself is correct. This is a design decision of the imple-
mentation, not a limitation of the concept of correctness witnesses or the CPAchecker framework.
To instead exhaustively confirm or refute all provided invariants, CPAchecker could be changed to
simply defer checking the correctness of the program until the KI ⟲⟲⟲←−KI invariant generator has pro-
cessed all invariants. The reasoning for the design decision without exhaustive checking was to not
discourage developers of verifiers from producing invariants that k-induction might struggle with
and cause exhaustive checks to time out. Moreover, if proving the correctness of a program requires
an auxiliary invariant and the witness provides a correct one, the witness can already be considered
useful, even if not all of its contents is checked exhaustively. For use cases where exhaustive proof
or refutation of all invariants is desired, an alternative implementation is provided by UAutomizer.

Ultimate Automizer’s Correctness-Witness-Based Result Validator. To validate a proof result,
UAutomizer verifies the given program and considers each invariant provided by the correctness
witness as an additional specification. Each of the specifications (the additional specifications
from the invariants and the original specifications) is checked in the order of their occurrence
in the program, and if correct, can be assumed while checking specifications occurring later in
the program. UAutomizer confirms the result if the original specification and all specifications
derived from witness invariants hold. If one specification cannot be confirmed, the validation
fails (result refuted). In case we do not want to validate the witness as a whole but would like to
point out incorrect invariants individually, we can check each specification individually without
assuming validity for any other specification.
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1 extern void
↩→ __VERIFIER_error(void);

2 extern unsigned char
↩→ __VERIFIER_nondet_char(void);

3 int main() {

4 unsigned char n =

↩→ __VERIFIER_nondet_char ();

5 if (n == 0) {

6 return 0;

7 }

8 unsigned char v = 0;

9 unsigned int s = 0;

10 unsigned int i = 0;

11 while (i < n) {

12 v = __VERIFIER_nondet_char ();

13 s += v;

14 ++i;

15 }

16 if (s < v) {

17 __VERIFIER_error ();

18 return 1;

19 }

20 if (s > 65025) {

21 __VERIFIER_error ();

22 return 1;

23 }

24 return 0;

25 }

(a) Safe program (from Fig. 1a)

𝑞inittrue

𝑞1true

𝑞2

s ≤ i · 255
∧ 0 ≤ i ≤ 255
∧ 𝑛 ≤ 255

𝑞3

true

𝑞4

true

3,enterFunction(main):

o/w

10,enterLoopHead:

o/w

o/w

11,then: 11,else:

o/w

14,enterLoopHead:

o/w

(b)Witness automaton

1 extern void
↩→ __VERIFIER_error(void);

2 extern unsigned char
↩→ __VERIFIER_nondet_char(void);

3 int main() {

4 unsigned char n =

↩→ __VERIFIER_nondet_char ();

5 if (n == 0) {

6 return 0;

7 }

8 unsigned char v = 0;

9 unsigned char s = 0;

10 unsigned int i = 0;

11 while (i < n) {

12 v = __VERIFIER_nondet_char ();

13 s += v;

14 ++i;

15 }

16 if (s < v) {

17 __VERIFIER_error ();

18 return 1;

19 }

20 if (s > 65025) {

21 __VERIFIER_error ();

22 return 1;

23 }

24 return 0;

25 }

(c) Unsafe program (from Fig. 9a)

Fig. 13. Example C programs (a and c) and a potential correctness witness (b), with the only difference

between the two programs (line 9) highlighted

Converting a witness invariant into an additional specification is implemented as follows. First,
an observer analysis matches the program CFA against the witness to obtain a partial map 𝑓 from
program locations to witness invariants. In a second step, the CFA is modified as follows. For
each location l for which the mapping 𝑓 is defined, UAutomizer
• adds a new location l′,
• adds a new edge (l, 𝑜𝑝 𝑓 (l) , l′) where 𝑜𝑝 𝑓 (l) is the assume operation that assumes the invariant
𝑓 (l) that was mapped to l,
• adds a new edge (l, 𝑜𝑝¬𝑓 (l) , lerr), where 𝑜𝑝¬𝑓 (l) is the assume operation that assumes the nega-
tion of the invariant 𝑓 (l) and lerr is a location whose reachability is forbidden by the original
specification, and
• replaces each outgoing edge of the form (l, 𝑜𝑝, l”) by an edge (l′, 𝑜𝑝, l”).
The resulting CFA is verified as described in Sect. 4.1.2.

Example 9 (Correctness Witnesses). We illustrate the idea of correctness-witness validation
using two short C programs listed in Fig. 13a (taken from Fig. 1a) and Fig. 13c (taken from Fig. 9a),
an example correctness-witness automaton shown in Fig. 13b, and the specification from Fig. 2,
which forbids reachable calls to the function __VERIFIER_error(void). The first of the two
C programs (Fig. 13a) differs from the second C program (Fig. 13c) only in one line: While
variable s is declared with type unsigned int in line 9 of the first program, it is declared with
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type unsigned char in line 9 of the second program. As a result, the first program satisfies
the specification, while the second program violates it, because s is susceptible to arithmetic
overflows (cf. Example 7).
One way to prove that neither of the calls to the function __VERIFIER_error() in line 17

and line 21 is reachable in the first program would be to find an upper bound for the number of
loop iterations and then unroll the loop, performing a bounded model check [50]. While this
would still be feasible in our example due to the small types and simple structure that we chose
for ease of presentation, it would already be expensive; for larger loop bounds, this strategy
becomes infeasible, and for unknown loop bounds, it is impossible. Another —unbounded—
way to prove that the program is safe is to prove that 𝑠 ≤ 65025 is an invariant of the loop from
lines 11 to 15. This invariant is not inductive for the loop, however: It holds trivially before the
loop, where 𝑠 = 0, but the loop body does not guarantee that the invariant is preserved. Even
strengthening this invariant to 𝑠 ≤ 65025∧ 𝑖 ≤ 255 (which should be simple for any verifier that
understands C types and knows that in our target architecture, type unsigned char is 8 bits
wide) is not inductive. The predicate 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255 ∧ 𝑛 ≤ 255, on the other hand, is
an inductive invariant of the loop, but finding such an invariant is usually difficult, and depends
on the verification strategy: it is therefore the critical step in solving this verification task.
A verifier that successfully proves the safety property for the program may then export a

correctness witness. If the correctness witness contains the invariant 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255∧
𝑛 ≤ 255, a witness validator using the witness should be able to easily confirm the proof.
Figure 13b displays a graphical representation of such a correctness witness. The automaton
starts in an initial control state 𝑞init . The witness assigns the invariant true. It is allowed to
proceed to state 𝑞1 if the control flow enters the main function of the program. As long as this
transition is not possible, the automaton remains in state 𝑞init via the self-transition ‘otherwise’
(o/w). From 𝑞1, the automaton is allowed to proceed to 𝑞2 if the control-flow enters the loop
head; otherwise, it remains in 𝑞1 via the self-transition o/w. From 𝑞2, the automaton can proceed
to control state 𝑞3 if the condition of the while loop in line 11 is true (the then-case), or to
state 𝑞4 if the condition in line 11 is false (the else-case). As long as none of these transitions are
possible, the automaton remains in control state 𝑞2 via the self-transition o/w. The automaton
proceeds back from state 𝑞3 to 𝑞2 after the program operation in line 14; as long as this is not
possible, the automaton will stay in 𝑞3 via its self-transition o/w. If the automaton is in control
state 𝑞4, it will stay there forever.a Control states 𝑞init , 𝑞1, 𝑞3, and 𝑞4 contain the trivial state
invariant true. Control state 𝑞2 specifies the invariant 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255 ∧ 𝑛 ≤ 255.
Because state 𝑞2 describes the loop head, a validator is able to prove (for example by induction)
that the invariant holds at this program location, and can then use the invariant to prove the
correctness of the program, thus validating the proof result.

If the invariant 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255 ∧ 𝑛 ≤ 255 is removed from the witness for state 𝑞2,
the witness is still valid (because true is an invariant). However, the k-induction-based validator
will no longer confirm the proof because it lacks the information that is required to prove the
correctness of the program, and it is not allowed to synthesize the required information itself.
This is a design choice, in order to not confirm witnesses that are extremely weak (e.g., true
everywhere).

Due to the structural similarity between the first program in Fig. 13a and the second program
in Fig. 13c, the witness in Fig. 13b can also be matched with the second (unsafe) program. In this
case, however, the loop invariant 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255 ∧ 𝑛 ≤ 255 does not imply that 𝑠 ≥ 𝑣 ,
because the invariant is no longer sufficient to preclude overflows during the addition in
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line 13. In fact, if we conjoined 𝑠 ≥ 𝑣 to our invariant, it would still be a valid loop invariant
in Fig. 13a but not in Fig. 13c, where an overflowwould be a counterexample to the inductiveness
of 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255 ∧ 𝑛 ≤ 255 ∧ 𝑠 ≥ 𝑣 . Hence, a validator will not be able to prove the
correctness of the program using the loop invariant 𝑠 ≤ 𝑖 · 255 ∧ 0 ≤ 𝑖 ≤ 255 ∧ 𝑛 ≤ 255. Because
each correctness-witness-based validation of a proof result also implicitly uses the safety
property as an invariant, the validator can reject the witness by finding a feasible error path to
line 17 as a counterexample to the specification, such as the one from Fig. 9d. The strength of the
invariants determines the quality of the witnesses, but no particular strength is required. This
example shows that correctness-witness-based validation can be more efficient than verification
because it might be easier to (re-) verify that invariants indeed hold, while the verification needs
to come up with the invariants. The task of finding useful invariants is in general considered
one of the key challenges in software verification. Generalizing this approach allows for a lot
of flexibility, because the more helpful the candidate invariants are, the less work has to be
performed by the validator.
aThe rest of the exploration does not matter for the witness, because the sole purpose of the witness is to attach the

invariant at the right program location.

5 EXCHANGE-FORMAT SPECIFICATION
To store witness automata and exchange them across different verification tools and validators,
we define an exchange format. Because automata are graphs, we use the existing graph for-
mat GraphML [51], which defines XML elements for edges (used in our format to model protocol-
automaton transitions) and nodes (to model protocol-automaton control states).
The root element of a protocol-automaton GraphML document is the element graphml. The

graph that models the protocol automaton is represented by the element graph, which is a child
element of the root element graphml. We require that there is exactly one such graph element
in the document. We model a control state of a protocol automaton using a node element. Each
node element is a child element of the graph element and must specify a unique identifier (within
the graph) for the control state using the attribute id. Analogously, we model a protocol-automaton
transition using an edge element. Each edge element is a child element of the graph element and
has the attributes source and target, both of which refer to node elements via their ids. Additional
data can be attached to individual nodes and edges, and the graph itself, by adding data elements
as child elements. The content of a data element is its value; each data element must specify
its meaning via a key attribute. Each key that is used in the document must be defined using a
key element as a child element of the root element graphml. A key element must define the name of
the key (using the attribute attr.name), the type of the values of data elements with this key (using
the attribute attr.type), whether data elements with this key are used on the graph, or on node or
edge elements (using the attribute for), and a unique identifier for the key (using the attribute id.
Valid values for the attr.type attribute in GraphML are boolean, int, long, float, double, and
string. For protocol automata, we use the type boolean for boolean values, int for integer values,
and string for other values. The key attribute of a data element refers to the value of the id attribute
of the corresponding key element, not its name. A default value can be defined for each key as the
content of a default element that is added to the desired key element as a child element.

Keys for graph Elements. The following keys are defined for data elements that are used to
add information that concerns the witness as a whole, i.e., for data elements that are direct
children of the graph element:
• witness−type is used to specify the witness type. A correctness witness is identified by the
value correctness_witness, a violation witness is identified by the value violation_witness.
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• sourcecodelang is used to specify the name of the programming language, for example C.
• producer is used to specify the name of the tool that produced the witness automaton, for
example CPAchecker 1.6.8.
• specification is used to provide a textual representation of the specification of the verification
task. The format of this representation is user-defined. In SV-COMP [12], the text CHECK(
init(main()), LTL(G ! call(__VERIFIER_error()))) is used to represent the specification
from Fig. 2.
• programfile is used to record the URI or file-system path to the source code, e.g., loop−
acceleration/multivar_true−unreach−call1_true−termination.i. This key is intended for
documentation purposes; a validator is not required to be able to access the specified file location,
because the source code is explicitly provided to the validator as input. Hence, the validity of
the witness must not depend on the availability of the source code at the location specified by
the value of this key in the execution environment of the validation.
• programhash is used to record the SHA-256 hash value of the verified program.
• architecture is used to provide a textual representation of the machine architecture assumed
for the verification task. This textual representation is user-defined. We propose to use the
identifiers 32bit and 64bit to distinguish between 32-bit systems and 64-bit systems.
• creationtime is used to specify the date and time the witness was created in ISO 8601 format.
The date must contain the year, the month, and the day, separated by dashes (“−”). The date is
separated from the time using the capital letter “T”. The time must be given in hours, minutes,
and seconds, separated by colons (“:”). If the timestamp is in UTC time, it ends with a “Z”. If
the timestamp is not given in UTC time, a positive (“+”) or negative (“−”) time offset consisting
of hours and minutes separated by a colon (“:”) can be appended. Example: 2016−12−24T13
:15:32+02:00.

We require that values for all keys listed above are provided. The value of the attr.type attribute
of all key elements corresponding to these keys is string.

Keys for node Elements. The following keys are defined for node elements, which represent
control states in witness automata:

• entry is used to mark a node as an entry node. An entry node represents the initial control
state of the witness automaton. We require that exactly one initial control state is defined per
document. The attr.type attribute of this key is boolean. The default value is false.
• sink is used to mark a node as a sink node. A sink node represents a sink control state in the
automaton. Sink states are not allowed in correctness-witness automata (Tables 1 and 4). The
attr.type attribute of this key is boolean. The default value is false.
• violation is used to mark a control state as a violation state, i.e., as a state that represents a
specification violation. Violation control states are not allowed in the syntax for correctness
witnesses, because all control states are implicitly accepting states (Tables 1 and 4). The attr.
type attribute of this key is boolean. The default value is false.
• invariant is used to specify an invariant for a control state. The value of a data element with
this key must be an expression that evaluates to a value of the equivalent of a boolean type
in the programming language of the verification task, e.g., for C programs, a C expression
that evaluates to a value of the C type int (used as boolean). The expression may consist of
conjunctions or disjunctions, but not function calls. Local variables that have the same name as
global variables or local variables of other functions can be qualified by using a data element with
the invariant.scope key. Invariants are not allowed in violation-witness automata (Tables 1
and 4). The attr.type attribute of this key is string. All variables used in the expression must
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Table 4. Keys for node elements allowed in witnesses

Key Violation witness Correctness witness

entry ✓ ✓

sink ✓

violation ✓

invariant ✓

invariant.scope ✓

cyclehead ✓

appear in the program source code. If a control state does not have a data element with this key,
a consumer shall consider the state invariant to be true.
• invariant.scope is used to qualify variables with ambiguous names in a state invariant by
specifying a function name: The witness consumer must map the variables in the given invariant
to the variables in the source code. Due to scopes in many programming languages, such as C,
there may ambiguously named variables in different scopes. The consumer first has to look for
a variable with a matching name in the scope of the function with the name specified via a
data element with the invariant.scope key before checking the global scope. This key always
applies to the invariant as a whole, i.e., it is not possible to specify an invariant over local
variables of different functions. In existing implementations, there is currently no support for
different variables with the same name within different scopes of the same function. Invariant
scopes are not allowed in violation-witness automata (Tables 1 and 4). The attr.type attribute
of this key is string.
• cyclehead is used to mark a state that connects stem and loop in a violation witness for ter-
mination, i.e., it marks the separation of stem and loop of a non-termination lasso [82]. A state
with this annotation should be reachable from every non-sink state in the loop. At least one
such state is required in a violation witness for termination properties. In reachability witnesses,
this annotation is not allowed. The attr.type attribute of this key is boolean. The default value
is false.

In general, it is not required to annotate a node element with data elements, except (a) that one
node must be specified to represent the initial state of the automaton using a data element with
the entry key, (b) that in a violation-witness automaton, there should be at least one control state
that is marked as a violation state using a data element with the violation key, and (c) that
in a violation witness for a termination specification, there should be at least one control state
that uses a data element with the cyclehead key.
Keys for edge Elements. The following keys are defined for edge elements, which represent
transitions in witness automata:
• assumption is used to specify a state-space guard for a transition. The value of a data element
with this key must be an expression that evaluates to a value of the equivalent of a boolean
type in the programming language of the verification task, e.g. for C programs, a C expression
that evaluates to a value of the C type int (used as boolean). The expression may consist of
conjunctions or disjunctions, but not function calls. Local variables that have the same name as
global variables or local variables of other functions can be qualified by using a data element
with the assumption.scope key. All variables used in the expression must appear in the program
source code, with the exception of the variable \result, which represents the return value of
a function identified by the data element with the key assumption.resultfunction after a
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function-return operation on a CFA edge matched by this transition. If the \result variable
is used, the name of the corresponding function must be provided using a data element with
the assumption.resultfunction key. If a transition does not have a data element with the
assumption key, a consumer shall assume that the state-space guard of this transition is true. In
correctness witnesses, for each state and each source-code guard, the disjunction of all state-
space guards leaving that state via a transition matched by that source-code guard must be true,
i.e., while state-space guards can be used to split the state space in correctness witnesses, they
may not be used to restrict it (Table 1). The attr.type attribute of this key is string.
• assumption.scope is used to qualify variables with ambiguous names in a state-space guard by
specifying a function name: The witness consumer must map the variables in the given invariant
to the variables in the source code. Due to scopes in many programming languages, such as C,
there may ambiguously named variables in different scopes. The consumer first has to look for
a variable with a matching name in the scope of the function with the name specified via a
data element with the assumption.scope key before checking the global scope. This key always
applies to the state-space guard as a whole, i.e., it is not possible to specify a state-space guard
over local variables of different functions. In existing implementations, there is currently no
support for different variables with the same name within different scopes of the same function.
This key is not allowed in correctness witnesses (Table 1). The attr.type attribute of this key is
string.
• assumption.resultfunction is used to specify the function of the \result variable used in
a state-space guard of the same transition, meaning that \result represents the return value
of the given function. This key applies to the state-space guard as a whole, it is therefore not
possible to refer to multiple function-return values within the same transition. If the \result
variable is used, a data element with this key must be used in the same transition, otherwise it is
superfluous. This key is not allowed in correctness witnesses (Table 1). The attr.type attribute
of this key is string.
• control is used as part of the source-code guard of a transition and restricts the set of CFA edges
matched by the source-code guard to assume operations of the CFA. Valid values for data elements
with this key are condition−true and condition−false, where condition−true specifies the
branch where the assume condition evaluates to true, i.e., the then branch, and condition−false
specifies the branch where the assume condition evaluates to false, i.e., the else branch. The
attr.type attribute of this key is string.
• startline is used as part of the source-code guard of a transition and restricts the set of
CFA edges matched by the source-code guard to operations on specific lines in the source code.
Any line number of the source code is a valid value for data elements with this key. A startline

refers to the line number on which an operation of a CFA edge begins. The attr.type attribute
of this key is int.
• endline is similar to the startline key, except that it refers to the line number on which an
operation of a CFA edge ends.
• startoffset is used as part of the source-code guard of a transition and restricts the set of
CFA edges matched by the source-code guard to operations between specific character offsets
in the source code, where the term character offset refers to the total number of characters
from the beginning of a source-code file up to the beginning of some intended statement or
expression. Any character offset between the beginning and end of a source-code file is a valid
value for data elements with this key. While on the one hand, usage of data elements with
this key allows the witness to convey very precise location information, on the other hand,
this information is susceptible to even minor changes in the source code. If this is not desired,
usage of data elements with this key should be omitted by the producer, or, if that is not an
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option, it can be removed during a post-processing step, provided that enough other source-code
guards are present to make matching the witness against the source code feasible. A third option
would be to recompute the offset values for the changed source code using a diff tool. The
attr.type attribute of this key is int.
• endoffset is similar to the startoffset key, except that it refers to the character offset at the
end of an operation.
• enterLoopHead is used as part of the source-code guard of a transition and restricts the set of
CFA edges matched by the source-code guard to operations on CFA edges where the successor
is a loop head. For our format specification, any CFA node that (1) is part of a loop in the
CFA, (2) has an entering CFA edge where the predecessor node is not in the loop, and (3) has a
leaving CFA edge where the successor node is not in the loop, qualifies as a loop head. Note,
however, that depending on the programming language of the verification task, the loop head
may be ambiguous. For example, in C it is possible to use goto statements to construct arbitrarily
complex loops with many CFA nodes that match the definition above. Conversely, there could
also be loops without any loop head matching this definition, in which case the key may not be
used. The attr.type attribute of this key is boolean and its default value is false.
• enterFunction is used as part of the source-code guard of a transition and restricts the set of
CFA edges matched by the source-code guard to function-call operations where the name of
the called function matches the specified value. A witness consumer may also use this key to
track a stack of function calls and use this information to qualify ambiguously named variables
in state-space guards or state invariants in the absence of explicitly specified scopes via the
assumption.scope or invariant.scope keys. The attr.type attribute of this key is string.
• returnFromFunction is the counterpart of the enterFunction key, i.e., it is used as part of the
source-code guard of a transition and restricts the set of CFA edges matched by the source-code
guard to function-return operations where the name of the function that is being returned from
matches the specified value. Analogously to enterFunction, a witness consumer may use this
key to track a stack of function calls. The attr.type attribute of this key is string.
• threadId is used in the analysis of concurrent programs 9 as part of the source-code guard of
a transition and represents the currently active thread for the transition. The value of data
elements with this key must uniquely identify an active (i.e., created but not yet destroyed)
thread within each run through the automaton, meaning that if two different threads share the
same identifier, they must either (a) be on different automaton runs or (b) at each step of each
automaton run at most one of them may be active. If a transition has data elements where one
specifies a threadId and another one uses the createThread key, the threadId refers to the
thread that creates the new thread, not the created thread. The attr.type attribute of this key
is string.
• createThread is used in the analysis of concurrent programs as part of the source-code guard of
a transition and restricts the set of CFA edges matched by the source-code guard to operations
where a new thread is created. The value of data elements with this key is an identifier for
the new thread. Any string may be used as an identifier, provided that it uniquely identifies
an active thread in each automaton run. The initial function of the created thread must be
provided in a subsequent automaton transition using the enterFunction key, except for the
main thread of the program, where the same (initial) transition may be used, because at that
point, no other thread exists yet. Subsequently, a thread is assumed to be terminated once its
callstack is empty again, which is achieved by using a corresponding returnFromFunction value.
The attr.type attribute of this key is string.

9For more details on witnesses for concurrent programs, we refer the reader to the literature [29].
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Table 5. Keys for edge elements allowed in witnesses

Key Violation witness Correctness witness

assumption ✓ ✓

assumption.scope ✓ ✓

assumption.resultfunction ✓ ✓

control ✓ ✓

startline ✓ ✓

endline ✓ ✓

startoffset ✓ ✓

endofset ✓ ✓

enterLoopHead ✓ ✓

enterFunction ✓ ✓

returnFromFunction ✓ ✓

threadId ✓ ✓

createThread ✓ ✓

In general, it is not required to annotate an edge element with data elements, but in practice, there
is rarely any value in having a completely unrestricted transition in a protocol automaton. Note
that the o/w-transitions that we defined in Sect. 3.1.2 are implicit, i.e., they do not appear in the
exchange format as explicit edge elements but are automatically synthesized by the consumer.

The format specification, including a list of keys, is maintained in a GitHub project.10 For termina-
tion witnesses, the project contains a dedicated section.11 An open-source witness linter for check-
ing the well-formedness of a witness is also available 12 and has been used in SV-COMP 2021 [18].

6 EXPERIMENTAL EVALUATION
To demonstrate the applicability of our approach, we performed a large number of experiments.
The experimental work flow consists of running (1) a verifier, which produces a verification witness
for the obtained result, and (2) a validator, which uses the verification witness to validate the
result that the verifier obtained.

6.1 Experiment Goals
In the previous section, we defined an exchange format for machine-readable witnesses, in or-
der to enable different verifiers to document their verification results in such a way that other
tools can work with those verification results. Next, we perform an experimental study to sup-
port the following claims:
Claim 1 (Consistency within the Same Framework): Most of the witnesses produced by a ver-

ifier based on a certain framework can be validated by a validator based on the same framework.
If the claim does not hold, then there is an inconsistency in the communication of the verification
facts via the witnesses.

Claim 2 (Validation across Frameworks): The witnesses produced by a verifier based on one
framework can be understood by a witness validator of a different framework.

10https://github.com/sosy-lab/sv-witnesses
11https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/termination
12https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint
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Table 6. Categories supported by witness validators

Category Witness type CPAchecker CPA-witness2test FShell-witness2test UAutomizer

Concurrency

Violation ✓
Correctness

MemSafety

Violation ✓ ✓ ✓ ✓
Correctness ✓

Overflows

Violation ✓ ✓ ✓ ✓
Correctness ✓

ReachSafety

Violation ✓ ✓ ✓ ✓
Correctness ✓ ✓

Termination

Violation ✓ ✓
Correctness

Claim 3 (Effectiveness and Efficiency of Validation Depends on Witness Contents): There
are verification tasks for which a verifier can produce witnesses such that the validation uses
less resources to validate the result based on the witness, than the verifier used to solve the
verification task.

We evaluate these claims separately for violation witnesses and correctness witnesses. Furthermore,
we distinguish between five different categories (which correspond to five different specifications)
of verification tasks, because not all verifiers and validators support all categories (see Table 6).

6.2 Benchmark Set
Our benchmark set consists of all 10 521 verification tasks from all categories of SV-COMP 2019 [13],
for 3 740 of which there is a known specification violation, i.e., we expect a verifier to find a bug
and document it with a violation witness, whereas no violation is known for the other 6 781, i.e.,
we expect a verifier to find a correctness proof and document it with a correctness witness.

We used CPAchecker and UAutomizer as verifiers for all of these tasks, but due to technical limitations
not every validator supports all features required to analyze violation witnesses and correctness
witnesses for each category of tasks. Table 6 depicts which task category is supported by which
validator. 13 In SV-COMP 2019, no validator existed that supports the validation of correctness
witnesses for the categories Concurrency and Termination.

6.3 Experimental Setup
Our experiments were conducted on machines with a 3.4GHz 8-core CPU (Intel Xeon E3-1230 v5)
with 33GB of RAM. The operating system was Ubuntu 18.04 (64 bit), using Linux 4.15 and
OpenJDK 1.8. Each run for a single verification or validation task was limited to two CPU cores,
a CPU run time of 15min, and a memory usage of 15GB. The benchmarks were executed us-
ing BenchExec [43] in version 1.17.

6.3.1 Verifiers. We used two verifiers, CPAchecker and UAutomizer. CPAchecker was used in ver-
sion cpachecker-1.7-witnesses-tosem-20181130 (revision 29 913 from the trunk). We configured
it to use MathSAT5 as SMT solver. As in our preliminary work on correctness witnesses [23], we
use k-induction with auxiliary-invariant generation for the tasks from category ReachSafety, as

13The benchmark definitions for all validators can be found at:
https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs.
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Table 7. Confirmed and unconfirmed violation results in the category Concurrency

Validator CPAchecker
Producer CPAchecker Automizer

Confirmation rates:
Produced 772 247
Confirmed 771 4
Unconfirmed 1 243
Confirmation rate 100 % 1.6 %

defined in configuration svcomp18−−kInduction. For the other categories, which were not part
of our preliminary evaluation, we use the corresponding analyses from the CPA-Seq submission
for SVCOMP 2019, as defined in configuration svcomp19−−concurrency for category Concurrency,
svcomp19−−memorysafety for category MemSafety, svcomp19−−overflow for category Overflows,
and svcomp19−−termination for category Termination. UAutomizer was used in its SVCOMP 2019
version (0.1.24-91b1670e) with Z3 as SMT solver.

6.3.2 Validators. The categories supported by the validators is given in Table 6.
For the static validator based on CPAchecker, the same version as for the verifier was used with

the configuration witnessValidation. This configuration performs violation-witness-based result
validation by using CPAchecker’s framework for configurable program analysis (cf. Sect. 4.1.1) to
compose predicate analysis and explicit-state model checking into a combined analysis, as de-
scribed in Sect. 4.2.2. To perform correctness-witness-based result validation, this configuration
uses k-induction, where instead of synthesizing invariants itself like a verifier would, the val-
idator uses only auxiliary invariants from the set of confirmed candidate invariants from the
witness, as described in Sect. 4.3.2.

For the static validator based on UAutomizer, the same version as for the verifier was used
and configured to perform witness-based result validation, which handles violation witnesses as
described in Sect. 4.2.2 and correctness witnesses as described in Sect. 4.3.2.

CPA-witness2test was used in the same version of the CPAchecker framework as the CPAchecker-
based verifier and was configured to perform the dynamic result validation described in Sect. 4.2.2.

FShell-witness2test was used in revision c15c8acb from its repository 14 and was configured to
perform the dynamic result validation described in Sect. 4.2.2.

6.3.3 Presentation. All reported times (CPU time) are rounded to two significant digits. If
the validation of a witness exceeds its resource limits before confirming the witness, then the
validation result is counted as unconfirmed. The HTML tables in the reproduction package and on
the supplementary web page (see Sect. 8) are generated with the table generator from BenchExec.

6.4 Results
6.4.1 Violation Witnesses. Table 6 shows that for violation witnesses, all four validators can
be used, that the execution-based validators CPA-witness2test and FShell-witness2test support all
categories except Concurrency and Termination, CPAchecker supports all categories, and UAutomizer
supports all categories except Concurrency.

Claim 1: Consistency within the Same Framework. Our first experiment for violation witnesses
represents a study showing that we were able to implement a witness exchange format for vio-
lation witnesses for C programs for CPAchecker and UAutomizer, where both can take the roles of
14https://github.com/tautschnig/fshell-w2t
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Table 8. Confirmed and unconfirmed violation results in the category MemSafety

Validator CPAchecker CPA-witness2test FShell-witness2test Automizer
Producer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 107 67 107 67 107 67 107 67
Confirmed 106 54 17 15 29 1 27 43
Unconfirmed 1 13 90 52 78 66 80 24
Confirmation rate 99 % 81% 16% 22% 27% 1.5 % 25% 64%

Table 9. Confirmed and unconfirmed violation results in the category Overflows

Validator CPAchecker CPA-witness2test FShell-witness2test Automizer
Producer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 165 163 165 163 165 163 165 163
Confirmed 164 161 149 9 121 24 160 163
Unconfirmed 1 2 16 154 44 139 11 0
Confirmation rate 99% 99% 90% 5.5% 73% 15% 97% 100%

Table 10. Confirmed and unconfirmed violation results in the category ReachSafety

Validator CPAchecker CPA-witness2test FShell-witness2test Automizer
Producer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 964 491 964 491 964 491 964 491
Confirmed 920 271 698 218 554 184 634 438
Unconfirmed 44 220 266 273 410 307 330 53
Confirmation rate 95 % 55% 72% 44% 57% 37% 66% 89%

Table 11. Confirmed and unconfirmed violation results in the category Termination

Validator CPAchecker Automizer
Producer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 575 558 575 558
Confirmed 568 432 557 548
Unconfirmed 7 126 707 10
Confirmation rate 99 % 77% 97% 98%

a verifier (producing witnesses) and also, for categories where the corresponding tool supports
validation, of a witness validator for their own witnesses. Additionally, because CPA-witness2test
is also based on the CPAchecker framework, we expect CPA-witness2test to also be able to validate
witnesses produced by the CPAchecker verifier.

Category Concurrency. The first column of Table 7 shows that in category Concurrency, CPAchecker
confirmed 771 of 772 witnesses produced by CPAchecker, so that the confirmation rate for results
produced by the same framework the validator is based on is almost 100 %.
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CategoryMemSafety. The first, third, and last columns of Table 8 show that in categoryMemSafety,
CPAchecker confirmed 106 of 107 witnesses produced by CPAchecker, that CPA-witness2test confirmed
17 of 107 witnesses produced by CPAchecker, and that Automizer confirmed 43 of 67 witnesses
produced by Automizer, so that the confirmation rates for results produced by the same framework
the validator is based on are 99 %, 16 %, and 64 %, respectively.

Category Overflows. The first, third, and last columns of Table 9 show that in category Overflows,
CPAchecker confirmed 164 of 165 witnesses produced by CPAchecker, that CPA-witness2test confirmed
149 of 165 witnesses produced by CPAchecker, and that Automizer confirmed 163 of 163 witnesses
produced by Automizer, so that the confirmation rates for results produced by the same framework
the validator is based on are 99 %, 90 %, and 100 %, respectively.

Category ReachSafety. The first, third, and last columns of Table 10 show that in category Reach-

Safety, CPAchecker confirmed 920 of 964 witnesses produced by CPAchecker, that CPA-witness2test
confirmed 698 of 964 witnesses produced by CPAchecker, and that UAutomizer confirmed 438 of 491
witnesses produced by CPAchecker, so that the confirmation rates for results produced by the same
framework the validator is based on are 95 %, 72 %, and 89 %, respectively.

Category Termination. The first and last columns of Table 11 show that in category Termination,
CPAchecker confirmed 568 of 575 witnesses produced by CPAchecker and that Automizer confirmed
548 of 558 witnesses produced by Automizer, so that the confirmation rates for results produced
by the same framework the validator is based on are 99 % and 98 %, respectively.

We see that overall, we often achieve high confirmation rates if we apply validators to verification
results produced by verifiers that are based on the same frameworks, although there is still some
room for improvement regarding the validation of violation results by Automizer in category
MemSafety (64 %). We attribute the lowest and third-lowest confirmation rates in this experiment,
namely the 16 % achieved by CPA-witness2test for validating the results of CPAchecker in category
MemSafety and the 66 % achieved by CPA-witness2test for validating the results of CPAchecker in
category ReachSafety, to the fact that execution-based validators in general require very precise
witnesses with concrete variable assignments for all input variables and otherwise fail, whereas
model-checking-based validators, such as CPAchecker and Automizer, are often able to compute
missing variable assignments during validation [26].

Claim 2: Validation across Frameworks. Our second experiment represents a study showing that
we were able to communicate violation witnesses across frameworks, where verification results
produced by the CPAchecker-based verifier are validated by the Automizer-based validator and vice
versa, where verification results produced by the CPAchecker-based verifier and the Automizer-based
verifier are validated by the dynamic validator FShell-witness2test, and where verification results
produced by the Automizer-based verifier are validated by the dynamic validator CPA-witness2test.

Category Concurrency. The last column of Table 7 shows that this claim does not hold in category
Concurrency: We see that CPAchecker confirmed only 1.6 % of the verification results produced by
Automizer. We attribute this to the fact that Automizer only recently added support for verifying tasks
in this category and has not yet fully implemented all features required to produce witnesses that
can easily be validated. While this shows that there still remains work to be done to better support
this combination, we chose to include the results for this part of the experiment for completeness
and to accurately report the state of the art regarding available implementations.

Category MemSafety. Table 8 shows that in category MemSafety, while CPAchecker confirmed 81 %
of the verification results produced by Automizer, Automizer confirmed only 25 % of the verification
results produced by CPAchecker, which matches an observation from the previous experiment,
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namely that the support for the validation of violation results is still prototypical for the Automizer-
based validator in category MemSafety. The results of the model-checking-based validators in the
remaining categories are more promising, although it is expected that result validation across frame-
works is more difficult than within the same framework. Table 8 also shows that CPA-witness2test
confirmed 22 % of the verification results produced by Automizer, that FShell-witness2test confirmed
27 % of the verification results produced by CPAchecker, and that FShell-witness2test confirmed
1.5 % of the verification results produced by Automizer.

Category Overflows. Table 9 shows that in category Overflows, CPAchecker confirmed 99 % of the
verification results produced by Automizer, that CPA-witness2test confirmed 5.5 % of the verification
results produced by Automizer, that FShell-witness2test confirmed 73 % of the verification results
produced by CPAchecker, that FShell-witness2test confirmed 15 % of the verification results produced
by Automizer, and that Automizer confirmed 97 % of the verification results produced by CPAchecker.

Category ReachSafety.Table 10 shows that in categoryReachSafety, CPAchecker confirmed 55 % of the
verification results produced by Automizer, that CPA-witness2test confirmed 44 % of the verification
results produced by Automizer, that FShell-witness2test confirmed 57 % of the verification results
produced by CPAchecker, that FShell-witness2test confirmed 37 % of the verification results produced
by Automizer, and that Automizer confirmed 66 % of the verification results produced by CPAchecker.

Category Termination. Table 11 shows that in category Termination, CPAchecker confirmed 77 %
of the verification results produced by Automizer and that Automizer confirmed 97 % of the ver-
ification results produced by CPAchecker.

As observed in the previous experiment, the confirmation rates achieved by the execution-based
validators CPA-witness2test and FShell-witness2test are mostly lower than those achieved by the
model-checking-based validators CPAchecker and Automizer due to their requirement for more precise
witnesses. For example, FShell-witness2test is only able to validate 1 of 67 results produced by Au-
tomizer in categoryMemSafety, CPA-witness2test is only able to validate 9 of 163 results produced by
Automizer in category Overflows, and the confirmation rate of 37 % for FShell-witness2test validating
the results of Automizer in category ReachSafety appears low if compared directly with the results
achieved by the model-checking-based validators. On the other hand, FShell-witness2test is able to
validate more results produced by CPAchecker than Automizer is able to validate in categoryMem-

Safety. Moreover, while there are generally fewer confirmations by the execution-based validators,
these confirmations can be considered more valuable than the confirmations by model-checking-
based validators in that they instill a higher confidence in the result and are bundled with easily
debuggable executables for the verification result. For example, these numbers still show that the
completely independent validator FShell-witness2testwas able to synthesize executable binaries from
184 out of 491witnesses produced by Automizer in category ReachSafety, execute them, and success-
fully replay the reported bugs, which gives a potential user not only a high confidence that these
184 bugs actually exist, but also provides observable, executable proofs for each confirmation.

Claim 3: Effectiveness and Efficiency of Validation Depends on Witness Contents. Our
experiments also confirm that often, witness-based violation-result validation is faster than the
corresponding preceding verification, although there are exceptions to this observation.

Category Concurrency. For example, Fig. 14a shows that in category Concurrency, using CPAchecker
to validate verification results produced by CPAchecker is in most cases faster than the verification,
but that there is also a small cluster of verification results where validation is almost ten times
slower than the verification. For completeness, we also depict in Fig. 14b the scatter plot that
compares the verification times of Automizer to the validation times of CPAchecker for Automizer’s
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Fig. 14. Category Concurrency (violation): Scatter plots for pairwise composition for witness-based violation-

result validation; CPU seconds for producing a witness on the x axis, CPU seconds for result validation on

the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”

results. However, even though in this figure, validation is always faster than verification, we do not
consider the low number of validated results significant enough to draw any general conclusions.

Category MemSafety. Figure 15a shows no significant time differences for category MemSafety

between verifying a task with CPAchecker and validating the corresponding result with CPAchecker.
On the other hand, Fig. 15b shows that verification results produced by Automizer are always
validated faster by CPAchecker than they were produced. The same, however, is not true for the
inverse case. Figure 15g shows that in fact, verification results produced by CPAchecker are always
validated slower by Automizer than they were produced, and Fig. 15h shows only a few cases where
validating verification results produced by Automizer are validated quicker by Automizer itself than
they were produced. This matches our previous observation that the support for validating violation
results is still prototypical for the Automizer-based validator. Figures 15c, 15d, 15e, and 15f, which are
scatter plots for the verification results produced by CPAchecker and validated by CPA-witness2test,
verification results produced by Automizer and validated by CPA-witness2test, verification results
produced by CPAchecker and validated by FShell-witness2test, and verification results produced by
Automizer and validated by FShell-witness2test, respectively, show that execution-based validation
of results is mostly faster than verification although it must be noted that due to the low number
of validations, this observation is not significant.

Category Overflows. Figure 16 shows for category Overflows almost no significant time differences
for the model-checking-based validators between verifying a task and validating the corresponding
verification result, which can be attributed to the fact that almost all tasks can already be verified
in less than 10 s, i.e., very quickly, so that there is not much time to be gained by using a witness to
reduce the search space during the validation. As for the categoryMemSafety, we again observe
that the execution-based validators, are at least as quick and, in the case of FShell-witness2test,
often even significantly faster than the corresponding verifications. However, the low number of
confirmations again prohibits deriving a general claim from this observation.

Category ReachSafety. Figure 17 shows a somewhat clearer picture for category ReachSafety: In
Fig. 17a we can see that except for an insignificant amount of outliers, validating a verification
result produced by CPAchecker with CPAchecker is at least as fast as producing that verification result,
and that this effect appears to scale well, because even for many tasks where the verification took
more than 100 s, validation took only less than a tenth of that time. In Fig. 17b we observe the same
effect for verification results produced by Automizer and validated by CPAchecker, although not as
pronounced as in the previous figure. Figures 17c, 17d, 17e, and 17f, which depict the verification
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Fig. 15. Category MemSafety (violation): Scatter plots for pairwise composition for witness-based violation-

result validation; CPU seconds for producing a witness on the x axis, CPU seconds for result validation on

the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”
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Fig. 16. Category Overflows (violation): Scatter plots for pairwise composition for witness-based violation-

result validation; CPU seconds for producing a witness on the x axis, CPU seconds for result validation on

the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”
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Fig. 17. Category ReachSafety (violation): Scatter plots for pairwise composition for witness-based violation-

result validation; CPU seconds for producing a witness on the x axis, CPU seconds for result validation on

the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”
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Fig. 18. Category Termination (violation): Scatter plots for pairwise composition for witness-based violation-

result validation; CPU seconds for producing a witness on the x axis, CPU seconds for result validation on

the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”

results produced by CPAchecker and validated by CPA-witness2test, verification results produced
by Automizer and validated by CPA-witness2test, verification results produced by CPAchecker and
validated by FShell-witness2test, and verification results produced by Automizer and validated by
FShell-witness2test, respectively, show that execution-based validation is usually significantly faster
than verification, and often also faster than model-checking-based validation, even though fewer
results can successfully be validated, which is particularly visible in Figs. 17e and 17f, which compare
the validation times of FShell-witness2test to the corresponding verification times. Figure 17g, on the
other hand, shows that applying the Automizer-based validator to the verification results produced
by CPAchecker, there are cases where validation is slower than, as fast as, or faster than verification,
with no clearly discernible trend, which means that Automizer apparently often does not profit from
the reduced search space provided by the witnesses of CPAchecker and its validation times are more
dependent on its own engine than on the witnesses, whereas Fig. 17h shows that Automizer can
profit from its own witnesses, because the Automizer-based validator often validates a verification
result in less time than Automizer took to produce it.

Category Termination. Lastly, for the category Termination, Figs. 18a and 18d show that both the
CPAchecker-based validator and the Automizer-based validator profit from witnesses for verification
results produced by their own respective frameworks and often validate these results in less time
than it took to produce them, whereas there is no apparent performance improvement visible in
Figs. 18b and 18c, which compare the validation times of CPAchecker for the results produced by
Automizer and the validation times of Automizer for the results produced by CPAchecker, respectively,
to the corresponding verification times.
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Table 12. Confirmed and unconfirmed correctness results in the category MemSafety

Validator Automizer
Producer CPAchecker Automizer

Confirmation rates:
Produced 118 108
Confirmed 52 108
Unconfirmed 66 0
Confirmation rate 44 % 100 %

Table 13. Confirmed and unconfirmed correctness results in the category Overflows

Validator Automizer
Producer CPAchecker Automizer

Confirmation rates:
Produced 130 144
Confirmed 119 144
Unconfirmed 11 0
Confirmation rate 92 % 100 %

Summary.We observed that validation can be significantly faster than the preceding verification, but
this effect is generally not guaranteed. In category ReachSafety, which is the largest of all five exam-
ined categories, we observe this effect even across verification frameworks. While these results are
already promising, we interpret them as an indicator that more effort should be spent on improving
witness-based validation of violation results, especially in the categories Concurrency, MemSafety,
Overflows, and Termination, to achieve similar performance benefits as in category ReachSafety.

6.4.2 Correctness Witnesses. Table 6 shows that for correctness witnesses, only CPAchecker
and UAutomizer can be used as validators, and that UAutomizer supports categories MemSafety,
Overflows, and ReachSafety, whereas CPAchecker supports only category ReachSafety.

Claim 1: Consistency within the Same Framework. Our first experiment for correctness wit-
nesses represents a study showing that we were able to implement a witness exchange format
for correctness witnesses for C programs for CPAchecker and UAutomizer, where both can take the
roles of a verifier (producing witnesses) and also, if supported, a witness validator for their own
witnesses. The last columns of Tables 12 and 13 show that Automizer confirmed 108 of 108 witnesses
produced by Automizer in category MemSafety and 144 of 144 witnesses produced by Automizer in
category Overflows, so that the confirmation rates of its own witnesses are 100 % in both cases. The
first and last columns of Table 14 show that CPAchecker confirmed 2 130 of 2 642 witnesses produced
by CPAchecker, and that Automizer confirmed 2 694 of 2 749 witnesses produced by Automizer, so that
the confirmation rates for their own witnesses are 81 % and 98 %, respectively. Furthermore, for the
rejected witnesses, UAutomizer detects incorrect invariants in 14 of its own witnesses, and CPAchecker
refutes none of its own witnesses 15. Claim 2: Validation across Frameworks. Our second ex-

periment represents a study showing that wewere able to communicate correctness witnesses across

15It may be interesting to developers of other verifiers to learn that when the development of the CPAchecker-based
correctness-witness export and validation started, there were a lot more incorrect invariants, which were caused by several
actual bugs in other components of the framework that the CPAchecker team had been unaware of. In addition to the other
benefits, implementing correctness-witness validation can therefore also be a way to improve the overall quality of a verifier.
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Table 14. Confirmed and unconfirmed correctness results in the category ReachSafety

Validator CPAchecker Automizer
Producer CPAchecker Automizer CPAchecker Automizer

Confirmation rates:
Produced 2 642 2 749 2 642 2 749
Confirmed 2 130 1 297 1 827 2 694
Unconfirmed 512 1 452 815 55
Confirmation rate 81 % 47% 69% 98%
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Fig. 19. Category MemSafety (correctness): Scatter plots for pairwise composition for witness-based

correctness-result validation; CPU seconds for producing a witness on the x axis, CPU seconds for re-

sult validation on the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”
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Fig. 20. CategoryOverflows (correctness): Scatter plots for pairwise composition for witness-based correctness-

result validation; CPU seconds for producing a witness on the x axis, CPU seconds for result validation on

the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”

frameworks, where verification results produced by the CPAchecker-based verifier are validated by
the Automizer-based validator and vice versa. Tables 12 and 13 show that Automizer confirmed 44 % of
the verification results produced by CPAchecker in category MemSafety and 92 % of the verification
results produced by CPAchecker in categoryOverflows. Table 14 shows that in category ReachSafety,
CPAchecker confirmed 47 % of the verification results produced by Automizer, and that Automizer
confirmed 69 % of the verification results produced by CPAchecker. Except for category Overflows,
these numbers are not yet as favorable as those where the tools validate their own witnesses. We
analyzed the unconfirmed results and found different causes for both cases: (1) CPAchecker did not
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Fig. 21. Category ReachSafety (correctness): Scatter plots for pairwise composition for witness-based

correctness-result validation; CPU seconds for producing a witness on the x axis, CPU seconds for re-

sult validation on the y axis; a caption “𝑝/𝑐” abbreviates “witnesses produced by 𝑝 that are confirmed by 𝑐”

detect any incorrect invariants in the witnesses produced by Automizer, and there are often too few
invariants present in those witnesses for the k-induction-algorithm to succeed within the time
limit. This means that CPAchecker mostly does not dispute the witnesses of Automizer, but it cannot
confirm them either. (2) Automizer is not always able to find the correct program location for an
invariant. If Automizer maps an invariant to the wrong program location, and thus, the invariant
does not hold there, then the witness is rejected. While there is still room for improvement to our
implementations, in general, the witnesses were understood by the validators of other frameworks,
and the rejections are mostly due to timeouts rather than due to wrong or miscommunicated
invariants. Our experiment over the three categories MemSafety, Overflows, and ReachSafety,
shows that for between 1 300 to 2 000 of 2 700 to 2 900 tasks verified by one verifier, a validator based
on a different framework and different techniques not only agreed on the verdict but confirmed that
no flaw was detected in the reasoning represented by the correctness witness, whereas previously,
communicating such information between different tools was entirely impossible.

Claim 3: Effectiveness and Efficiency of Validation Depends on Witness Contents. Our
experiments also confirm that the contents of the witnesses influences the difficulty of the validation,
so that for a given verification task, one witness can lead to a quick validation, while a validation
based on a different witness may require more resources or even fail to terminate at all. We first take
a closer look at the differences in resource usage between verification and validation for a given
task. Figure 21a shows that, especially for tasks that require more than 20 s of CPU time, CPAchecker
produces three groups of witnesses, for which the validation is (a) about as fast as, (b) quicker than,
and (c) slower than the preceding verification: The first group is explained by tasks for which few

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:54 D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig

or even no auxiliary invariants are required by the k-induction technique. The second group is
caused by tasks for which the witnesses contain useful invariants that allow the validator to quickly
validate the task, while the verifier had to spend time on synthesizing the invariants. The third
group represents tasks for which the witnesses contain significant amounts of invariants that turn
out to be irrelevant, but the time spent by the validator to check them exceeds the time spent by the
verifier to generate them. Figure 21b shows that many of the witnesses produced by Automizer that
can be validated by CPAchecker are in most cases validated more quickly than they were produced.
Figures 19a, 20a, and 21c are similar to Fig. 21a: there are cases for which the validation is faster
than the verification and vice versa. But since in these three figures, validation and verification
are performed by different tools, the differing characteristics of the two tools may outweigh the
effects of the witnesses on validation speed: Automizer is often not faster at validating the invariants
contained in the witnesses, and instead is often slower than CPAchecker for those of CPAchecker’s
witnesses that it can validate. It must also be noted that Fig. 20a shows that most of the few tasks
in category Overflows that can be verified and where a validator confirms the result, are solved in
less than about 10 s, which suggests that in this category, comparing verification and validation
times is not particularly meaningful. Figures 19b, 20b, and 21d show that for Automizer, there is no
discernible difference between the CPU times required to produce a witness and to validate it.
General Trend. In general, we could not observe a definite trend of speed-up over all validation runs
using correctness witnesses. We attribute these results to the fact that it is not trivial to determine
which invariants should be exported to the witness, because while exporting too much information
unnecessarily complicates the validation, too few or too weak invariants may impede the feasibility
of the validation. The fact that an invariant that suffices for one validator may not be sufficient
for a different validator further complicates the decisions that drive the composition of invariants
for a specific witness: suppose a verifier produces a witness that contains a 10-inductive invariant.
A validator based on k-induction would likely be able to prove this invariant easily with 𝑘 = 10,
whereas a validator based on some other technique would likely have to first synthesize auxiliary
invariants. We can, however, provide examples of cases for various different types of verification
tasks for which a speed-up exists: 16 Table 15 shows for each supported combination of category,
verifier, and validator an example for which the validation of a correctness witness was faster than
the verification run that produced the correctness witness. For combinations where the validator is
based on the same framework as the verifier (i.e., CPAchecker/CPAchecker, Automizer/Automizer), the
speedup cannot be dismissed as caused by differences in the underlying implementation; instead,
the speedup suggests that there is value in the guidance provided by the correctness witness in
these cases. Unsurprisingly, validation only benefits from invariants that are difficult to derive but
can be proved easily. If, however, too much work is left to the validator, then the validation is slower
than the verification, because in addition to parsing the witness and matching its contents to the
program, it also needs to synthesize its own invariants. Lastly, our implementations are based on
generic model checkers and the potential for optimization towards validation is not yet utilized.
Summary. In conclusion, these experiments confirm that the contents of a correctness witness can
be important for one of the validators (CPAchecker), while they do not seem to make noticeable
difference for the other validator (Automizer), which can confirm more results but in turn is slower
than the validator based on CPAchecker. This choice of a trade-off as to what constitutes an acceptable
witness is one of the strengths of our flexible exchange format for correctness witnesses: Users may
choose a quick but strict validator (rejects if invariant is too weak) or a slower but more tolerant
one (constructs missing invariants), depending on their use case.

16We can pick the verification tasks from the bottom-right part of the scatter plots.
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Table 15. Examples of verification tasks for which correctness-witness-based result validation was significantly

faster than the verification run that produced the correctness witness

Program Category Verifier Validator Verifier
CPU Time

Validator
CPU Time

floppy_simpl4.cil.c MemSafety CPAchecker Automizer 96 s 11 s
openbsd_cstrpbrk-alloca.i MemSafety Automizer Automizer 38 s 34 s
Fibonacci02.c Overflows CPAchecker Automizer 700 s 31 s
GopanReps-CAV2006-Fig1a.c.c Overflows Automizer Automizer 160 s 44 s
minepump_spec2_product52.cil.c ReachSafety CPAchecker CPAchecker 160 s 16 s
Problem15_label53.c ReachSafety CPAchecker Automizer 720 s 98 s
test_locks_15.c ReachSafety Automizer CPAchecker 300 s 6.6 s
tree.i ReachSafety Automizer Automizer 510 s 25 s

6.5 Tutorial
In order to collect initial experience with the process of witness-based result validation, we list
here a selection of tool invocations to get started with. The verification task that we use in this
tutorial consists of the C program linear-inequality-inv-b.c from Fig. 9a and the specification
unreach-call.prp for which the observer automaton is given in Fig. 2. 17

Verify a Program with a Given Specification.
For CPAchecker, the following command line produces a witness similar to Fig. 22a:
scripts/cpa.sh \

−spec sv−benchmarks/c/properties/unreach−call.prp \

sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

For UAutomizer, the following command line produces a witness similar to Fig. 22b:
./Ultimate.py \

−−spec sv−benchmarks/c/properties/unreach−call.prp \

−−file sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c \

−−architecture 32bit

Validate the Result with the Produced Witness.
To attempt to validate a result using a witness witness.graphml with CPAchecker, execute

the following command line:
scripts/cpa.sh \

−witnessValidation \

−witness witness.graphml \

−spec sv−benchmarks/c/properties/unreach−call.prp \

sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

To attempt to validate a result using a witness witness.graphml with CPA-witness2test, exe-
cute the following command line:

17Note that between SV-COMP 2020 and SV-COMP 2021, the unreach-call specification changed from reachability of
function __VERIFIER_error to function reach_error (see [18], page 404). If the goal is to use the task exactly as presented
here, it is advisable to use the tool versions from the reproduction package and the specification file from the SV-COMP 2019
release of the benchmark repository. In general the latest versions of the tools can be used, as well as the latest version of
the program and specification from the benchmark repository.
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https://github.com/sosy-lab/sv-benchmarks/blob/de6e3ae416/c/properties/unreach-call.prp
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Fig. 22. Violation witnesses produced by CPAchecker and UAutomizer for the verification task consisting of the

C program linear-inequality-inv-b.c from Fig. 9a and the specification unreach-call.prp from Fig. 2
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scripts/cpa_witness2test.py \

−witness witness.graphml \

−spec sv−benchmarks/c/properties/unreach−call.prp \

sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

To attempt to validate a result using a witness witness.graphml with FShell-witness2test, ex-
ecute the following command line:

./test−gen.sh \

−−graphml−witness ../CPAchecker/witness.graphml \

−m32 \

−−propertyfile sv−benchmarks/c/properties/unreach−call.prp \

sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c

To attempt to validate a result using a witness witness.graphml with UAutomizer, execute
the following command line:

./Ultimate.py \

−−spec sv−benchmarks/c/properties/unreach−call.prp \

−−file sv−benchmarks/c/loop−invariants/linear−inequality−inv−b.c \

−−validate ../CPAchecker/witness.graphml \

−−architecture 32bit

6.6 Validity
6.6.1 Benchmark Selection. For our benchmarking, we selected all full categories from the
standard repository of software-verification tasks 18 without any restriction to subsets. Conse-
quently, our experiments are performed over the largest openly available collection of verification
tasks for the C programming language. For each category of the benchmark set, we show the
results for all validators that support the category in 2019. While the main goal of this paper is to
show that the approach can work in practice, we have not further excluded those verification tasks
from the benchmark set for which the implementation is still insufficient, and instead show the
results from the categories that are not yet well supported alongside those that are, to accurately
represent the current state of the art in witness-based result validation, to pinpoint areas where
further improvements are required, and to showcase the potential of witness-based result validation
for areas where more mature implementations already exist.
Our knowledge about expected verification verdicts is based on the verdicts of the software-

verification community.18 In theory, it could be possible that an unconfirmed witness was not
confirmed because the assumed bug does not exist, which is very unlikely because the benchmark
sets is exposed to a lot of verification tools.

6.6.2 Verification Tools. Our implementations for producing and validating witnesses are based
on several independent frameworks that use completely different technologies: CPAchecker imple-
ments a static approach to violation-witness-based result validation using a combination of predicate
analysis and explicit-state model checking [39, 42], a static approach to correctness-witness-based
result validation using k-induction [27], and a dynamic approach to violation-witness-based result
validation (CPA-witness2test) that produces, runs, and checks executable tests [26]. UAutomizer uses an
automata-based approach [84] to static witness-based result validation. FShell-witness2test is based
on the test-vector format of FShell [89] and is independent from any model-checking framework.
This means that while comparisons of speed between verification with one tool and validation
with the other tool are only meaningful on a very coarse level, we can show that a wide variety
of techniques can be used for witness-based result validation.
18https://github.com/sosy-lab/sv-benchmarks
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6.6.3 Reproducibility. All data presented, including verification tasks, witnesses, verifiers, and
their configurations, are available on our supplementary web site (see Sect. 8). For controlling and
measuring the computing resources used in our experiments, such as memory, CPU time, core
and memory assignment, we use the state-of-the-art benchmarking framework BenchExec [43],
and thereby ensure that our results are accurate, reliable, and reproducible. To further improve
reproducibility of our experiments, we also selected the configurations of the verifiers that are used
to produce verification results and witnesses with a focus on the stability of their results instead
of on their general effectiveness. For example, for CPAchecker, a more effective configuration than
the one used in our experiments was used in SV-COMP 2019 in category ReachSafety, but since
this configuration uses timers to dynamically switch between various analyses, its results are less
stable than our choice of a single analysis, k-induction, for this category.

7 RELATEDWORK
The exchange format for verification witnesses described in this article and the corresponding
techniques for communicating verification witnesses across verification tools were introduced
—initially only for violation witnesses— in 2015 [25]. In 2016, the format was extended to encompass
correctnesswitnesses [23].We give updated technical descriptions and evaluation results for existing
witness-based result validators [23, 25, 26]. 19 The flexibility, stability, and practical applicability
of the exchange format are evidenced by the fact that it has already been successfully applied
for several years now in the annual TACAS International Competition on Software Verification
(SV-COMP) [10, 11, 12]. As a result, all competing verifiers now support the exchange format for
verification witnesses and augment their verification results with it.

7.1 Exchange Formats
Before the common exchange format became available, verification witnesses were used only based
on proprietary formats within particular tools. For example, Esbmc was extended to reproduce
errors via instrumented code [117], and CPAchecker was used to validate previously computed error
paths by interpreting them as witness automata that guide and restrict the state-space search [47].
There are other exchange formats as well: (1) The Certification Problem Format (CPF) [121] is
used by the competition on termination [75] to store termination proofs for term-rewrite systems.
(2) The DRAT [87] format is used in the SAT competitions [8] since several years in order to
validate the correctness of proofs of unsatisfiability of a propositional formula using a witness
validator for DRAT [128]. (3) The Static Analysis Results Interchange Format (SARIF) [115] is used
to represent results from static analysis by some industrial tools, such as CodeSonar 20, SWAMP 21, and
Visual Studio 22, and which is mainly intended as input for visualization tools and for aggregating
and embedding analysis results into bug-tracking or continuous-integration systems rather than
for semantic analysis such as result validation.

7.2 Certifying Algorithms
The concept of certifying algorithms [107] is a solution for increasing trust in the results produced
by potentially complex and error-prone computations. The paradigm of certifying algorithms
demands that each algorithm provides, together with the computed output, a witness that in turn
can be used to verify that the output is indeed a correct solution for the given input problem.
19MetaVal [44] and NitWit [122] are not included in our evaluation because they were developed after our evaluation was
done in 2019.
20https://www.grammatech.com/products/codesonar
21https://github.com/mirswamp/deployment (see also https://continuousassurance.org/mir-swamp)
22https://visualstudio.microsoft.com
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𝑥

Certifying
Program for 𝑓

𝑦

𝑤

Validator 𝑉

Confirm 𝑦

Reject 𝑦

Fig. 23. A certifying program for a function 𝑓 computes 𝑦 = 𝑓 (𝑥) and produces a witness𝑤 , which is then

used to check the correctness of result 𝑦 by a witness validator; adapted from [107]

Figure 23 illustrates this workflow for a certifying program for a function 𝑓 , i.e., an implementation
of a certifying algorithm: The program receives the input 𝑥 , computes the result 𝑦 = 𝑓 (𝑥), and
produces the witness𝑤 . The witness validator 𝑉 receives the inputs 𝑥 , 𝑦, and𝑤 , and leverages𝑤
to determine whether 𝑦 is a correct result for 𝑓 (𝑥). By certifying each individual result, the more
difficult problem of proving the correctness of the certifying algorithm or its implementation is
avoided. This concept applies to both violation witnesses and correctness witnesses: A violation
witness is a certificate for a specification violation found by a verifier, whereas a correctness
witness is a certificate for the proof found by a verifier. Both can be used by a validator to try to
re-establish the verification result. The core advantages of using this approach are that to trust
the verification result, it is not necessary to trust the producer of the witness, and that the result
validator can re-establish the result independently. In fact, with verification witnesses, the tool
that is used for the witness-based validation of a result can even work with a different abstract
domain than the tool that produced the result and witness [111].

7.3 Counterexamples
When a verifier detects a bug, it usually provides some form of counterexample [7, 12, 19, 57, 60,
61, 103]. On top of that, however, there is a growing demand for quick and automatic validation of
program error paths to raise the confidence in automatically detected bug reports [12, 47, 68, 111],
most importantly to reduce the number of false alarms. For example, an expensive, high-precision
feasibility check can be used to filter out false alarms produced by an efficient, low-precision data-
flow analysis within one instance of a verifier [68]. Experiments show that instead of repeating a
full verification task from scratch, it is usually significantly faster to validate an existing verification
result using a violation witness [25, 47]. However, without a unified exchange format for violation
witnesses to export counterexamples and use them as input to another tool, full programs were
synthesized from counterexamples and used as a medium [33, 38, 117]. For witness-based result
validation this approach is not useful, because the result and witness need to be checked against the
original, unchanged program to ensure that no new error paths were introduced that did not exist
originally. In the context of distributed high-performance computing, some exchange-formats for
system traces exist, e.g., the MPI trace format [1], or the Open Trace Format [72, 102, 126], whose
primary purpose is to keep record of system events, such as messages that are exchanged between
processes. These formats strongly focus on distributed systems with time-stamped events and are
not applicable to our problem. Many applications for violation witnesses already exist [3, 22, 62,
71, 78, 79, 81, 98, 104, 131], and a common format that can be used to exchange witnesses across
verification tools will stimulate further research in this direction, particularly on combinations
of verification, debugging, and visualization techniques.

7.4 Test-Case Generation
Verification counterexamples have been used to generate test cases for two decades now [19, 90,
91, 125]. Various automatic test-case generation techniques have been developed as extensions
of this idea [80, 97, 119] and as combinations of counterexample-based test-case generation with
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other techniques, such as random testing [76, 106]. Test-goal automata are used to achieve specific
coverage or to reach test goals by leading a program analysis towards specific program locations [35,
52]; conceptually, test-goal automata are simply a specific use case for the violation-witness
automata that we present. Test cases from verification counterexamples have also been used to
create debuggable executables [110, 117]. Two of the violation-witness-based result validators that
we present [26] use this idea to validate verification results by synthesizing an executable from a
verification task and a violation witness, and executing it to check if the reported error actually
occurs. By using the common exchange format for witnesses, this technique can be applied to
synthesize executables using the verification results of any tool that supports the common format.
While other counterexample-based approaches for generating executable test cases [53, 67, 73, 105]
are limited to concrete and tool-specific counterexamples, we do not require full counterexamples
of any specific verifier; instead, our approach works on more flexible —and, thanks to our concept
of witness refinement, potentially abstract— violation witnesses.

7.5 Correctness Certificates
There is a long history of correctness certificates for the purpose of increasing the trust in code
that is generated from some form of formal description or model (e.g. [54, 58, 85, 94, 129]). While
there are efforts to reduce the often inconveniently large size of these proofs [74], these correctness
certificates are still complete proofs of functional correctness. While our exchange format can also
be used as correctness certificate and to represent a full proof, this is not required: a correctness
witness is more general, in that it can also be used as a partial proof of correctness [23], which can
be more concise than a full proof. Alan Turing suggested already in 1949 to annotate programs
with assertions “from which the correctness of the whole program easily follows.” [124]

7.6 Proof-Carrying Code (PCC)
One application of correctness certificates has previously been explored in the context of proof-
carrying code (PCC) [112]. PCC is a mechanism where an untrusted source supplies an executable
program and a correctness certificate, both of which are therefore also untrusted initially. However,
trust can be established by using a trusted validator to check the witness against the program
and specification. Certifying model checkers can use the intermediate results of their verification
procedure to compose full proofs and export them as proof certificates [111].

The exchange format for correctness witnesses allows the mechanism of proof-carrying code to
be applied to real-world C programs and enables further verification tools to adopt the technique.
Compared to previous publications on proof-carrying code, the main advantage that our exchange
format and validation techniques provide is that we do not strictly require the witness to contain
a full proof. We found that in practice, a complete proof for even short programs with simple
specifications may become prohibitively large in size unless a considerable amount of additional
effort is spent on simplifying formulas. Especially for more complex verification tasks, it is often
neither desirable nor even feasible to handle such a full proof — as inmathematics, concise lemmas or
proof sketches are priceless. 23 Consequently, we support flexibility: Given two witnesses𝑤1 and𝑤2,
we consider𝑤1 to be of higher quality than𝑤2 if a witness-based result validator can more quickly
re-establish the verification result using𝑤1 than using𝑤2. A less detailed witness may still succeed
in guiding the validator to the proof, but in turn may require more effort from the validator. Another
difference to classic PCC is that we consider the witness as its own, separate, first-class object,
and do not use the program to carry the proof, thereby following the best practice of separation
of concerns, which leads to higher flexibility and maintainability.

23The proof for the Schur-Number-Five problem is larger than 2 PB [88].
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7.7 Reusing Reachability Graphs
The intermediate results produced by model checkers during their state-space exploration are often
materialized as an abstract reachability graph (ARG) [31], which consists of the abstract states
found by the model checker and the program transitions between those states. The ARG is the
basic data structure in tools like Blast and CPAchecker, and can be used as a source of invariants of
the program [85], which in turn can be used for PCC, or for extreme model checking [86]. Extreme
model checking checks if a previously computed ARG is also still a safety proof for a given, slightly
modified, input program. Slab [70] is a certifying model checker that produces a proof certificate
for the abstract model of a program in SMT-LIB format. While such a certificate can easily be
checked using an SMT solver, mapping it back to the original program 24 to validate that it really
certifies the correctness of the original program is non-trivial. As a result, even if checking the
SMT-LIB certificate with an SMT solver produces the expected answer, a user still has no way to
confirm that the certificate faithfully refers to the original program.

7.8 Search-Carrying Code (SCC)
The concept of search-carrying code (SCC) [123] shares with verification witnesses the essential
idea of reconstructing a verification result by guiding a validator through the state space of a
program. For this purpose, SCC uses search scripts that guide a model checker along paths of
the ARG. Search scripts can be seen as a special instance of the generic concept of correctness
witnesses where all invariants are omitted and the validator uses only the branching information
from the witnesses as a suggestion to guide its state-space exploration, potentially saving time by
simply confirming the suggested ARG rather than having to spend effort determining it itself from
scratch. In comparison to search scripts, witnesses overcome the following three limitations (cf.
Sect. 4.3 in [123]): (i) While SCC is bound to explicit-state model checking, the verification-witness
exchange format is independent from the verification approach. (ii) The search scripts used by
the existing implementation of SCC depend on a very specific transition-statement interpretation
of Java Pathfinder (JPF), whereas verification witnesses allow a flexible mapping from program
operations to the verifier-specific states and transitions that is even tolerant to code reduction,
i.e., gaps in the witness that correspond to program code on which the producing verifier did not
provide any information. (iii) Due to the reasons above, SCC is only supported by JPF, whereas
the exchange format for verification witnesses is designed to work across different verifiers, even
if they rely on different technologies, as shown by the widespread adoption of the format [12].
For practical impact, we have found these extensions to be essential.

7.9 Proof Programs and Configurable Certification
An important aspect of PCC is the goal that validation should be significantly faster than verification.
In programs-from-proofs [96], correctness certificates are materialized as new programs that are
behaviorally equivalent to the corresponding input program and are generated by a predicate
analysis. Although they may be exponentially larger in terms of lines of code, these new programs
can be verified by using a less expressive and more efficient data-flow analysis. Certificates for
configurable program analysis [95, 96] consist of all reachable states of a program, which is
comparable to a correctness witness where the reachable states are encoded as invariants at each
program location. Various size-reducing techniques are then applied to reduce space consumption
and I/O, and to speed up the validation. Because correctness witnesses do not require full proofs
but can also contain partial proofs, a validator may choose to apply its own verification strategy

24In real-world scenarios, the original program is usually not given as a formal transition system with a well-defined
one-to-one variable mapping to SMT-LIB, but must first be transformed by the verifier.
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to complement a partial proof or even perform the complete verification of the full verification
task itself. As a consequence, correctness-witness-based validation of verification results does
not necessarily exhibit a speedup. Nevertheless, in scenarios where the witnesses do represent
complete proofs, similar techniques can be applied and speedups can be achieved. The size of
correctness witnesses is generally not an issue in our case, because both implemented witness
producers, CPAchecker and UAutomizer, restrict themselves to loop invariants and procedure post
conditions instead of exporting invariants for every program location.

7.10 Partial Verification and Cooperative Verification
Software verifiers have three possible outcomes: they either (1) prove correctness, (2) detect a bug,
or (3) fail. Correctness witnesses [23] and violation witnesses [25] address the first and second case,
respectively. To complete the picture, conditional model checking (CMC) [32] addresses the third
case. The idea of CMC is to provide reports of partial verification results in case full verification
fails: An output condition describes the result of an incomplete verification attempt, i.e., which
parts of the state space have already been verified successfully, and an input condition instructs a
model checker to restrict the verification of a system, i.e., it describes which parts of the state space
are left to be verified. To complete the verification, subsequent verification runs with a different
approach can then use the output condition of the previous run as an input condition to simplify
their task. Various concepts to represent the conditions, such as assumption automata [32] or
execution reports [56], have been explored in existing implementations of CMC. Recently, the
concept of reducer-based construction of conditional verifiers was introduced to facilitate the
adoption of CMC [37]: A reducer synthesizes, from a given input program and input condition,
a new residual program that consists of only those parts of the original input program that are
still to be verified, according to the input condition. Any off-the-shelf verifier can then be used for
the conditional model checking of the residual program. As an alternative, verification witnesses
could be used as a medium for CMC, by describing (a) paths (in violation witnesses) that hindered
a complete verification and (b) invariants (in correctness witnesses) that were used to verify the
part of the system that was successfully verified.

In cooperative verification [45], these techniques are leveraged to solve verification tasks by shar-
ing information between different verification approaches and tools, not necessarily unidirectionally,
but potentially even back and forth between components, and over multiple iterations [36].

7.11 Generalization
Verification witnesses subsume several of the previously known types of verification artifacts. We
try to explain this using Figure 24. Firstly, we consider the two main types of witnesses disjoint,
that is, a verification witness is either a violation witness or a correctness witness. This design
choice is not obvious, because it is arguable why a violation witness should not contain invariants
that help rule out considering infeasible error paths during the validation. Secondly, both witness
types allow for a range of abstraction levels. A violation witness can be as abstract as an abstract
counterexample from model checking (Sect. 7.3) on the one hand (abstract extreme: no restriction
of data values, example: Fig. 9b) and it can be as concrete as a test case (Sect. 7.4) on the other
hand (concrete extreme: all data values concretely given, example: Fig. 9d). But violation witnesses
can have any level of abstraction in between the two extreme cases (intermediate: intervals for
data values, example: Fig. 9c). Similarly, a correctness witness can be as abstract as in search-
carrying code (Sect. 7.8) (only guiding the validator through the state space) and as concrete as
in proof-carrying code (Sect. 7.6) (providing all proof ingredients). There is a wide spectrum of
possibillities in between, for example certificates (Sects. 7.5 and 7.9).
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Fig. 24. Classification of different types of witnesses

8 CONCLUSION
Software verification in general is an undecidable problem. Therefore, effectiveness and efficiency
have always been two main concerns of software verification, i.e., the goal was to make software
verification solve more problems, and solve them quicker, and hence, there have been many
breakthroughs in the past decades that made software verification efficient enough to be applicable
on an industrial scale. However, even though effectiveness and efficiency are certainly valid and
important concerns, an oft-repeated argument against practical application of software verification
is fear of the significant economic disadvantages caused by time wasted on the investigation of
false alarms and of the potentially catastrophic consequences of misplaced trust in proofs that
may turn out to be wrong. This fear is reinforced by a lack of usability of the results: A simple
true-or-false answer to a verification problem is insufficient to understand and validate the result.

On the other hand, testing is an established method for software-quality assurance, because its
results are concrete and tractable: An engineer constructs a test suite for a given coverage goal,
executes the tests, and obtains precise and graspable results: (i) a quantitative coverage and (ii) a
qualitative answer to the question which tests passed and which tests failed. This process requires
considerable resources to be spent, but in return, concrete answers are provided, and, contrary to clas-
sic software verification, the interpretation of these results does not require an academic education.

If we compare the testing process to verification, we must acknowledge that in classic verification,
an engineer also has to invest a significant amount of resources, as in testing, but in turn gets back
only an oversimplified answer true or false without any argument or explanation. The confidence
in this answer is usually only derived from the reputation of the verification tool, because manually
inspecting an error path for the verification answer false to determine whether it represents an
actual bug or a false alarm is a tedious task and a waste of expensive developer time. To make
matters worse, most classic tools did not even bother to give an explanation why the verifier reports
the program as correct when its answer to the verification problem is true.
We aim to change this situation and propose using tool-independent and machine-readable

witnesses as a richer, more valuable form of verification result for both specification violations
and correctness. In this paper we presented a formalism to express both violation witnesses and
correctness witnesses, while also outlining their necessary differences. We suggest a concrete
format to represent such witnesses for verification results for tasks derived from C programs and
present four different implementations of validators that support this format. We believe that
producing witnesses should be easy, because in order to find a bug, a useful verifier should already
be able to give the user a test case or a concrete error path, and any verifier designed for more than
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just falsification, i.e., hunting bugs, must also already derive some form of a proof of correctness.
In practice, of course, there certainly are some engineering efforts required to construct a useful
witness. Witness-based result validation, on the other hand, is more difficult to implement than
witness construction: the validator must not only understand the assumptions and invariants in
the witness, but also correctly assign them to the program states that they were intended for. The
formalism presented in this paper shows one possible approach for achieving this task, but if its
direct implementation in a given verification framework is infeasible, the approach can be adapted,
as exemplified by the different implementations that we showed.
We performed an extensive experimental study with thousands of verification runs on tasks

from the largest public repository of verification problems (C programs). We implemented our vali-
dation approach in four result validators that have already been used for this purpose in the recent
competitions on software verification, and have applied these validators to results produced by two
verification tools that have achieved top scores in these competitions for years. The results obtained
by our proof-of-concept implementations demonstrate that the proposed approach can work in prac-
tice. Since the advent of witnesses a few years ago, others have implemented support for witnesses
in their tools. We hope that this process continues and that more developers find our ideas useful,
thus adding the value of diversity to the concept: Although it may serve as a sanity check to apply
a validator based on a certain framework to a witness produced by a verifier built on those same
components, flaws in the reasoning may inadvertently be covered up by a common defective com-
ponent. Our solution is to instead establish a common exchange format supported by many verifiers,
such that different result validators based on different technologies can be leveraged. In the mean-
while, there are eight published validators for C programs (CPAchecker [25], CPA-witness2test [26],
Dartagnan [116], FShell-witness2test [26], MetaVal [44], NitWit [122], Symbiotic-Witch [4], and UAu-
tomizer [25]), which are based on seven completely different technologies, and our current results
on witness validation demonstrate that diversity is beneficial. In SV-COMP 2022, two validators for
Java progams (GWit [92] and Wit4Java [130]) were introduced. Establishing witnesses as an accepted
standard in software verification will serve to open tools up to other uses besides plain verification
and validation, such as quality measures for invariants or error paths, witness visualization, witness
maintenance, databases for bugs and proofs, regression verification, and many more.
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[120] O. Ŝerý. 2009. Enhanced Property Specification and Verification in Blast. In Proc. FASE (LNCS 5503). Springer, 456–469.
https://doi.org/10.1007/978-3-642-00593-0_32

[121] C. Sternagel and R. Thiemann. 2014. The Certification Problem Format. In Proc. UITP (EPTCS 167). EPTCS, 61–72.
https://doi.org/10.4204/EPTCS.167.8

[122] J. Švejda, P. Berger, and J.-P. Katoen. 2020. Interpretation-Based Violation Witness Validation for C: NitWit. In Proc.
TACAS (LNCS 12078). Springer, 40–57. https://doi.org/10.1007/978-3-030-45190-5_3

[123] A. Taleghani and J. M. Atlee. 2010. Search-Carrying Code. In Proc. ASE. ACM, 367–376. https://doi.org/10.1145/
1858996.1859079

[124] A. Turing. 1949. Checking a Large Routine. In Report on a Conference on High Speed Automatic Calculating Machines.
Cambridge Univ. Math. Lab., 67–69. http://dl.acm.org/citation.cfm?id=94938.94952

[125] W. Visser, C. S. Păsăreanu, and S. Khurshid. 2004. Test-Input Generation with Java PathFinder. In Proc. ISSTA. ACM,
97–107. https://doi.org/10.1145/1007512.1007526

[126] M. Wagner, A. Knüpfer, and W. E. Nagel. 2016. OTFX: An In-memory Event Tracing Extension to the Open Trace
Format 2. In Proc. ICA3PP (LNCS 10049). Springer, 3–17. https://doi.org/10.1007/978-3-319-49956-7_1

[127] T. Wahl. 2013. The k-Induction Principle. http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
[128] N. Wetzler, M. J. H. Heule, and Warren A. Hunt Jr. 2014. Drat-trim: Efficient Checking and Trimming Using

Expressive Clausal Proofs. In Proc. SAT (LNCS 8561). Springer, 422–429. https://doi.org/10.1007/978-3-319-09284-3_31
[129] M. Whalen, J. Schumann, and B. Fischer. 2002. Synthesizing Certified Code. In Proc. FME. Springer, 431–450.

https://doi.org/10.1007/3-540-45614-7_25
[130] T. Wu, P. Schrammel, and L. Cordeiro. 2022. Wit4Java: A violation-witness validator for Java Verifiers (Competition

Contribution). In Proc. TACAS (2) (LNCS 13244). Springer.
[131] A. Zeller. 2002. Isolating Cause-Effect Chains from Computer Programs. In Proc. FSE. ACM, 1–10. https://doi.org/10.

1145/587051.587053

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1145/263699.263712
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-74313-4_30
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-csprd02.html
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-csprd02.html
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-642-00593-0_32
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1145/1858996.1859079
https://doi.org/10.1145/1858996.1859079
http://dl.acm.org/citation.cfm?id=94938.94952
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-319-49956-7_1
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/3-540-45614-7_25
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053

	Abstract
	Contents
	1 Introduction
	2 Background
	2.1 Program Representation using Control-Flow Automata
	2.2 Configurable Program Analysis

	3 Concepts
	3.1 Protocol Automata
	3.2 Automata Representations
	3.3 Automaton CPA: A Configurable Program Analysis for Protocol Automata
	3.4 Constructing Witness Automata from Proofs
	3.5 Application Scenarios

	4 Design and Implementation
	4.1 Verifiers
	4.2 Result Validation Based on Violation Witnesses
	4.3 Result Validation Based on Correctness Witnesses

	5 Exchange-Format Specification
	6 Experimental Evaluation
	6.1 Experiment Goals
	6.2 Benchmark Set
	6.3 Experimental Setup
	6.4 Results
	6.5 Tutorial
	6.6 Validity

	7 Related Work
	7.1 Exchange Formats
	7.2 Certifying Algorithms
	7.3 Counterexamples
	7.4 Test-Case Generation
	7.5 Correctness Certificates
	7.6 Proof-Carrying Code (PCC)
	7.7 Reusing Reachability Graphs
	7.8 Search-Carrying Code (SCC)
	7.9 Proof Programs and Configurable Certification
	7.10 Partial Verification and Cooperative Verification
	7.11 Generalization

	8 Conclusion
	Declarations
	References

