
CoVeriTeam Service: Verification as a Service
Dirk Beyer

LMU Munich, Germany
Sudeep Kanav

LMU Munich, Germany
Henrik Wachowitz

LMU Munich, Germany

Abstract—The research community has developed numerous
tools for solving verification problems, but we are missing a
common web interface for executing them. This means, users
have to commit to install and execute each new tool (version) on
their local machine. We propose to use COVERITEAM SERVICE to
make it easy for verification researchers to experiment with
new verification tools. COVERITEAM has already unified the
command-line interface, and reduced the burden by taking
care of tool installation and isolated execution. The new web
service in addition enables tool developers to make their tools
accessible on the web and users to include verification tools
in their work flow. There are already further applications of
our service: The 2023 competitions on software verification and
testing used the service for their integration testing, and we
propose to use COVERITEAM SERVICE for incremental verification
as part of a continuous-integration process.
Demonstration video: https://youtu.be/0Ao0ZogSu1U
Demonstration service: https://coveriteam-service.sosy-lab.org

Index Terms—Cooperative Verification, Tool Development,
Incremental Verification, Software Verification, Automatic Verifica-
tion, Verification Tools, Web Service, API, Continuous Integration

I. INTRODUCTION

Numerous automated verification and testing tools have been
developed in the last few decades. This is attested by the
growing number of participants in the competitions on software-
verification (SV-COMP) [5] and testing (Test-Comp) [4].

Consider a verification researcher or student who wants to
experiment with a verification tool. On the one hand, a larger
number of tools provides more opportunities to such a user.
On the other hand, it requires considerable effort to figure out
how to execute each tool and interpret the results. Additionally,
there might be a mismatch between the configuration of the
user’s system and the required configuration to execute the
tool. Or, the user might not want to execute an untrusted
verification tool locally due to security concerns. Even with
numerous choices available for the verification tools, it is
not straightforward to use them.

There are arguments regarding the developers of verification
tools pointing in the same direction. A lot of effort goes in
developing the tools; but even after spending so much effort in
developing excellent tools, the tools are not easily accessible.

This work aims at improving the accessibility of automated
verification tools. We propose a web service that enables
remote execution of verification tools. The solution is based on
COVERITEAM [7], which provides already a common command-
line interface to verification tools. A common web interface
makes it easier for users to experiment with arbitrary verifica-
tion tools, as well as for tool developers to benefit from making
their tools more accessible to new users. The web service

R
E

S
T

A
P

I

• downloads tools
• executes tools

COVERITEAM

• prepare environment
• invoke COVERITEAM
• bundle results

COVERITEAM SERVICE

• tool information
• verification task

Request

• tool output
• generated files

Response

Fig. 1: Abstract view of the COVERITEAM SERVICE

liberates users from the concerns of configuring the local
system. Additionally, running tools remotely eliminates security
concerns arising from local execution of untrusted code.

COVERITEAM [7] provides a common interface to verification
tools through the means of verification actors and artifacts. It
manages download, execution, and processing input and output
of these tools. It provides a library of actors for many publicly
available verification and testing tools. Also, it provides means
to integrate a new tool easily via BENCHEXEC [16].

Developing a web service for COVERITEAM allows us to
reuse the infrastructure that was developed for COVERITEAM. If
users want to execute a verification tool remotely, they can
simply invoke COVERITEAM with the required inputs and the
option for remote execution, and COVERITEAM manages the rest.
Alternatively, the service can be called directly via its REST
API, making it suitable for integration into other applications.
Figure 1 shows the abstract view of our solution. A user
sends the information about the tool and the verification task
to the service; the service prepares the environment, invokes
COVERITEAM, and bundles the results of the execution; and
COVERITEAM manages tool download and its execution.

Contributions. We make the following contributions:
1) Remote execution: a web service to remotely execute

publicly available verification tools and their combinations,
2) Incremental verifier: a web service for incremental verifica-

tion using COVERITEAM SERVICE as a micro-service,
3) Easy access to verification tools: a solution allowing tool

developers to provide easy access to their verification tools,
4) Reuse: an open-source Python implementation and a repro-

duction package [11, 12].

Impact. This service was part of the continuous-integration
pipeline of the competitions SV-COMP and Test-Comp 2023.
The service was used to make sure that a (new version of a)

https://doi.org/10.5281/zenodo.7635848
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-6078-4175
https://orcid.org/0000-0002-4768-4054
https://youtu.be/0Ao0ZogSu1U
https://coveriteam-service.sosy-lab.org


tool is only integrated if it can be successfully executed in the
specified competition environment. This makes it possible to
find issues with the participating tool archive early on, thus
saving the effort required by the competition organizer and
participants to locate and solve the issues by manual inspection.

Related Work. Electronic Tools Integration (ETI) [23, 25]
was conceived as a platform to allow users to access tools
through the internet. It was intended to serve as a site for
testing, presenting, evaluation, and benchmarking tools.

Model Checking as a Service (MCaaS) [21] aims to hide
the model checking entirely from engineers. The authors aim
to provide a ready made solution for a specific engineering
workflow with limited configuration.

The (deprecated) RiSE4Fun [3] service is a web front-end
to web services on formal methods. CoVeriTeam Service is
not a web front-end, but a backend service. It could have
been integrated as one of the backend services in RiSE4Fun,
acting as a generic interface to many verification tools, similar
to our own web UI.

Unite [26] aims to provide easier access to analysis tools
by converting them to web services. It uses open services for
lifecycle collaboration (OSLC) to create web services from
software-analysis tools. While ETI, MCaaS, and our service
provide a remote interface to analysis tools, the focus of Unite
is to provide a framework to setup a web service for one
tool at a time. This requires manual setup and configuration
of the tool and it’s arguments. Once configured, the OSLC
endpoint integrates with respective OSLC clients that are
able to mirror the tool’s interface.

Our approach decouples (a) integrating a new tool from
(b) providing a web service: (a) COVERITEAM integrates the anal-
ysis tools and provides the interface to the tools; (b) COVERITEAM

SERVICE provides a web-service interface using a REST API.
The interface to our web service is uniform, regardless of
the tool a user wants to execute.

Many verification tools have implemented some form of
web front-end [6, 18, 20, 22], stating a clear demand for web-
accessibility. With COVERITEAM SERVICE, we provide one uniform
interface for all tools. We present a web UI in Sect. IV,
where users can already select from 21 verification tools
and run them remotely.

Running Example. Users want to verify a program. They want
to use a verification tool to achieve it; but they do not want to
execute the tool locally. There could be multiple reasons for
the aversion to the local execution of the tools, e.g., ease of use:
the user does not want to install the tool and its dependencies,
or the tool might require different packages than available on
the local machine, or security concerns: the user does not want
to run an untrusted tool on the local machine. Our running
example considers the case that our user wants to execute
the verification tool CPACHECKER remotely.

II. BACKGROUND: COVERITEAM

COVERITEAM SERVICE uses COVERITEAM as execution backend.
COVERITEAM [7, 10] provides a common interface to verification

// Create verifier from an actor definition
verifier = ActorFactory.create(ProgramVerifier,

"cpachecker.yml", "2.1");
// Prepare inputs
prog = ArtifactFactory.create(Program,

"test02.c", ILP32);
spec =

ArtifactFactory.create(BehaviorSpecification,
"unreach-call.prp");

inputs = {"program":prog, "spec":spec};

// Execute the verifier on the inputs
result = execute(verifier, inputs);

Listing 1: A COVERITEAM program to execute a verifier

actor_name: "cpachecker"
toolinfo_module: "cpachecker.py"
archives:
- version: "2.1"
doi: "10.5281/zenodo.5720557"
options: ["-svcomp22", "-timelimit", "900 s"]

Listing 2: An example verification actor in YAML format

tools. It considers verification tools as verification actors, and
the input and output of these tools as verification artifacts.
The behavior of COVERITEAM is defined by a COVERITEAM

program, written in a simple domain-specific language for
the construction and execution of tool combinations.

Listing 1 shows an example COVERITEAM program (.cvt
file), which constructs first an actor of type ProgramVerifier

from an external-actor definition that is provided in file
cpachecker.yml. Then it creates two artifacts of types
Program and BehaviorSpecification that are prepared as
input mapping for the execution of the verifier on these inputs.
COVERITEAM downloads the tool, assembles the command for
the tool execution, executes the tool (in a controlled and isolated
BENCHEXEC [16] container), and processes the output generated
by the tool to extract the output artifacts.

Listing 2 shows the external-actor definition (.yml file)
that was used in the above COVERITEAM program. (Internal
actors are not considered here: they are the combinations
constructed in the COVERITEAM program.) An external-actor
definition specifies the name of the actor, the BENCHEXEC [16]
tool-info module that is used to assemble the tool command
line and parse the output produced by the tool, the version,
the tool archive (by DOI or URL), command-line options, and
resource limits to enforce during the execution.

External-actor definitions can be defined by the developers of
the external verification tools and serve as the interface to their
verification tools (see COVERITEAM’s library of external actors).

III. APPROACH: COVERITEAM SERVICE

COVERITEAM SERVICE and the service for incremental verifica-
tion are based on a REST API. The client communicates
with the services using HTTP.

COVERITEAM SERVICE. There are three ways to execute a job
using COVERITEAM SERVICE: (1) via COVERITEAM, by using the
same command line, just with an additional option --remote

appended, (2) via HTTP, by writing a job specification in a
JSON file (Listing 3) and send a POST request to COVERITEAM

https://gitlab.com/sosy-lab/software/coveriteam/-/tree/1.0/actors


{
"cvt_program": "verifier.cvt",
"coveriteam_inputs": {

"verifier_path": "cpachecker.yml",
"program_path": "test02.c",
"specification_path": "unreach-call.prp",

},
"working_directory": "coveriteam/examples",

}

Listing 3: Example JSON showing the input for the service

curl \
--form "args=<listing3.json" \
--form cpachecker.yml=@cpachecker.yml \
--form test02.c=@test02.c \
--form verifier.cvt=@verifier.cvt \
--form unreach-call.prp=@unreach-call.prp \
--output cvt_remote_output.zip \
https://coveriteam-service.sosy-lab.org/execute

Listing 4: Example CURL request for the service

SERVICE, e.g., via CURL (Listing 4), or (3) via the web UI, by vis-
iting the service using a web browser and completing the form.

COVERITEAM SERVICE receives the input via one of the three
ways, performs consistency checks on the input, assembles
the command for COVERITEAM, executes the given COVERITEAM

program on the server, and sends back the output artifacts.

Service for Incremental Verification. While tests and
lightweight linters are regularly used in continuous integration
(CI), verification tools are more difficult to integrate, due to
their resource requirements. Our service makes it possible
to delegate the verification load from the CI machine to a
dedicated machine for the verification service via COVERITEAM

SERVICE. Furthermore, incremental verification (IV) aims at
speeding up the verification of the current program version by
reusing knowledge from verifying a previous version [15, 24].

We offer a solution that combines the two approaches: a
service for incremental verification. The solution is based on
the following components: (1) a verifier that can export and
import the knowledge learned during a verification run, (2) a
store to save and retrieve this information, and (3) a manager to
connect the above two. In our solution, COVERITEAM SERVICE is
used as a micro-service to execute the verifier; and the service
for IV manages the store and interacts with COVERITEAM SERVICE.

Figure 2 illustrates the data flow of our solution. The service
for incremental verification stores and retrieves the knowledge

•get stored information
•prepare arguments
•call COVERITEAM SERVICE

•store result information

Service for IV

•download incremental
verifier

•execute verifier

COVERITEAM SERVICE

DatabaseP, P ′, S

P ′, S, I

I′

Store I′

I

Input

Fig. 2: Architecture of the service for incremental verification

SV-COMP
CI

Service for
Incremental
Verification

Web
UI

COVERITEAM

--remote

· · ·

COVERITEAM SERVICE

COVERITEAM

Service Client

Fig. 3: Various clients of the COVERITEAM service

exported by the verification tool so that it can be reused later
to assist in verification. The service takes as input a current
program P ′, its previous version P , and the specification S. It
first checks if some reusable verification information I for P
and S is stored in the database. If available, it retrieves the
stored information and calls COVERITEAM SERVICE passing it the
current program P ′, the specification S, and the verification in-
formation I . If the information is absent, then the task is treated
as a fresh verification task. COVERITEAM SERVICE then executes
the verifier, and returns the result. Before returning this result
to the user, the service for incremental verification extracts
and stores relevant information obtained from the result.

We explain an instantiation of this construction in Sect. IV
using CPACHECKER as the verifier. It is straightforward to adapt
this to another verifier that supports export and import of
any information reusable for verification.

IV. APPLICATIONS AND USE CASES

A detailed evaluation of COVERITEAM through case studies
and experiments has been presented in our previous work [7, 8].
Here we present some applications and use cases of the service.

Remote Execution of Verification Tools. Using our publicly
available installation of a COVERITEAM SERVICE instance at https://
coveriteam-service.sosy-lab.org, a user can execute verification
tools and their combinations remotely without the need to install
and execute them locally. The service can be called using (1) the
client integrated in COVERITEAM, by simply adding the option
--remote to a command (this option instructs COVERITEAM to
execute remotely via the service, whereas without this option
execution happens locally), (2) a CURL command (Listing 4),
or (3) a web page allowing users to execute tools that are
included in COVERITEAM’s library of external actors. Figure 3
shows the currently implemented clients of the service.

This service has been hit more than 930 times within a month
of going online. Many of these hits were from the participants
of SV-COMP and Test-Comp who wanted to test their tools on
a machine similar to the ones used in the competition.

Continuous Integration for Competitions. The service has
been used in SV-COMP and Test-Comp this year as part of
the continuous-integration (CI) pipeline of the competition

https://coveriteam-service.sosy-lab.org
https://coveriteam-service.sosy-lab.org
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/1.0/actors


•Prepare incremental
verification task

•call incremental
service instance

•parse service output

CI

•call COVERITEAM SERVICE

•use CPACHECKER actor

Service Instance for IV

Service for IV

P ,P ′,S

instantiate

Fig. 4: Workflow of CI for incremental verification

repositories. Submitting a zipped tool archive triggers the
CI pipeline, which calls COVERITEAM SERVICE to execute the
tool on test programs. The feedback from the CI enables
the participants to fix issues with their tool archives without
asking the competition organizer for test runs. This CI has
helped reducing the workload of the competition organizer and
participants for debugging issues with tool executions.

Additionally, tool developers can integrate a call to this
service in their own CI. This ensures that the tool archive of
the latest version is readily executable on a different machine
(e.g., a competition environment), thus reducing the effort
required for packaging and testing the tool for reproducibility.

CI for Incremental Verification. Software is developed incre-
mentally. It is a common practice to integrate tests and linters
in CI scripts that are triggered either on each commit to the
source code or in regular intervals, to control software quality.

Formal verification is a candidate for inclusion in the CI as
well, but generally it is too resource-intensive to be executed
frequently. Moreover, many open-source projects execute their
CI using free service plans, which provide limited compu-
tational resources. COVERITEAM SERVICE and our service for
incremental verification can address this problem by delegating
resource-intensive computations to a separate service.

To evaluate our approach, we used CPACHECKER as a backend
verifier in the service for incremental verification. Figure 4
illustrates the workflow of this use case. A user commits some
changes to program P , yielding the modified program P ′. The
CI script first prepares the incremental verification task, i.e.,
assembles a request containing P , P ′, and the specification S,
and second calls the service for incremental verification to
solve this incremental-verification task.

V. INTEGRATION OF TOOLS

Easy Integration of Verification Tools. To integrate a new
verification tool into COVERITEAM SERVICE, one only needs to
integrate it into COVERITEAM, i.e., create a tool-info module and
an external-actor definition. Many tools are already integrated
because they are readily available in COVERITEAM [7].

Construct Service for Verification Tools. We envision
COVERITEAM SERVICE to be instantiated by tool developers to
provide easy access to their own tools, on their own server,
independently from our instance of COVERITEAM SERVICE. To
achieve this, one needs to create a container image or a virtual

machine with the required operating system and packages, and
host COVERITEAM SERVICE in it. This would allow an arbitrary
user to connect to their new instance of COVERITEAM SERVICE

to execute the verification tool under consideration. We have
tried to make hosting the service straightforward, and provide
instructions and the required configuration files (see Sect. VI).

Limitations. Our service is based on COVERITEAM [7] and
BENCHEXEC [16], which require a GNU/Linux-based system
providing access to cgroups. The tools from SV-COMP and
Test-Comp are only a few examples of the supported tools.

VI. HOSTING AN INSTANCE

We provide three different options to create and host an
instance of COVERITEAM SERVICE:
1) Launching a virtual machine (VM): The repository includes

a Vagrantfile, which can be used by Vagrant [19] to
create a fresh VM with the service installed. Additionally,
we provide a ready-to-use VM as artifact.

2) Launching a container: We provide a Containerfile and
launch scripts in the repository. Using a container manager
like PODMAN [2] (or DOCKER [1]), an image containing
COVERITEAM SERVICE can quickly be created and started.

3) Integrating with an existing web server: The service can
be integrated with WSGI-compatible web servers [17]. The
repository contains an example integrating the service with
an Apache web server.

VII. CONCLUSION

Many excellent verification tools are publicly available,
but installation requirements as well as resource limitations
hinder the integration of verification tools into development
processes. We presented COVERITEAM SERVICE, a web service
for software verification. Our solution aims to ease the effort
required by a user to start working with a verification tool,
supports continuous integration by enabling delegation to a
service, and provides a mechanism to tool developers to make
their tools easily accessible. The service has already found a
user group: 930 hits within the first month of service. The
continuous-integration pipeline of the competitions SV-COMP
and Test-Comp is based on our new web service.

DECLARATIONS
Data-Availability Statement. We used COVERITEAM [10, 13]
version 1.0 and COVERITEAM SERVICE [11, 14] version 1.1, which
are both open source and released under the Apache 2 license.
We also host an instance of the service publicly available
for experimentation: https://coveriteam-service.sosy-lab.org.
A demo of the service is available on YouTube [9]. A ready to
use reproduction package containing a virtual machine hosting
the service is available at Zenodo [12].

Funding Statement. This work was funded by the Deutsche
Forschungsgesellschaft (DFG) — 378803395 (ConVeY).

Acknowledgement. We thank Nian-Ze Lee for the valuable
feedback on this article, Klara Cimbalnik for the implemen-
tation of the Web UI, and the SV-COMP community for their
valuable feedback on experimenting with COVERITEAM SERVICE.

https://podman.io
https://www.docker.com
https://coveriteam-service.sosy-lab.org
http://gepris.dfg.de/gepris/projekt/378803395


REFERENCES

[1] Docker. https://www.docker.com/, accessed: 2023-02-09
[2] Podman. https://github.com/containers/podman, accessed: 2023-02-09
[3] Ball, T., de Halleux, P., Swamy, N., Leijen, D.: Increasing human-tool

interaction via the web. In: Proc. PASTE. pp. 49–52. ACM (2013).
doi:10.1145/2462029.2462031

[4] Beyer, D.: Advances in automatic software testing: Test-Comp
2022. In: Proc. FASE. pp. 321–335. LNCS 13241, Springer (2022).
doi:10.1007/978-3-030-99429-7_18

[5] Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Proc. TACAS (2). pp. 375–402. LNCS 13244, Springer (2022).
doi:10.1007/978-3-030-99527-0_20

[6] Beyer, D., Dresler, G., Wendler, P.: Software verification in the Google
App-Engine cloud. In: Proc. CAV. pp. 327–333. LNCS 8559, Springer
(2014). doi:10.1007/978-3-319-08867-9_21

[7] Beyer, D., Kanav, S.: COVERITEAM: On-demand composition of cooper-
ative verification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243,
Springer (2022). doi:10.1007/978-3-030-99524-9_31

[8] Beyer, D., Kanav, S., Richter, C.: Construction of verifier combinations
based on off-the-shelf verifiers. In: Proc. FASE. pp. 49–70. Springer
(2022). doi:10.1007/978-3-030-99429-7_3

[9] Beyer, D., Kanav, S., Wachowitz, H.: Demonstration video of
COVERITEAM SERVICE. https://youtu.be/0Ao0ZogSu1U, accessed: 2023-
02-16

[10] Beyer, D., Kanav, S., Wachowitz, H.: Source-code repository of
COVERITEAM. https://gitlab.com/sosy-lab/software/coveriteam, accessed:
2023-02-09

[11] Beyer, D., Kanav, S., Wachowitz, H.: Source-code repository
of COVERITEAM SERVICE. https://gitlab.com/sosy-lab/software/
coveriteam-service, accessed: 2023-02-09

[12] Beyer, D., Kanav, S., Wachowitz, H.: Reproduction package for the
ICSE 2023 article ‘CoVeriTeam service: Verification as a service’. Zenodo
(2023). doi:10.5281/zenodo.7635848

[13] Beyer, D., Kanav, S., Wachowitz, H.: COVERITEAM release 1.0. Zenodo
(2023). doi:10.5281/zenodo.7635975

[14] Beyer, D., Kanav, S., Wachowitz, H.: COVERITEAM Service release 1.1.
Zenodo (2023). doi:10.5281/zenodo.7635969

[15] Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision
reuse for efficient regression verification. In: Proc. FSE. pp. 389–399.
ACM (2013). doi:10.1145/2491411.2491429

[16] Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
doi:10.1007/s10009-017-0469-y

[17] Eby, P.J.: PEP 3333 – Python web-server gateway interface v1.0.1. Tech.
rep., https://peps.python.org/pep-3333/, accessed: 2023-02-09

[18] Esen, Z., Rümmer, P.: TRICERA: Verifying C programs using the theory
of heaps. In: Proc. FMCAD. pp. 360–391. TU Wien Academic Press
(2022). doi:10.34727/2022/isbn.978-3-85448-053-2

[19] Hashimoto, M.: Vagrant. https://github.com/hashicorp/vagrant, accessed:
2023-02-09

[20] Heizmann, M., Christ, J., Dietsch, D., Ermis, E., Hoenicke, J., Linden-
mann, M., Nutz, A., Schilling, C., Podelski, A.: ULTIMATE AUTOMIZER
with SMTInterpol (competition contribution). In: Proc. TACAS. pp. 641–
643. LNCS 7795, Springer (2013). doi:10.1007/978-3-642-36742-7_53

[21] Horváth, B., Graics, B., Hajdu, Á., Micskei, Z., Molnár, V., Ráth,
I., Andolfato, L., v. Gomes, I., Karban, R.: Model checking as a
service: Towards pragmatic hidden formal methods. In: Proc. MODELS
Companion. pp. 37:1–37:5. ACM (2020). doi:10.1145/3417990.3421407

[22] Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva, A.C.R.,
Ramalho, M.S., Silva, D.: Experiences on teaching ALLOY with an
automated assessment platform. Science of Computer Programming 211,
102690 (2021). doi:10.1016/j.scico.2021.102690

[23] Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination
of verification tools in JETI. In: Proc. ECBS. pp. 431–436 (2005).
doi:10.1109/ECBS.2005.59

[24] Rothenberg, B., Dietsch, D., Heizmann, M.: Incremental verification using
trace abstraction. In: Proc. SAS. pp. 364–382. LNCS 11002, Springer
(2018). doi:10.1007/978-3-319-99725-4_22

[25] Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integra-
tion platform: Concepts and design. STTT 1(1-2), 9–30 (1997).
doi:10.1007/s100090050003

[26] Vašíček, O., Fiedor, J., Kratochvíla, T., Bohuslav, K., Smrčka, A.,
Vojnar, T.: Unite: An Adapter for Transforming Analysis Tools
to Web Services via OSLC. In: Proc. ESEC/FSE. ACM (2022).
doi:10.1145/3540250.3558939

https://www.docker.com/
https://github.com/containers/podman
https://doi.org/10.1145/2462029.2462031
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-319-08867-9_21
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99429-7_3
https://youtu.be/0Ao0ZogSu1U
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam-service
https://gitlab.com/sosy-lab/software/coveriteam-service
https://doi.org/10.5281/zenodo.7635848
https://doi.org/10.5281/zenodo.7635975
https://doi.org/10.5281/zenodo.7635969
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/s10009-017-0469-y
https://peps.python.org/pep-3333/
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2
https://github.com/hashicorp/vagrant
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1145/3417990.3421407
https://doi.org/10.1016/j.scico.2021.102690
https://doi.org/10.1109/ECBS.2005.59
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1007/s100090050003
https://doi.org/10.1145/3540250.3558939

	I Introduction
	II Background: CoVeriTeam
	III Approach: CoVeriTeam Service
	IV Applications and Use Cases
	V Integration of Tools
	VI Hosting an Instance
	VII Conclusion
	References

