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Abstract. We present an approach to theory exploration, i.e., a lemma
synthesis procedure which discovers algebraic laws over recursive func-
tions over Algebraic Data Types (ADTs). The approach, LemmaCalc,
builds on, adapts and extends program calculation techniques known
from optimization of functional programs (fusion/deforestation and ac-
comulator removal). Being calculational, our approach avoids the expo-
nential search space of term enumeration (SyGuS) that can render state-
of-the-art techniques prohibitively expensive or even useless on large
theories with more than a handful of function symbols. In this paper
we describe how this approach can be realized and contribute a robust
implementation. The evaluation shows that the different methods have
complementary strengths and that each can produce lemmas not found
by the other. We demonstrate that LemmaCalc scales to larger theories
with a small fraction of the cost of enumeration.

1 Introduction

Algebraic Data Types (ADTs) enable formal modeling of programs in proof assis-
tants and verification tools, e.g. [52,54,18,29,12,32,9,37,20,39,31,26]. They lever-
age equational reasoning and induction when proving properties about recursively-
defined functions over ADTs, often relying on a set of lemmas that explain
possible interactions and relationships among these functions. The problem of
discovering of such lemmas is sometimes called “theory exploration”, and it of-
ten requires either a manual effort of a proof engineer, or an exhaustive search
(a.k.a. enumeration) over millions of candidate formulas [7,43,1]. The key fea-
ture of enumeration is that in principle it can cover the entire search space and
is therefore complete relative to the proof oracle used. Yet, a vast majority of
these candidates would be wrong or not useful, and the search space grows ex-
ponentially with the number of function symbols. This can be very expensive,
especially given that libraries of interactive theorem provers like Isabelle/HOL,
Coq, or Lean contain many dozens of existing function definitions that may be
relevant to a particular use case for theory exploration; in practice performance
of automated provers may also degrade when given large sets of definitions. We
are interested in approaches that can scale much better to such scenarios.

We present LemmaCalc, a new, fully automated, approach to theory ex-
ploration that avoids enumerating large amounts of formulas and minimizes the
reliance on automated (inductive) theorem provers to validate them. The key



difference is that LemmaCalc leverages calculational techniques, based on un-
fold/fold transformations [4] of recursive functions. This idea, originally devel-
oped in the context of program optimization (e.g. “supercompilation” [49]), has
been recognized to be a useful inductive proof method [45,28,19], too.

At a high-level, our approach takes a set of functions, applies a series of
interleaving fusion and accumulator transformations. Each of them rearranges
a given computation into new synthetic functions. LemmaCalc then relates
them with each other and with the original functions. Key to effectiveness is
the combination of the transformations, which to the best of our knowledge
is novel. Specifically, for this work we rely on fusion [33] (resp. supercompi-
lation [49], deforestation [50]), accumulator removal by a technique similar to
context shift [15], and a novel technique for the inference of recursive precon-
ditions. While we have found this combination to be effective, our approach is
generic and could be extended to cover other transformations like [16,30,27].

Our fully automatic implementation has been evaluated in three theories
within ADTs: Peano natural numbers, lists, and trees. To highlight the effect
of the combinatorial search space, as an example a naive enumerator would
check 320K candidates over 18 list functions and 1M candidates over just 8
functions over natural numbers. When this enumerator as well as state-of-the-art
tool TheSy [43] would such theories in several hours, LemmaCalc consistently
does it in a few seconds. Regarding strengths of lemmas found, there is high
variability and no single approach is best: The proportion of lemmas generated
by one method is implied by those discovered by another between ∼10% to 100%.

Contribution and Structure. In this paper, we present LemmaCalc, an ap-
proach that leverages program transformation techniques for theory exploration.
In section 2 we motivate how the combination of techniques is important. We
describe how to adapt two known transformations, fusion and accumulator re-
moval, to the purpose of lemma discovery (sections 4 and 5) and present a novel
approach to the inference of preconditions in section 6. We have implemented
LemmaCalc and evaluated it on theories over natural numbers, lists, and trees
(sections 7 and 8): LemmaCalc is similarly effective but its performance is
orders of magnitude faster when compared to enumeration-based techniques.

Related Work. Calculational techniques for developing recursive functions go far
back, notably to [4], which introduced the idea of unfold/fold transformations.
An investigation of the theory of lists is provided by [2]. It already states many
laws from a more general perspective. Follow-up work shows how to calculate
such laws on pen and paper [3]. Program optimization using fusion-like tech-
niques similarly have a long history [49,23] with various specialized approaches
already developed, e.g., [48,50,53]. An approach that uses known lemmas to un-
block fusion is discussed as “warm-up rules” in [17]. General categorial notions
that classify functions by their recursion schemes are based on a “zoo of mor-
phisms” [33,24]. In comparison, [36] argues for a more direct approach that avoids
fitting definitions into a particular shape, our algorithm in section 4 is similar.
These ideas have been used for theorem proving, e.g., [28,22,21,45]
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Techniques for deaccumulation have been investigated for verification in
[15,27,30,15] with the goal of switching to functions that are not tail-recursive
for ease of proof. Of these, the context manipulation techniques in [15] are very
similar to our algorithm; our presentation is arguably more straight-forward and
seems to encompass all four techniques mentioned. The deaccumulation tech-
nique in [16] employs a decomposition that is ultimately similar to the notion of
“structured hylomorphisms” [25]. We leave it for future work to try these ideas.

Theory exploration have previously been approached by various techniques,
e.g. [7,43], which utilize a conjecture generator based on testing and an induction
principle enumerator. It constructs equations from a given set of functions and
variables up to a certain depth, and a theorem prover is used at the backend
to find the actually valid lemmas. A common drawback of these solutions is
the exponentially-growing search space. These approaches need powerful and/or
aggressive heuristics to prune the space substantially such as e-graphs [11,51].

When given a specific property to prove, theorem provers [26,5,46,52,54,44]
are powered by various lemma discovery techniques that generate them by utiliz-
ing proof failures. Specifically, all of the above except [52,44] generalize a failure
by replacing a common subterm by a fresh variable. AdtInd [52] instead uses
syntax-guided enumeration [1] to enlarge and diversify the set of possible lem-
mas. Sivaraman et al. [44] uses a data-driven approach to finding lemmas: the
goal itself gets an expression replaced by a hole. The synthesis specification is
then formulated using input-output examples: valuations of the goal’s variables
are the inputs, and the valuations of the hole’s original expressions are the out-
puts. Another data-driven by Miltner et al. [34] justifies the found invariants by
testing only, which bypasses the need for inductive proofs.

2 Motivation and Overview

At a high-level, our approach takes a set of functions {f, g, . . . }, applies a series
of fusion and accumulator removal steps that rearrange a given computation into
new synthetic functions, and then relates them among each other and back to
the functions originally given. The generated equational lemmas have the form1

fusion: f(x, g(y)) = fg(x, y) (1)

accumulator removal: f(x, a) = e?
(
f ′(x), x′, a

)
(2)

where fg and f ′ are synthetic recursive functions, and e? is instantiated as an
expression. Lemmas over an original function f can be extracted by recognizing
synthetic functions in three possible ways: 1) as the identity function on some
argument xi ∈ x, 2) as being equivalent to a recursion-free expression c over a
subset x′ variables, x′ ⊆ x, or 3) as being structurally α-equivalent to another
function h after permuting its arguments (via some π). That is:

replacement: f(x) = xi f(x) = c(x′) f(x) = h(π(x)) (3)
1 Without loss of generality, to keep the presentation concise, we formalize fusion of g

into the last parameter of f and removal of the last accumulator parameter a of f .
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We also generalize the shape of equations by including a synthetic precondition
pre which defines a scope where the corresponding lemma is applicable:

conditional replacement: pre(x) =⇒ f(x) ∈ {xi, c(x′)} (4)
conditional equality: pre(x, y, z) =⇒ f(x, y) = h(π(x, z))) (5)

Running Example. The list ADT is defined over [] (“nil” – base constructor)
and :: (“cons” – inductive constructor). Throughout the paper, we illustrate
the approach on three recursive functions over lists: ++ (“append”), length, and
length◦ (a generalization of length) defined in the next three rows, respectively:

[] ++ ys := ys (x :: xs) ++ ys := x :: (xs ++ ys)

length([]) := 0 length(x :: xs) := length(xs) + 1

length◦([], u) := u length◦(x :: xs, u) := length◦(xs, u) + 1

Our approach calculates the lemmas shown below, among others, each of which
would be validated by automated induction provers:

length(xs ++ ys) = length(xs) + length(ys) (6)

u = 0 =⇒ length◦(xs, u) = length(xs) (7)

In the rest of the section, we illustrate that it is critical to combine the respective
transformations in LemmaCalc to leverage their full potential. We keep the
examples simple, but refer the reader to appendix C for more detailed ones.

The first transformation, fixpoint fusion, merges the recursive traversal in f
with that of g by eliminating the intermediate data structure produced by g and
consumed by f into a new synthetic function fg .

Example 1. Fusing functions f = length and g = ++ produces the following
definition for synthetic function fg = length++

length++([], ys) := length(ys)

length++(x :: xs, ys) := length++(xs, ys) + 1

that satisfies length(xs ++ ys) = length++(xs, ys) by construction. The difference
in definitions of length++ and length is underlined: the entire base case and
additional parameter in the inductive case. ■

Fusion tends to regularize the way in which computations are laid out. Comple-
mentary, accumulator removal, untangles computations again in a differently
form, by relating functions with accumulators and those without (we regard ys
in example 1 as an accumulator, too). Recall (2): removal of accumulator a in
f(x, a) gives a synthetic function f ′ that mirrors f and an expression e? over the
outpus of f ′, a and x′ ⊆ x. Removing accumulators is useful both for original
and synthetic functions, specifically, fused functions fg(_, y) tend to retain some
of the arguments y of g as accumulators such as ys in example 1:
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Example 2. Removing accumulator ys from length++ yields

length′++([]) := 0 (8)
length′++(x :: xs) := length′++(xs) + 1

so that length++(xs, ys) = length′++(xs) + length(ys) holds, (9)

where the underlined part is the base case expression from example 1 and e? in (2)
is instantiated by +. This solution can be found algorithmically as described in
section 5 by relying on neutral elements like 0 to replace base case expressions
like in (8) and use the respective operator like + in the solution for e?. Then,
length′++ is structurally equivalent to length and we can apply the corresponding
replacement lemma (3) to (9) to conclude (6). ■

Finally, conditional equations can be discovered by algorithmically abduc-
ing (intuitively, finding preconditions) recursive predicates that enforce desired
equations of form (4) and (5).

Example 3. We synthesize pre with pre(xs, u) =⇒ length◦(xs, u) = length(xs)
by comparing the respective cases in the definition of length◦ to those of length
with respect to common arguments xs. Predicate pre inherits the recursive
traversal over that shared argument:

length◦([], u) := u

length([]) := 0

}
pre([], u) := (u = 0)

length◦(x :: xs) := length◦(xs, u) + 1

length(x :: xs) := length(xs) + 1

}
pre(x :: xs, u) := pre(xs, u)

Note how in the comparison of base cases, equality between results is enforced,
whereas the joint recursive underlined calls translate into a recursive call in pre.

This predicate can finally be replaced by expression u = 0 over its static
argument u leading to conditional equation (7). ■

3 Preliminaries

In this work, we rely on a first-order, many-sorted functional specification lan-
guage, which includes inductive algebraic data types (ADTs) like lists and trees.
A typed n-ary function f : t1, . . . , tn → t is presented as a

function definition f(p1) := e1 if φ1 · · · f(pm) := em if φm

comprised of a set of m cases, each with pattern pi = p1, . . . , pn,2 a boolean
expression as guard φi and the right-hand side ei, for each 0 < i ≤ m. A case
is recursive if the right-hand side ei or the guard φi contains calls to f . We call
functions f and g supplied by the user original whereas intermediate definitions
that are generated algorithmically are called synthetic, typically denoted with a
prime (e.g. f ′) or pairs of names fg (e.g. length++ used in the previous section).
2 We denote vectors (of expressions, . . . ) by overbars, e.g., e = e1, . . . , en for some n.
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Notation and Conventions. We require that all case-distinctions are expressed at
the top-level using guards, i.e., explicit if-then-else and case-of expressions have
been transformed away (this is always possible). This means that the grammar
for expressions e and e′ just consists of variables x, and the applications of
function symbols f, f ′, and g and constructor symbols c and d, patterns p and
q contain no defined functions, and values v are (possibly nested) constructor
terms, where v can again have constructors but no variables. That is:

exprs e, e′ := x | c(e) | f(e) patterns p, q := x | c(p) values v := c(v)

By free(e) we denote the set of free variables of e. A substitution σ is a
mapping from variables to expressions, writing σ(e) for applying it to e.

Oriented left-to-right, equations from the definitions as well as the lemmas
discovered can be interpreted as conditional rewrite rules. Let Γ be a set of
definitional equations and lemmas, we write Γ ⊢ e ⇝ e′ if expression e can be
rewritten to e′ by applying a finite number of definitions and lemmas in Γ while
showing that the respective side-conditions follow from Γ . Rewriting is assumed
to be soundly implemented, i.e, all models of Γ validate e = e′.

Assumptions & Scope. We rely on the following assumptions on the original
functions, which are typical for definitions in inductive theorem provers,3 and
all synthetic functions generated by our constructions will retain these proper-
ties. All functions are terminating under strict evaluation, i.e., each function f is
equipped with a corresponding well-founded order ≺f that connects arguments
to recursive calls, i.e., for a recursive case f(p) := e

(
f(e)

)
if φ of the definition

of f satisfies ∀x. φ =⇒ e ≺f p where x = free(p) are the variables in scope.
Constructions in this paper are justified by induction on these orders. We re-
quire that the patterns together with guards disjointly partition the entire set of
possible arguments, i.e., functions are total, and the order of matching cases is
irrelevant. That is, we can represent the definition as a consistent set of logical
axioms and define transformations case-by-case.

The approach presented in this paper as well as our implementation assumes
that there are no nested recursive calls and there are no mutually recursive
definitions. We assume that there are no recursive calls in guards and that the
bodies of definitions are quantifier-free. Finally, our approach is essentially first-
order, but we support the SMT-LIB style functional arrays as parameters to
“higher-order” functions like map, filter. Lifting these limitations future work.

Baseline: Enumerative Synthesis. Given a set F of typed functions/predicates
f : t1, . . . , tn → t ∈ F we can define the search space Σd(x, t) of terms of type t
over typed variables x up to depth d recursively. The terms of depth 0 are just
the variables of matching type, wheres in the recursive case, for each function f

3 Isabelle/HOL ensures these properties even if some aspects are transparent to the
user, by inferring termination orders, by translating sequential pattern matches into
disjoint, parallel ones, and by replacing underspecification by a constant undefined.
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from F we enumerate possible arguments of smaller depth.

Σ0(x, t) = {xi ∈ x | xi : t} (10)
Σd(x, t) = { f(e1, . . . , en) | f : t1, . . . , tn → t ∈ F and

ei ∈ Σdi
(x, ti) for di < d, i = 1, . . . , n }

It is often good enough to limit the number of occurrences o of each variable to
o = 2 or o = 3, which cuts down the search space significantly.

Σo
d(x, t) = { e ∈ Σd(x, t) | each xi ∈ x occurs max. o-times in e }

Given function definitions, known lemmas Γ about them, and a proof oracle that
semi-decides Γ ⊢ φ, theory exploration can thus be formulated to find a valid φ?

from the search space:

theory exploration Γ ⊢ φ? where φ? ∈ Σd(x, bool) (11)

We can impose a certain form for φ? to restrict the search space. For instance,
our baseline enumerator considers candidates for f(x, g(y)) = rhs? specifically
to match the shape of lemmas generated by our approach (section 2) to measure
its effectiveness in relation to the search space.

In the next three sections, we present our novel scalable algorithms used for
theory exploration. Section 7 then brings them together aiming to deepen the
theory exploration. Although our key contribution is in the combination of the
techniques, each of the ingredients benefits from novel optimizations and can be
used for the scalable theory exploration alone.

4 Fusion

Fusion of two functions f and g aims to compute a synthetic function fg such
that f(x, g(y)) = fg(x, y)) is valid by construction. We first introduce the notion
of a fused form that guarantees that each recursive call of f over a recursive one
of g has been merged into a joint recursive call to fg . The intuition is that fused
form captures when elimination of the intermediate result of g is possible.

Definition 1 (Fused form). An expression e is in fused form with respect to f
and g if g does not occur nested in any argument of f anywhere in e.

Definition 2 (Pattern Unification and Refutation). Assuming that free
variables of p are disjoint to those of e, we write p

σ≡ e when substitution σ is the
most general unifier of pattern p and expression e [40, Def. 5.9]. We write p⊥ e
when there can be no such unifier, i.e., the pattern match is “refuted”.

p
σ≡ e ⇐⇒

(
∃ σ. σ(p) = σ(e)

)
∧
(
∀ σ′. σ′(p) = σ′(e) ⇒ ∃ σ′′. σ′ = σ′′ ◦ σ

)
p⊥ e ⇐⇒

(
∀ σ. σ(p) ̸= σ(e)

)
7



Algorithm 1: Algorithm Fuse(Γ, f, g). Without loss of generality, we
assume that g is fused into the last argument of f .

Input: Γ , the set of definitions and known lemmas
Input: definition of f as

{
f(pfi , q

f
i ) := efi if φf

i

}
i=1,...,m

⊆ Γ

Input: definition of g as
{
g(pgj ) := egj if φg

j

}
j=1,...,n

⊆ Γ

Output: ∆ with the definition of fg and lemma f(x, g(y)) = fg(x, y)

1 ∆← { f(x, g(y)) = fg(x, y) }
2 for j ← 1, . . . , n cases in the definition of g do unfold g

3 Γfg ← Γ ∪ { y ≺g pgj =⇒ f(x, g(y)) = fg(x, y) }

4 if Γ ⊢ f(x, egj )⇝ e′ and e′ is in fused form wrt. f and g then fold fg?
5 ∆← ∆ ∪ { fg(x, pgj ) := e′ if φg

j }
6 else
7 for i← 1, . . . ,m cases in the definition of f do unfold f

8 assert free(pfi ) ∩ free(pgj ) = ∅ (rename if needed)

9 if Γ ⊢ egj ⇝ e′ and ∃ σ. qfi
σ≡ e′ and Γfg ⊢ σ(efi )⇝ e′′

10 so that e′′ is in fused form wrt. f and g then fold fg?
11 let p← σ(pfi , p

g
j ) and φ← σ(φf

i ∧ φg
j )

12 ∆← ∆ ∪ { fg(p) := e′′ if φ }
13 else if qfi ⊥ e′ then
14 continue (f ’s ith case never matches g’s j-th case’s result)
15 else
16 ∆← ∅ and fail (fusion impossible resp. currently blocked)

The fusion algorithm 1 is realized as an unfold/fold transformation [4]. Con-
ceptually, it lets fg(x, y) := f(x, g(y)) and then transforms the right-hand side
into the fused form. Algorithmically, it pairs each defining j-th case of g with
each i-th case of f , by analyzing how the result returned by g via body expres-
sion egj can be matched by pattern qf of the fused argument position. The case
analyses correspond to “unfolds”, cf. line 3 for g and line 7 for f (we discuss the
optimization in line 4 shortly). Line 9 checks whether the pairing is feasible by
computing the most general unifier (cf. definition 2) between g’s result and f ’s
pattern, and if so, adds a corresponding defining case for fg .

The main concern is to achieve that the expression e′′ which is ultimately
used in the definition of fg (line 11) is in the fused form wrt. f and g, for which
we can make use of folding that collapses joined recursive calls f(_, g(_)) into
recursive fg-calls (applied in lines 4 or 11). Technically, it is realized by a fold
rule, added to the set of known facts Γ in line 3 (we discuss its premise below).

Our presentation makes explicit the way in which fusion is intertwined with
the application of definitions and facts already known by rewriting wrt. Γ . A key
optimization is in line 4, which avoids unfolding f altogether when the case of g
is non-recursive as in example 1 where the base case wraps eg = ys directly by
f = length. It applies to tail-recursive cases of g, too, which are immediately
folded in line 4 by the additional rule in Γfg , and when lemmas help to eliminate g
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alltogether. In practice, this optimization crucially retains the structure needed
to recognize fused functions and their derivatives in terms of original ones.

Premise y ≺g pgj of the fold rule in line 3 ensures that recursive fg calls
respect the termination order ≺g of g despite the rewriting steps in lines 4 and 9
(cf. appendix A.1). In the evaluation, this premise is always satisfied.

Example 4. We continue example 1 to algorithmically fuse f = length and g =
++ into fg = length++ so that length++(xs, ys) = length(xs ++ ys). More complex
examples that make use of all features of algorithm 1 are deferred to appendix C.

Unfolding ++, we have one base case (j = 1) and one recursive case (j = 2).
For the former, eg1 is ys so that f(eg1) is length(ys) and already in fused form
(line 4), which produces the base case of length++ in example 1. If we were to
unfold length as well in this situation, we would instead get two cases, as e′
being ys unifies with both patterns [] and x :: xs of length in line 9. Apart
from destroying the correspondence between length++ and length it turns that
argument into a non-accumulator and thus prevents further progress.

In the recursive case eg2 = x :: (xs ++ ys) and length(eg2) = length(xs ++ ys)+1
by definition. Here, we make use of the fold rule (line 4), where xs ≺++ (x :: xs),
which produces length++(xs, ys) + 1 in fused form.

5 Accumulator Removal

Accumulator removal aims to express f(x, u) as e?(f ′(x), x′, u) for a synthetic
function f ′ that in comparison to f lacks accumulator u (definition 3). Expres-
sion e? compensates for the absense of u in the computation of f ′, such that the
definition of f ′ and e? must be found hand-in-hand. This e? may depend on the
accumulator and the “static” subset x′ of the remaining arguments (definition 4).

To make the recursive calls in the body of a function explicit, we denote each
i-th case f(pi, u) := ei if φi of f as a decomposition into a “body” expression bi
that makes k recursive calls with regular arguments eji and computes the new
value for the accumulator using expressions aji (u).

ei = bi
(
f
(
e1i , a

1
i (u)

)
, . . . , f(eki , a

k
i (u)

) )
(12)

Definition 3 (Accumulator). A parameter is an accumulator of f if it is 1)
matched by a variable u in each pattern, 2) it specifies the values aki for the same
argument position of recursive calls in recursive cases, 3) it does not occur in
guards φi or elsewhere in any recursive body bi (u may be used in base cases).

Definition 4 (Static Parameter and Expressions). A parameter is called
static if it is passed by identity only, aji (u) = u, A subexpression of a function
definition is static if it depends on static parameters only.

Static subexpressions retain their value when lifted out of the recursion to the
top-level. As an example, u of length◦ in section 2 is static.

Algorithm 2 shows our algorithm for accumulator removal. It generates f ′
case-by-case from the definition of f by matching its recursive structure, but
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Algorithm 2: Algorithm RemoveAcc(Γ, f), presented without loss of
generality with the accumulator as the last argument of f .

Input: Γ , the set of definitions and known lemmas
Input: definition of f : t, tu → tr as

{
f(pi, u) := ei if φi

}
i=1,...,m

⊆ Γ

Output: ∆ with a sketch of the definition of f ′ and f(x, u) = e?(f ′(x), x′, u)

1 ∆← { f(x, u) = e?(f ′(x), x′, u) }
2 for i← 1, . . . , n (cases in the definition of f) do
3 let z = free(pi) be the free variables in pi
4 let x′ : t

′ be the static arguments in pi
5 let bi

(
f
(
e1i , a

1
i (u)

)
, . . . , f(eki , a

k
i (u)

) )
= ei (cf. (12))

6 if k = 0 (base case) and u ∈ free(bi) and free(bi) \ u ⊆ x′ then
7 choose binary ⊕ with neutral element c from Γ ⊢ ∀z. c⊕ z = z

8 b′i ← c and e?(y, x′, u)← y ⊕ bi
9 else

10 choose b′i ∈ Σd(z, tr) (such as bi if u ̸∈ free(bi))

11 lhs ← bi
(
e?
(
y1, x′, a1

i (u)
)
, . . . , e?

(
yk, x′, ak

i (u)
) )

12 rhs ← e?
(
b′i
(
y1, . . . , yk

)
, x′, u

)
13 if not Γ ⊢ ∀ y, z, u. φi =⇒ lhs = rhs then
14 fail
15 ∆← ∆ ∪ { f ′(pi) := b′i

(
f(e1i ), . . . , f(e

k
i )

)
if φi }

by allowing different body expressions b′i. Note patterns pi and guards φ are
kept to preserve the recursive traversal, so that arguments matching the i-th
case of f match exactly iff they same case of f ′. For that reason, the removed
accumulator may not occur in guards in the first place (cf. definition 3). The
algorithm is effectively a straight-forward translation of an inductive proof of
the desired lemma. Note that it is conceptually analogous to Giesl’s context
transformations [15], but it is formulated in a more straight-forward way.

The algorithm is presented nondeterminstically here. The key first choice
occurs in line 7, where a solution for critical base cases is chosen, i.e., those base
cases which refer to the accumulator u, cf. length++([], ys) = length(ys) for ys
from example 1. The heuristic we adopt is to pick bi in f ′(p) = bi to be the neutral
element c of a binary function/operator ⊕. We shift the entire original body bi
out of the function as part of e?, noting that references to static parameters xs
within bi retain their meaning over the shift. For example 2, the correct choice is
⊕ as + with neutral element c = 0 and therefore e?(y) = y+length(u), however,
our implementation tries other combinations like × and 1 and backtracks when
line 14 is hit (this is the only place where we use trial and error).

The second key choice is in line 10, where we pick a body b′i for other all other
(base and recursive) cases from the search space Σd(z, tr) of expressions of f ’s
return type over the variable in scope z (recall its inductive definition in (10)).
The condition checked in line 13 ensures that the choice is compatible with any
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(prior) choice of e?, i.e., that e? commutes from inside recursion all the way to
the top-level of the lemma to be synthesized.

Example 5. Accumulator removal for f = length◦ yields lemma length◦(xs, u) =
length(xs) + u. Algorithm 2 fills in the sketch for f ′ with f ′([]) := b′1 and
f ′(x :: xs) := b′2(x, xs, f

′(xs)). The base case is solved by b′1 = c for c = 0 as a
known neutral element of ⊕ = +, so that e?(y, u) = y + u. In the recursive case
for that e?, taking b′2(y, x, xs, ) = b2(y, x, xs) = y + 1—where y represents the
result of the recursive call (cf. line 10). The condition (y + 1) + u = (y + u) + 1
in line 13 is validated by properties of +. ■

Example 6. The base-case condition length(ys) = e?(b′1, ys) arising from re-
moving the accumulator of length++ in example 2 is more complicated than in
example 5, the solution is b′1 = 0 and e?(n, ys) = n+ length(ys) for static ys. ■

6 Calculating Synthetic Preconditions

As illustrated in section 2, conditional lemmas are generated with from a case-
by-case analysis of comparing the definitions of two functions, from which a
synthetic precondition predicate is extracted so that:

pre(x, y, z) =⇒ f(x, y) = g(x, z) (13)

Here, xs is a subset of the arguments of focus, which must be shared by f and g
(i.e., compatible types). Conceptually, inferring preconditions like this can be
seen as a form of higher-order unification in which the unifier pre is not just a
substitution but more complex itself.

Algorithm 3 pairs each case of f with each case of g assuming that these are
defined over mutually disjoint variables. The match possible if there is an overlap
of the respective patterns of the shared arguments (line 5), i.e., there are values
that are accepted by both cases. If not, the corresponding case in the precondition
is not feasible and we can ignore it. Otherwise, similar to fusion, we use the
substitution σ to narrow down the situation and to define a corresponding case
of pre in line 8. This relies on a helper function to compute when the respective
bodies efi and egj become equal, wherein a paired recursive call of f and g is
turned to a recursive call to pre.

Definition 5 (Recursive Intersection of Expressions). For two expres-
sions e and e′, their intersection e

pre
⊓ e′ with respect to pre computes a condition

under which e and e′ yield the same result:

c(e)
pre
⊓ d(e′) = false for constructors c ̸= d (14)

h(e)
pre
⊓ h(e′) = e

pre
⊓ e′ for any h /∈ {f, g} (15)

f(a, e)
pre
⊓ g(a′, e′) = a = a′ ∧ pre(a, e, e′) compatible recursive calls (16)

e
pre
⊓ e′ = e = e′ if f /∈ e and g /∈ e′ (17)

e
pre
⊓ e′ = false otherwise (18)
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Algorithm 3: Algorithm Match(Γ, f, g). Arguments x merged be-
tween f and g are assumed to be the first ones without loss of generality.

Input: Γ , the set of definitions and known lemmas
Input: definition of f as

{
f(pfi , q

f
i ) := efi if φf

i

}
i=1,...,m

⊆ Γ

Input: definition of g as
{
g(pgj , q

g
j ) := egj if φg

j

}
j=1,...,n

⊆ Γ

Output: ∆ with pre and lemma pre(x, y, z) =⇒ f(x, y) = g(x, z)

1 ∆← { pre(x, y, z) =⇒ f(x, y) = g(x, z) }
2 for i← 1, . . . ,m (cases in the definition of f) do
3 for j ← 1, . . . , n (cases in the definition of g) do
4 assert free(pfi ) ∩ free(pgj ) = ∅ (rename if needed)

5 if ∃ σ with pfi
σ≡ pgj the most general unifier of shared arguments then

6 let p← σ(pfi ) ( = σ(pgj ), cf.definition 2)

7 let e← σ(efi )
pre
⊓ σ(egj ) and φ← σ(φf

i ∧ φg
j )

8 ∆← ∆ ∪ { pre(p, y, z) := e if φ }
9 if ∆ has no base case or no recursive case then

10 ∆← ∅ and fail

where in (15) h can be any function or constructor and

(e1, . . . , ek)
pre
⊓ (e′1, . . . , e

′
k) = (e1

pre
⊓ e′1) ∧ · · · ∧ (ek

pre
⊓ e′k)

compares the two argument lists pointwise.

For algorithm 3 to produce a sound precondition, we need to take some
care. First, note that we can always be conservative, e.g., in (18) when there is
a syntactic mismatch that is not necessarily semantic. Dually, we rely on our
assumption that the cases of f and g cover all inputs. If we omit certain defining
cases to achieve underspecification, as it can be done in some systems where
definitions are given as axioms, pre will inherit this underspecification, and the
generated lemma will hold only for some interpretations of pre. Then, generating
the same pre from different comparisons could lead to inconsistencies.

7 Main Algorithm

The main algorithm 4 saturates a database Γ of definitions and discovered lem-
mas by repeatedly applying the transformation on original as well as synthetic
functions. Algorithms Fuse (described in section 4) and RemoveAcc (described
in section 5) return an equation of the corresponding shape as shown above if
they succeed, together with the defining equations of the respective synthetic
functions. Likewise, Match (described in section 6) returns conditional lemmas
together with the definitions of synthetic preconditions.

The three steps (fusion, accumulator removal, conditional lemmas) may ben-
efit from the accumulated set of lemmas Γ , as shown in example 10 for fusion.
Our algorithm retries failed steps as long as new information can be gained.
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Algorithm 4: Lemma synthesis by saturation using fusion, accumulator
removal, and recognition of structurally similar functions.

Input: Set ∆ of definitional equations of the original functions
Output: Set Λ of lemmas discovered over ∆

1 Γ ← ∆

2 repeat
3 Γ ← Γ ∪ Fuse(Γ, f, g) for pairs of functions f and g
4 Γ ← Γ ∪RemoveAcc(Γ, f) for functions f with accumulators
5 Γ ← Γ ∪Match(Γ, f, g) for pairs of functions f and g
6 Γ ← Γ [f(x) 7→ rhs] if f(x) = rhs is a replacement (3)

7 Λ← Extract(Γ ) \∆

Intermittently, the algorithm applies replacement lemmas (3): As soon as
a function f is known to be the identity function or constant, or when it is
structurally the same as another one, it is replaced in all lemmas and its definition
is removed from Γ . This de-duplicates the effort and avoids vacuously fused forms
(cf. section 4). Replacement is oriented to keep original functions if possible.

Identity functions can be recognized by a simple syntactic analysis of their
defining cases. Similarly, constant functions f(x) = c(x′) can be recognized
when all base cases are equal to c(x′) for the same expression c over the static
arguments of f (cf. definition 4). Recognizing structurally identical functions
f(x) = h(π(x)) is more difficult [42] because one has to come up with the right
permutation of arguments π and with a bijection that pairs each defining case
of f with one of h. However, instead of insisting on a perfect solution, in the
implementation, we heuristically canonicalize definitions for comparison based
on hash functions and subsequently test for α-equivalence, which works fine.

The final step of the algorithm is to extract useful lemmas from Γ , using

Extract(Γ ) =
{
φ′′ | for lemma φ ∈ Γ where

Γ ⊢ φ⇝ φ′ and recover(Γ ) ⊢ φ′ ⇝ φ′′

and φ′′ uses original functions only
}

where recover(Γ ) = { fg(x, y) = f(x, g(y) | f(x, g(y) = fg(x, y) ∈ Γ } recovers
fused functions in terms of their original sources; done in a separate step to avoid
rewrite loops between the symmetric rules in Γ and recover(Γ ).

Lemma 1 (Soundness of Transformations). All three transformations Fuse,
RemoveAcc, and Match produce valid lemmas, and new synthetic functions
satisfy all assumptions of section 3 (the proofs are in appendix A). ⊓⊔

As a consequence, algorithm 4 maintained the following invariants

– definitions including synthetic ones in Γ satisfy the assumptions of section 3
– lemmas φ ∈ Γ semantically follow from the definitions ∆

Theorem 1. Lemmas Λ returned by algorithm 4 follow definitions ∆. ⊓⊔
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Final remark: As we are relying on rewriting as our main technique to apply
definitions and lemmas, we briefly address the question of potentially looping
rewrite rules. A general technique to detect and avoid nontermination is [10].
Alternatively, one can represent Γ as an E-graph [11,35,51], which can accom-
modate cyclic expressions and is therefore more robust against this issue. In our
experiments, however, the only cases for rewrite loops come from lemmas pro-
duced by accumulator removal at some intermediate stages and it was sufficient
to not use these lemmas as long as they still contain synthetic functions.

8 Evaluation

The evaluation is based on three theories, over Peano arithmetic, and over func-
tional lists and trees, respectively. In addition to the full theories (nat, list, and
tree below), we consider eight benchmarks with a subset of functions that to-
gether make up some interesting lemmas (cf. appendix B). A full theory gets from
8 to 18 functions, from which our baseline enumerator generates ∼1.5M candi-
dates in total. Interestingly, Z3 (even when equipped with external induction)
can prove that only ∼0.01% of them are lemmas. A naive enumeration-based
theory explorer thus spends most of its time (more than 13 hours, in total,
cf. table 1 in appendix B) when dealing with false candidates. An individual
benchmark takes from 4 to 7 functions which give rise to ∼265K candidates, in
total. The success rate of the enumerator in this setting is substantially higher
here than for the full theories: ∼1.7% of candidates were proven to be lemmas,
and it takes slightly over one hour. We treat this experiment as “auxiliary” be-
cause it does not directly evaluate any of our contributions, and the results are
used only to judge the difficulty of benchmarks.

We compare four approaches: Struct: LemmaCalc based on structural trans-
formations, but without conditional equalities (sections 4 and 5, Cond: Lem-
maCalc including synthetic preconditions (sections 4 to 6) Enum: Our own enu-
merative generator, based on (11) in section 3, which solves for e? in equational
lemmas f(_, g(_)) = e?, TheSy [43], a state-of-the-art enumerative lemma gen-
erator. LemmaCalc runs multiple rounds of lemma discovery (here three) so
that proofs that had failed earlier can benefit from lemmas discovered later (ex-
amples 8 and 10 in appendix C). TheSy also makes use of lemmas discovered
so far, and in contrast to our baseline can discover conditional lemmas.

The baseline enumerator is included to measure the coverage that could in
principle be achieved by the two structural methods, fusion and removal of ac-
cumulators. The it is run over a search space up to depth d = 3 and maximal
variable occurrence o = 2 in in (11), which is sufficient to cover all lemmas
found by LemmaCalc, and by experience, more deeply nested lemmas tend to
be consequences of simpler ones here. To keep evaluation tractable despite the
large search space, we use a simple counterexample check that evaluates small
ground instances of lemmas. This check is very effective to falsify a large fraction
of lemma candidates (cf. table 1). We use Z3 4.12.2 with a timeout of 500ms to
further rule out all lemmas that can be decided without induction as either false
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or as trivially true. Only candidates that need induction will be reported: the
baseline enumerator tries induction on all variables in scope before calling Z3.
Lemmas found in this way are then re-used for future checks, revisiting unknown
lemmas in multiple rounds helps a little, too (cf. caption of table 1). TheSy is
run with default settings on a translation of theories into its input format that is
based on rewrite rules. From each defining equation f(φ) := e if p, we generate
a rewrite rule f(p)⇝ e if φ in its native input format.

Struct Cond Enum TheSy
0

50

100

150
Theory: nat

Struct Cond Enum TheSy
0

20

40

60
Theory: list

Struct Cond Enum TheSy
0

10

20

30
Theory: tree

Struct Cond Enum TheSy
0

5

10

15

20

25
Benchmark: append

Struct Cond Enum TheSy
0
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10
Benchmark: filter

Struct Cond Enum TheSy
0
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20

30
Benchmark: length

Struct Cond Enum TheSy
0
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60
Benchmark: map

Struct Cond Enum TheSy
0
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20

30
Benchmark: remove

Struct Cond Enum TheSy
0

10

20

30
Benchmark: reverse

Struct Cond Enum TheSy
0

10
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40
Benchmark: rotate

Struct Cond Enum TheSy
0
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Benchmark: runlength

Color
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Cond
Enum
TheSy

Pattern

trivial
implied
reduced

Fig. 1. Experiments for the full theories (top row) and individual benchmarks (rows
below). The first bar in each group represents the number of lemmas found by the ap-
proach listed on the x-axis below, the subsequent three bars represent the proportion of
these lemmas that can be confirmed by the other approaches. Bars are partitioned into
trivial lemmas (white), implied lemmas (lightly shaded), and those in the reduced set
(solid color). Four additional higher-order lemmas mentioning map(succ,_) are omitted
from TheSy’s result in list because they were not supported by our toolchain.
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What is the relative explanatory strength of the sets of lemmas
generated? For each set of lemmas generated by a method on a benchmark,
we measure how many of those are implied (“confirmed”) by the lemmas found
by each other method. Lemmas are moreover partitioned into three categories,
trivial are those implied by the original theory (i.e., those do not need induction,
reduced are those that remain when one incrementally removes lemmas that are
implied by the rest, and implied are the nontrivial ones that were removed. We
report the confirmation rate by other methods for each individually. We use Z3
with a timeout of 500ms but due to incompleteness of the proof oracle the results
should not be taken being precise but rather be interpreted qualitatively.

This comparison is shown in fig. 1. As an example, on benchmark append,
the structural method finds 11 lemmas, of which 2 are implied by the other 9,
and there are no trivial lemmas. The nontrivial resp. reduced sets of lemmas of
the conditional method can fully confirm these, and enumeration and TheSy
cover roughly 60% of these. Overall, the results differ widely across the bench-
marks. Enumeration-based methods tend to outperform LemmaCalc, which is
expected as they cover a much larger space, but calculational techniques can
cover a significant proportion of that space and sometimes even generate lem-
mas not found by the other approaches. Enumeration generates some amount
of trivial and redundant (implied) lemmas (white/lightly shaded parts). This is
true for LemmaCalc, too, when there are similar functions in the input theory,
e.g., possibilities for fusion and accumulator removal discovered for ++ (append)
will typically also be discovered for snoc (adding an element to the end of a list).

What is the impact of the size of the search space? Generally, enu-
meration takes longer when more functions are present, see table 1, but it also
strongly depends on how many possible combinations there are. On the full the-
ories, our baseline enumerator takes over 6 hours. We have aborted the run of
TheSy after 26h resp. 21h on the nat and list benchmarks, and while TheSy
terminates on some benchmarks within a minute, it stalls on others, e.g., on the
remove benchmark, it produces lemmas until 13 minutes and then remains un-
productive for many hours without any output (similar on map and runlength).
Benchmark remove may suggest some internal implementation issue, that may
have affected TheSy’s performance on list. Overall, the numbers confirm our
intuition, that enumeration of large search spaces is expensive. Besides the time
it takes, it is also not clear when to stop exploration, because lemmas are often
discovered sporadically after long periods of unproductive search.

8.1 Strengths and Weaknesses, Respectively

count-append trips up prover in enumerate because add comm maybe

9 Conclusion

We have presented, LemmaCalc, an approach for the synthesis of equational
laws of recursive functions over algebraic data types. The approach is based
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on a novel combination of two program transformations. Key enabling factor
is to integrate these in a procedure that chains facts discovered so far into the
synthesis of subsequent lemmas. We have demonstrated that this approach to
calculating lemmas is effective and efficient for many simple but non-trivial cases.
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A Soundness Proofs

We are working with typed functions f : t1, . . . , tn → t, defined by cases

function definition f(p1) := e1 if φ1 · · · f(pm) := em if φm

Recall the assumptions placed on function definitions namely that functions
terminate, and that cases match are mutually disjoint and together complete. We
formalize these conditions below and prove that the synthetic functions produced
by the transformations preserve these. Furthermore, we prove that all generated
lemmas are valid.

Definition 6 (Termination). A function f is terminating if and only if there
is a corresponding well-founded order ≺f that connects arguments to recursive
calls, i.e., for each recursive case f(pi) := ei

(
f(e)

)
if φi of the definition of f

satisfies ∀x. e ≺f pi where x = free(pi) are the variables in scope.

Definition 7. Let Vt = {v | v : t} be the carrier set of values v of type t.

We fix a set of definitions ∆. We write ∆ |= φ or just φ holds if formula φ
semantically follows from ∆.

Definition 8. Let Jp if φK = { v | ∃ σ. σ(p) = v ∧ ∆ |= σ(φ) } be the set of
values v that match pattern p via some substitution σ so that the guard φ holds.

Definition 9 (Pattern Disjointness). The patterns p1, . . . , pm of function f
are disjoint if Jpi if φiK ∩ Jpj if φjK = ∅ for all 1 ≤ i < j < m.

Definition 10 (Pattern Completeness). The patterns p1, . . . , pm of func-
tion f are complete if Vt1 × · · · × Vtn =

⋃
i=1,...,mJpi if φiK.

We remark that the ⊇ direction always holds by type-correctness, therefore it
will be sufficient to demonstrate the ⊆ direction.

Lemma 2. (A1 ∩A2)× (B1 ∩B2) = (A1 ×B1) ∩ (A2 ×B2).

Lemma 3. For A1 ⊆ A2 and B1 ⊆ B2 we have A2∩B2 = ∅ =⇒ A1∩B1 = ∅.

Lemma 4. If free(φ) ⊆ free(p) and free(ψ) ⊆ free(q) then matches of p, q over
disjoint variables free(p) ∩ free(q) = ∅ can be split into a cross-product for the
individual matches Jp, q if φ ∧ ψK = Jp if φK × Jq if ψK.

Lemma 5. Substitution narrows down pattern matches Jσ(p) if σ(φ)K ⊆ Jp if φK.

Lemma 6 (f-Induction). With a well-founded order ≺f of a terminating
function f : t → t that satisfies definition 10 we can prove any property P (z)
over z : t by induction:4 ∧

i=1,...,m

∀ x. P (e) ∧ φi =⇒ P (pi)

 =⇒
(
∀ z. P (z)

)
4 (induction z rule: f.induct) in Isabelle/HOL.
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A.1 Properties of Fuse (Algorithm 1 in Section 4)

Lemma 7 (Termination of fg). All recursive fg calls are introduced by a fold
rule y ≺g p

g
j =⇒ f(x, g(y)) = fg(x, y) (line 3). Therefore, ≺fg = ≺g witnesses

termination of fg. ⊓⊔

Lemma 8 (Pattern Disjointness of fg). We prove disjointness of two cases
(i, j) ̸= (i′, j′) both generated by line 9, the other combinations wrt. line 4 are
analogous. If i ̸= i′, then from pattern disjointness of f

Jpfi ifφ
f
i K ∩ Jpfi′ifφ

f
i′K = ∅ ∅×A=∅

=⇒

(Jpfi ifφ
f
i K ∩ Jpfi′ifφ

f
i′K)× (Jpgjifφ

g
j′K ∩ Jpgjifφ

g
j′K) = ∅ lemma 2⇐⇒

(Jpfi ifφ
f
i K × Jpgjifφ

g
j′K) ∩ (Jpfi′ifφ

f
i′K × Jpgjifφ

g
j′K) = ∅ lemma 4⇐⇒

Jpfi , p
g
j if φf

i ∧ φg
j K ∩ Jpfi′ , p

g
j′ if φf

i′ ∧ φ
g
j′K = ∅ lemmas 3 and 5

=⇒

Jσ(pfi , p
g
j ) if σ(φf

i ∧ φg
j )K ∩ Jσ(pfi′ , p

g
j′) if σ(φf

i′ ∧ φ
g
j′)K = ∅

The argument for i = i′ and j ̸= j′ is analogous via pattern disjointness of g. ⊓⊔

Lemma 9. If e = e′ and v = σ(e) then v = σ(e′).

Proof. Congruence of substitution wrt. semantic equality e = e′. ⊓⊔

Lemma 10 (Pattern Completeness of fg). Let g : tg → t and f : tf , tg → t′,
and assume that fusion successfully computed a definition of fg. We prove pattern
completeness of fg.

Proof. in the light of the remark below definition 10 it suffices that each arbitrary
v ∈ V

t
f and w ∈ Vtg is covered by some case in set ∆ returned by algorithm 1.

By pattern completeness of g, there is a case j of g with w ∈ Jpgj if φg
j K, and

by definition 8 there is a substitution τg over free(pgj ) with

τg(pgj ) = w and τg(φg
j ) holds (19)

If case j of g can be processed by line 4, we have Jx, pgj if φg
j K = V

t
f ×Jpgj if φg

j K.
Otherwise, by pattern completeness of f , there is a case i of f that matches
the result egj of g instantiated with τg, i.e., v, τg(egj ) ∈ Jpfi , q

f if φiK and by
definition 8 there is a substitution τf over free(pfj , q

f ) with

τf (pfi , q
f
i ) = v, τg(egj ) and τf (φf

i ) holds (20)

Note, τf and τg are over disjoint variables by the condition in line 8 of algo-
rithm 1. Therefore, we can freely switch between τ = (τf ∪ τg) and the more
specific substitutions for expressions over variables of either f or g exclusively.
In particular both (19) and (20) hold for τ , too, and we have τ(qfi ) = τ(egj ).

At this point we have to justify that we actually satisfy the test in line 9, but
it is the only possibility: Having a unifier τ contradicts the test for refutation
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in line 12 and having fused fg successfully in the first place rules out line 16.
Therefore, there exists the consituents of line 9, in particular e′ with e′ = egj (by
soundness of rewriting) and the most general unifier σ. Definition 2 splits τ =
τ ′ ◦ σ for some τ ′, which can be partitioned into the respective sets of variables
again, so that τf = τ ′f ◦ σ and so that τg = τ ′g ◦ σ.

It remains to be shown that v, w ∈ Jp if φK for p and φ constructed by
line 10. The substitution that witnesses definition 8 is given as τ ′:

τ ′(p) = τ ′(σ(pfi , p
g
j )) = τ ′(σ(pfi ), τ

′(σ(pgj )) = τ ′f (σ(p
f
i ), τ

′
g(σ(p

g
j )) = v, w

The reasoning for the guard is analogous. ⊓⊔

Lemma 11. Fusion lemma fg(x, y) = f(x, g(y)) holds.

Proof. By induction over ≺fg (cf. lemma 6 via lemma 7) and by taking apart
the definitional cases of fg . Note that we may assume the respective guard of fg .
By equational reasoning and assuming φg

j , for line 4 we have

fg(x, pgj )
def. fg
= e′

Γfg valid
= f(x, egj )

def. g
= f(x, g(pgj ))

For line 9, assuming σ(φf
i ∧ φg

j ) we have

fg(σ(pfi , p
g
j ))

def. fg
= e′

Γfg valid
= σ(efi )

def. f
= f(σ(pfi ), σ(q

f
i ))

def. 2
= f(σ(pfi ), e

′)
Γ valid
= f(σ(pfi ), e

g
j )

def. g
= f(σ(pfi ), g(σ(p

g
j )))

Steps justified by validity of Γ rely on rewriting to produce valid equations
because Γ contains definitions and valid lemmas only. Γfg is valid, because its
additional rule is just the inductive hypothesis. The step marked def. 2 holds
because unification produces syntactically identical expressions. Steps by the
respective definitions of f and g specialize the respective pattern variables, and
of course one has to ensure that the respective guard follows from that of fg . ⊓⊔

A.2 Properties of RemoveAcc (Algorithm 2 in Section 5)

Lemma 12 (Termination). f ′ terminates by the well-founded order ≺f ′ de-
fined as the least fixpoint of the set of implications over all i, j, where i indexes
defining cases and j indexes recursive calls of that case

∀ x.
(
∀ u. e, aji (u) ≺f ′ pi, u

)
=⇒ e ≺f ′ pi

Proof. where x = free(pi). Since ≺f ′ is a least fixpoint, it is well-founded. It
remains to show that it covers all recursive calls in f ′, which is apparent from
the construction. ⊓⊔

Lemma 13 (Pattern Completeness and Disjointness). Because the accu-
mulator u : tu is always matched as a variable and because it cannot occur in
guards φi we have Jpi, u if φiK = Jpi if φiK × Vtu from lemmas 2 and 4. ⊓⊔
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Lemma 14. Lemma f(x, u) = e?(f ′(x), x′, u) holds.

Proof. By f -induction over ≺f (cf: lemma 6). The base case follows from the con-
dition in line 7. Instantiating the condition in line 13 with y = f(y1), . . . , f(yk)
proves the correspondence in the recursive case by the inductive hypothesis. ⊓⊔

A.3 Properties of Match (Algorithm 3 in Section 6)

Lemma 15 (Termination). pre terminates with x′, y′, z′ ≺pre x, y, z defined
to hold if x′, y′ ≺f x, y and x′, z′ ≺g x, z. ⊓⊔

Lemma 16 (Pattern Disjointness and Disjointness). The proofs go anal-
ogous to that for Fuse in dealing with the substitutions. We omit the details. ⊓⊔

Lemma 17. If P ≡
(
pre(x′, y′, z′) =⇒ f(x′, y′) = g(x′, z′)

)
holds for all

f(x′, y′) that occur in e and all g(x′, z′) that occur in e′, then e
pre
⊓ e′ (defini-

tion 5) implies e = e′.

Proof. By induction on how e
pre
⊓ e′ is computed (i.e., size of e, e′). Cases (14) and

(18), hold vacuously, as the premise is false. Case (15) follows from the inductive
hypothesis for the respective arguments of function h. Case (17) simply enforces
the desired conclusion e = e′. Finally, case (16) refers to assumption P of this
lemma that all pairs of recursive calls are already matched by pre. ⊓⊔

Lemma 18. Conditional lemma pre(x, y, z) =⇒ f(x, y) = g(x, z) holds.

Proof. By induction over the computation of pre (lemma 6 for ≺pre), noting that
this relies on pattern completeness of pre, which in turn only holds because f
and g have complete patterns already. We make use of lemma 17 for the con-
struction of line 7. It’s assumption P is an instance of the inductive hypothesis
for the σ computed in line 5 of algorithm 3. ⊓⊔
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B Benchmark Overview

Input files for all benchmarks are provided in Boogie-like syntax as well as in
SMT-LIB as part of the supplementary material.

Table 1 shows the number of function symbols |F | in each theory, and the
respective search space covered by our baseline enumerator, which is imple-
ments (11) from section 3 (further detailed below). The table shows some statis-
tics on the status of these lemmas, where column “lemma” are those true formulas
that need inductive proofs. Due to incompleteness of the proof oracle, table 1
gives a lower estimate of the candidates that are valid in that search space.

Functions present in the respective benchmarks:

– append: add, snoc, ++, length, count
– filter: not, length, filter, all, ex, countif
– length: length, length◦, qlength(tail-recursive)
– map: leq, lt, length, map, take, drop
– remove: not, add, sub, length, contains, remove, count
– reverse: reverse, reverse◦, qreverse(tail-recursive)
– rotate: leq, add, append, length, reverse, rotate
– runlength: add, mul, ++, sum, sumruns, decode, is_runs

Function not is logical negation. add, sub, mul, leq, lt are structurally recursive
definitions over natural numbers for +, −, ∗, ≤, and <. filter keeps elements
that satisfy a given predicate, countif counts them, and all/ex test if all/some
element satisfies a given predicate. rotate reverses a prefix of a given list.

Benchmark runlength implements the decoder for a sequence of runs, given
as a pair of lists that record elements resp. the number of their occurrence in a
run.5 A critical lemma connects sum over the decoded sequence to sumruns that
works on the coded one.

C Detailed Examples

This section shows some examples in full detail. We furthermore include some
situations where our approach fails and discuss how this is linked to inherent
limitations resp. issues with the current implementation.

Example 7. Associativity of append is discovered6 by fusing (xs ++ys)++zs into a
synthetic function +++(xs, ys, zs) and then by deaccumulating its last argument.
The correct choices are b′1 = c = [] as right-neutral element of ⊕ = ++ and
canoncially b′2 = b2 = _::_ as the original function body of the outer _ ++ zs. ■
5 https://en.wikipedia.org/wiki/Run-length_encoding
6 Both examples in this section are presented with minimal detail only due to lack of

space. The reader is invited to follow along on a piece of paper—by our experience
this is crucial to get some intutition into how the two transformations work together.
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Table 1. Statistics on benchmark theories used in the comparison, where |F | is the
number of functions. The number of candidates is Σf(x,g(y))|S2

3(x, y, bool)|, i.e., po-
tential right-hand sides to equations (11) of depth d = 3 and max o = 2 occurrences
of each variable. false: falsified random testing or by Z3, true: proved by Z3, lemma:
proved by induction+Z3, and candidates with unknown status. The timeout for Z3
was 50ms per query. Time is shown in hours:minutes:seconds for the first round of enu-
meration. Marked † results contain lemmas found in later rounds (round 2: map (1),
runlength (4), nat (14); round 3 tree (1)). In comparison to the runtimes, LemmaCalc
with conditional matching takes 14s list as the largest benchmark, all other results
are produced within 1s–5s. For TheSy, we report the time of the last lemma found.
For those benchmarks on which the tool did not terminate, we give a rough indication
when it was cancelled. Note, in most cases except for nat, TheSy stopped reporting
lemmas long before that.

baseline enumerator statistics TheSy

benchmark |F | candidates false true lemma unknown time last killed

nat 8 1 131 799 1 129 504 309 159† 1 827 09:53 26:38:14 >26h
list 18 320 978 203 993 384 31 116 569 6:21:16 10:55:14 >21h
tree 11 123 488 107 569 118 26† 15 776 6:31:37 16:47

append 5 15 295 12 584 128 18 2 564 10:13 04:32
filter 6 398 75 2 5 319 00:39 00:02
length 5 7 066 6 495 556 14 1 00:22 00:00
map 6 17 721 14 494 31 17† 3 179 10:08 37:33 >11h
remove 7 32 916 24 059 121 14 8 722 54:16 13:01 >11h
reverse 4 127 926 127 476 425 24 1 07:45 00:02
rotate 6 12 784 12 597 123 21 43 00:34 6:54:22 >11h
runlength 6 68 311 67 499 221 27† 564 06:39 00:40 >11h

Example 8 (Reversing Lists). We show how deaccumulation is key to discovering
the classic lemma reverse(reverse(xs)) = xs in our approach (the variant using
snoc works too).

reverse([]) = [] reverse(x :: xs) = reverse(xs) ++ (x :: [])

Because reverse has no accumulators, we start with fusion, which fails initially
for reverse(reverse(_)) as we cannot match ++ in the body of the inner g =
reverse (there is no unifier nor can we refute the match). However, from fusing
++ into reverse we get the following definition:

reverse++([], ys) = reverse(ys)

reverse++(x :: xs, ys) = reverse++(xs, ys) ++ (x :: [])

This function can be deaccumulated, with ⊕ = ++ but now with c = [] as its
left-neutral element, resulting in reverse(xs ++ ys) = reverse(ys) ++ f ′(xs) and it
turns out that f ′ ≡ reverse. This lemma unblocks fusion of reverse(reverse(_))
via the shortcut in line 4 of algorithm 1. The fused function reverse-reverse can
subsequently be recognized as the identity function after some simplifications. ■
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Example 9 (Reordering of Arguments). An example where matching functions
modulo reordering of parameters is important is when fusing map and take

both ways. For permutation π(1, 2, 3) = (2, 1, 3) we have map_take(f, n, xs)
π≡

take_map(n, f, xs).

Example 10 (Binary Trees). The data type for binary trees with elements of
type Elem is

Tree = leaf | node(left : Tree, value : Elem, right : Tree)

Function elems over binary trees computes a list containing its elements by pre-
order traversal and function size(t) counts the number of nodes.

size(leaf) := 0 size(node(l, x, r)) := size(l) + size(r) + 1 (21)
elems(leaf) := [] elems(node(l, x, r)) := x :: (elems(l) ++ elems(r)) (22)

Goal is to fuse length_elems with length_elems(t) = length(elems(t)), expect-
ing that it will turn out to be equivalent to size.

We take apart the two cases in (22) corresponding to line 2 in algorithm 1.
For the base case, eg0 = [] and Γ ⊢ length([]) ⇝ 0 in line 4 of algorithm 1 by
the definition of length that is part of Γ , so that length_elems(leaf) := 0.

In the recursive case, eg1 = e′ = x::(elems(l)++elems(r)). Pattern match of the
base case of length is refuted by []⊥e′ (line 10 of algorithm 1). For pattern y::ys
of the recursive case of length we get a unifier σ with σ(y) = x and σ(ys) =
elems(l) ++ elems(r). We then look at σ(length(ys) + 1) = length(elems(l) ++
elems(r))+1. It is not possible to immediately apply the fold rule that collapses
occurrences of length(elems(_)) because of the intermediate occurrence of func-
tion ++. Instead, we need lemma (6) to unblock the situation which is done by
the second use of rewriting in line 9 as length(elems(l) ++ elems(r)) + 1 ⇝ e′′

with e′′ = length_elems(l))+ length_elems(r))+ 1, which is now in fused form
and can be used as the right-hand side of the case length_elems(node(l, x, r)) :=
length_elems(l) + length_elems(r) + 1. This indeed gives us a definition that
is equivalent to size. From this, we can extract length(elems(t)) = size(t). ■

Example 11 (Conditional Lemmas for filter). Functions like remove and filter

that contain guard expressions lead to interesting precondition with respect to
eqs. (4) and (5). Consider the following definition

filter(p, []) := [] (23)
filter(p, y :: ys) := y :: filter(p, ys) if p[x] (24)
filter(p, y :: ys) := filter(x, ys) if ¬p[x] (25)

We can enfore a precondition preid(x, xs) so that filter(p, xs) = xs becomes the
identity function. Suppose we have

id([]) := [] id(z :: zs) := z :: id(zs)
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Then algorithm 3, executed for sharing the second argument of filter with the
argument of id, produces the following pairings of cases:

preid(p, []) := [] ⊓ [] = true

preid(x, y :: ys) := y :: filter(x, ys) ⊓ y :: id(ys) = (y = y) ∧ preid(p, ys) if p[x]

preid(p, y :: ys) := filter(p, ys) ⊓ y :: id(ys) = false if ¬p[x]

where in both recursive cases, σ = {y 7→ z, ys 7→ zs} is the subsitution that
unifies the constructor pattern. The last case is generated by (18) (“we don’t
know”), whereas the middle case is generated by (15) to split up the common
top-level symbol (constructor ::) and subsequently by (16) which introduces the
recursive call.

When we simplify this definition, we observe that preid(x, xs) ≡ all(p, xs)
and as a consequence, we have this lemma:

all(p, xs) =⇒ filter(p, xs) = xs

where function all tests whether all element in the list satisfies that predicate.
Conversely, if we instead synthesize a precondition pre[] ≡ not_ex(p, xs), that
identical to fusing ex into not,

¬ex(p, xs) =⇒ filter(x, xs) = []

Example 12. Conditional lemmas are useful for fused functions, too. For exam-
ple, consider function take, which retains a prefix of list xs up to length n:

take(0, xs) = []

take(n+ 1, []) = []

take(n+ 1, y :: ys) = x :: take(n, ys)

Synthesizing recursive preconditions can help to deal with the different condi-
tions of termination of this function, i.e., whether the list is long enough to have
a proper prefix of a given length. Our approach can discover

n ≤ length(xs) =⇒ length(take(n, xs)) = n

which it is generated with the help of intermediate fused functions for ≤ and
length as well as length and take. We get a dual lemma, which not just guar-
antees a certain length but the actual content, too:

length(xs) ≤ n =⇒ take(n, xs) = xs
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