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Abstract. We present CPA-Daemon, a microservice for continuous soft-
ware verification of C code. CPA-Daemon provides full access to the ver-
ifier CPAchecker, but adds a clear network interface based on gRPC
that abstracts from three different modes of execution: (1) running
CPAchecker in a separate JVM, (2) running CPAchecker as a native
executable compiled with GraalVM, and (3) running CPAchecker in a
shared, continuously-running JVM. The last two are novel execution
modes that greatly improve the response time of verification in different
verification scenarios and enable the seamless integration of CPAchecker

as an engine in other verification tooling. Our comparative evaluation
shows that CPA-Daemon reduces the response time on small verification
tasks down to 17%, and that it can reduce the response time of existing
cooperative verification techniques down to 70%. While our implementa-
tion focuses on CPAchecker, the conceptual ideas are of general nature
and can serve as a solution for other verification tools that face sim-
ilar JVM-specific issues. CPA-Daemon is open source and available at
https://gitlab.com/sosy-lab/software/cpa-daemon.

1 Introduction

We present the tool CPA-Daemon (Fig. 1), which is a microservice for continuous
software verification with CPAchecker [1]. Our goal is to encourage a shift of
perspective in the verification community: Verification tools should no longer be
seen as monolithic systems, but as components in a larger verification ecosys-
tem. The well-established microservice architecture suggests itself to this new
paradigm: verifiers can still be developed independently, in different program-
ming languages and with different dependencies. But through a clear network
interface and existing microservice infrastructure, they can be seamlessly and
efficiently integrated into larger verification tooling.

CPAchecker is a successful formal verifier for C programs, written in Java. It
is used as a component in multiple other verification approaches [2–11]. Across
these, we repeatedly observe two issues: First, CPAchecker is a command-line
tool with no API (like most verifiers). This makes its integration in frameworks
unnecessarily difficult. Second, small or “simple” verification tasks suffer from the
large overhead introduced by CPAchecker’s JVM start-up time. Historically, fast-
to-solve verification tasks are considered uninteresting in research. This changes
with incremental and cooperative verification approaches. They often divide one
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Fig. 1: Architecture of CPA-Daemon

large verification task into multiple smaller tasks—either iteratively [3,5, 12–14]
or as a a static decomposition [8, 15–19]. While this reduces the verification work
per task, it multiplies the negative effect of a slow tool start-up. The easy solution
would be to simply not use Java-based verifiers like CPAchecker. But this elimi-
nates 7 out of 15 C verifiers that participated in SV-COMP 2024 [20], including the
three highest-ranked tools. CPA-Daemon addresses both issues: (1) CPA-Daemon
provides a clear network interface based on gRPC [21]. This enables a fast inte-
gration of CPAchecker in other frameworks. (2) CPA-Daemon provides different
modes of operation to address different use cases, including fast-response scenarios.

Figure 1 shows the overall architecture of CPA-Daemon. CPA-Daemon de-
couples the user interface from the verification backend: it allows both local and
distributed use through a unified gRPC interface. Clients control verification runs
through that interface, and CPA-Daemon reports verification results through it. A
health interface is available to check the status of CPA-Daemon, and a run store
persists verification runs and results. CPA-Daemon provides three backends:

(1) Separate JVM: Run the original CPAchecker in a separate, short-lived
JVM for each verification run.

(2) Native Execution: Run a native executable of CPAchecker that was
precompiled with GraalVM [22].

(3) Library: Load and run CPAchecker’s code in the continuously-running JVM
of CPA-Daemon, similar to a software daemon.

Both Native Execution and Library are novel execution modes of CPAchecker
that did not exist before. While Native Execution can also be executed stand-alone
from a command line, Library is only available through CPA-Daemon.

To evaluate the three backends, we use the largest available benchmark set
for the verification of C code, sv-benchmarks [23]. In this process, we show that
CPA-Daemon significantly improves the response time on fast-to-solve verification
tasks (significantly reduced to 17% of the original response time).

In addition, we show that this faster response time per small task also benefits
iterative verification techniques on more complex verification tasks. We do this
on the example of component-based CEGAR (C-CEGAR) [3]. C-CEGAR is a
verification technique that iteratively calls verifier components as executables.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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If we replace these verifier executions by CPA-Daemon, it reduces the response
time of C-CEGAR to 70% (compared to previous work).

Contributions. This work provides the following contributions:

• CPA-Daemon introduces two new flavors of CPAchecker: Native Execution
and Library. Both enable a near-instantaneous runtime of CPAchecker, a
requirement for the integration in many modern software-developer workflows.

• CPA-Daemon’s microservice architecture provides a programming-language-
agnostic interface to CPAchecker. We provide an exemplary command-line
client written in Python.

• We perform a thorough experimental evaluation on sv-benchmarks that shows
significant performance gains through CPA-Daemon.

• We demonstrate how to turn a software verifier into a microservice. This is a
requirement to lifting verifiers into the cloud. The presented concepts are not
specific to CPAchecker and should transfer to other Java-based verifiers.

Related Work. This work shares the goals of decomposition, loose coupling, co-
operation, and modular architectures with the approaches to apply the paradigms
of verification by transformation [24] and cooperative verification [25].

There is research on scaling verification through incremental techniques [5,26–
30], and distributed computing [18, 31–36]. While CPA-Daemon is a microservice
and this enables work distribution, we do not use distributed computing in this
paper. Instead, we focus on another aspect of scalability that is relevant for
Java-based verifiers: reduction of the overhead of tool restarts.

The program-analysis framework Ultimate [37] has decomposed verification
frontends and backends into separate components that can be plugged together
with the Eclipse Plug-in Development Environment (PDE). Four verifiers are com-
positions of these components: Ultimate Automizer [38,39], Ultimate Kojak [40],
Ultimate Taipan [41], and Ultimate GemCutter [42]. CPA-Daemon decomposes
the user interface and verification backend into separate components and makes
it configurable through the modern open-source framework Quarkus [43].

CoVeriTeam Service [44] is a web service that allows users to run verification
tools. Users specify options and the download location for a tool through a YAML-
based configuration [45,46], which makes the service flexible in regards to the tools
it can run. However, the main objective of CoVeriTeam Service is to enable users
to use, integrate, or try out existing tools and tool combinations, without having
to install them locally. It places a low priority on performance and scalability.

Unite [47] is also a framework for exposing verifiers to the web. Unite serves
as an adapter that transforms a verifier into a web service that is compliant
with the Open Services for Lifecycle Collaboration (OSLC) standard. OSLC-
compliant clients can then directly communicate with the verification service.
Unite executes each verification run as a fresh process. We imagine CPA-Daemon
in collaboration with this framework: Integrating CPA-Daemon as a backend
verifier in Unite would allow users to benefit from the performance improvements
of CPA-Daemon without changing their OSLC-compliant clients.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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Fig. 2: Verification approach of C-CEGAR (adopted from [3])

Both CoVeriTeam Service and Unite make arbitrary verifiers available via
the web. They do not try to improve the performance of the verifiers them-
selves but are merely interfaces bridging web requests and verifiers. In contrast,
CPA-Daemon only focuses on CPAchecker with the goal to improve its verifi-
cation performance. CPA-Daemon also exposes a network API of CPAchecker,
but the interface is tailored to CPAchecker.

2 Background

CPAchecker [1] is a successful and versatile framework for software verification.
It is a large software project that is written in Java, has been in development
since 2007, has over 390 000 lines of code, has very high activity with a large
number of users and developers, and would require more than 106 years of
reimplementation effort for a single software engineer [48].

Counterexample-guided abstraction refinement [49] (CEGAR) is an important
approach in model checking [50]. It derives a program abstraction that is as precise
as necessary to prove the correctness of a program, yet as coarse as possible to
keep the verification effort low. Component-based CEGAR (C-CEGAR, Fig. 2) is
the decomposition of CEGAR into individual components: Separate, off-the-shelf
tools implement the three steps of the CEGAR algorithm. The Abstract-Model
Explorer always verifies the full program-under-verification, but with a changing
precision. It starts with a coarse precision that becomes increasingly precise in later
iterations. If the Abstract-Model Explorer reports no violation, C-CEGAR stops
and the program is assumed to be correct. If the Abstract-Model Explorer reports
a violation, the Feasibility Checker checks a subset of program executions that may
lead to that violation. If one of them actually leads to the violation, the program is
assumed to be incorrect. If none leads to a violation, the Precision Refiner extracts
a new precision from that subset of program executions and gives it to the abstract
model explorer for a new verification run. In previous work [3], the most effective
configuration of C-CEGAR used three instances of CPAchecker, each instance
configured differently to fulfill the corresponding C-CEGAR component. While
the most effective, this configuration led to a median run-time increase of 280%.

https://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/achieve.php
https://cpachecker.sosy-lab.org/publications.php
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3 CPA-Daemon Architecture
We implement CPA-Daemon in Quarkus, a Java EE framework for web ser-
vices. Quarkus enables users to easily configure server-related parameters through
environment variables and command-line arguments, e.g., how many verifica-
tion requests to handle in parallel and the verification backend to use. CPA-
Daemon comprises about 5000 source lines of Java code and has an estimated
development effort of 7 person-months.

The communication with clients happens through gRPC, an open-source
request-response protocol that allows stateful network communication through
remote-procedure calls in code. A gRPC interface is defined through a set of
message types (requests and responses) and a set of methods that can be called by
clients. From this interface, users can auto-generate client libraries for various pro-
gramming languages.

As an example, CPA-Daemon has a method StartRun that clients can use to
schedule a new verification run. Listing 1 shows three gRPC messages that are
used with this method. It receives a StartRunRequest and returns a RunResponse.
A StartRunRequest consists of the program to verify, the CPAchecker config, the
program specification to check, and some additional options. A RunResponse can ei-
ther contain an error or an embedded message of type Run. A Run contains a unique
name and a status that signals whether the Run is pending, running, or finished.
If the run is finished, it also contains a result verdict, one or more result messages
that give more information about the verdict, and run details (e.g., produced
output files). If the run is not finished, these values are null. The full definition
of gRPC methods and messages is available in the CPA-Daemon repository.
Example Client. We provide an examplary Python client that allows users
to send verification tasks to CPA-Daemon through the command line. It illus-
trates a possible sequence of communication between clients and CPA-Daemon,
from starting a verification run to signaling that its information can be dis-
missed. Figure 3 shows the procedure that the client follows to do this. Each
arrow from left (Client) to right (CPA-Daemon) is labelled with the gRPC
method that the client calls at the CPA-Daemon instance, and the sent request
messages. Each arrow from right to left is labelled with the gRPC response
message that the CPA-Daemon instance answers.
Separate-JVM Backend. The verification backend Separate JVM executes
each verification run as a new, independent CPAchecker process in its own
JVM. With this backend, CPA-Daemon provides a microservice to CPAchecker
without any changes in the verification behavior. This backend also provides
the baseline for the other two verification backends.

Running CPAchecker in a separate, new JVM on each verification request has
the following benefits: (a) Compared to Native Execution, the JVM may apply just-
in-time (JIT) optimizations to the code of CPAchecker. These optimizations can
be more powerful than compile-time optimizations because they are based on the
current runtime information. (b) Compared to Library, the memory management is
simple because each process has its own memory and a separate garbage collector.
Once a process closes, the operating system automatically frees all of its memory.

https://gitlab.com/sosy-lab/software/cpa-daemon/-/blob/main/src/main/proto/cpachecker.proto
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1 message StartRunRequest {
2 string programCode = 1;
3 string config = 2;
4 string specification = 3;
5 /*..snip other options ..*/
6 }
7 /*..snip other request messages ..*/
8
9 message RunResponse {

10 oneof result {
11 string error = 1;
12 Run run = 2;
13 }
14 }
15 message Run {
16 string name = 1;
17 RunStatus status = 2;
18 Verdict resultVerdict = 3;
19 repeated string resultMessage = 4;
20 RunDetails details = 5;
21 }

CPA-DaemonClient

alt [r3.run.status != FINISHED]

StartRun(request)

RunResponse r1

WaitRun(r1.run.name, timeout)

RunResponse r2

CancelRun(r1.run.name)

RunResponse r3

WaitRun(r1.run.name, timeout)

RunResponse r4

GetFiles(r1.run.name, names)

Files

CloseRun(r1.run.name)

Listing 1: Data structures for communication Fig. 3: Sequence diagram of the
Python client’s communication with
CPA-Daemon

But it also has the following drawbacks: (a) Optimization information is not
shared between different verification runs. (b) For each verification run, a new
JVM process has to be started. Launching a new JVM also includes loading all
relevant CPAchecker classes, which can take several seconds.

Native-Execution Backend. Native compilation of program code is an estab-
lished practice to reduce an application’s startup time and memory overhead.
GraalVM Native Image [22] enables native compilation for Java: it is a free
toolchain that compiles Java bytecode to native machine code. We use GraalVM
to compile CPAchecker to a native executable and give that to the Native
Execution backend, which executes each verification run as a new, independent
process that runs this native CPAchecker executable.

This has the following benefits: (a) The native executable starts faster than
the JVM process, as no class-loading and no code interpretation is required.
(b) Memory management does not induce additional effort (see Separate JVM).

But with the current GraalVM version, it has the following drawbacks: (a) JIT
optimizations are not possible. (b) There are fewer garbage collectors available
than for the JVM. (c) Not all Java features are supported yet. In our case,
the last drawback is negligible: Only the SVG image export of CPAchecker
misses support in the native CPAchecker executable.

There are also two generic challenges in the native compilation of CPAchecker:
First, GraalVM Native Image requires a list of all Java classes that may be
accessed through reflection during runtime. If the native CPAchecker executable
tries to access a class through reflection that we failed to provide to GraalVM
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Native Image, the execution crashes. Unfortunately, CPAchecker heavily relies on
reflection to initialize its concrete verification configuration at startup. The classes
accessed through reflection depend on the concrete CPAchecker configuration, the
program specification, and whether recursion or concurrency occurs in the program
under verification. To collect all relevant Java classes, we run CPAchecker on a
pre-selected list of verification tasks and include a tracer that records all classes
accessed through reflection. We selected the vrification tasks such that they cover
various configurations of CPAchecker, all program specifications that are used
in SV-COMP [20], and programs with and without recursion and concurrency.
Library Backend. Like CPAchecker, CPA-Daemon is written in Java. This
enables it to directly import and use CPAchecker’s Java classes at runtime.
With the Library backend, CPA-Daemon manually translates a given verifi-
cation task into the corresponding CPAchecker configuration and then runs
the verification through CPAchecker’s public Java methods. This happens,
for all runs, in the same JVM that CPA-Daemon runs in—just in a separate
thread per run, to allow for multiple in parallel.

Running all verification runs in a single JVM has the following advantages:
(a) Similar to the Separate JVM backend, the JVM may apply just-in-time
(JIT) optimizations to the code of CPAchecker. (b) Unlike the Separate JVM
backend, this optimization information is potentially shared between different
verification runs. (c) The relevant CPAchecker classes need only be loaded once
for the first verification run, and are then kept in memory. (d) CPA-Daemon
can have more fine-grained control over the behavior of CPAchecker. Cur-
rently, CPA-Daemon uses this control to manage the point in time at which
CPAchecker exports statistics and produces output files.

However, importing CPAchecker as library also has one drawback: Running
all verification runs in a single JVM adds complexity to memory management,
as the garbage collector must handle the memory of all runs simultaneously.
This increases the risk of heap-space exhaustion.
Health Interface. CPA-Daemon provides a REST interface that allows to
query its health status. This interface is compatible with modern microservice
tooling like Kubernetes. We implement a simple health heuristic: CPA-Daemon
can be configured to signal that it requires a restart when a fixed number of
verification runs have finished. We also provide a watchdog that monitors the
health status of CPA-Daemon and restarts it on demand.
Run Store. CPA-Daemon keeps all information about runs in a run store. This
includes a run’s outputs on the console, produced output files, and current status.

4 Evaluation

We answer the following research questions with an experimental evaluation:

RQ 1 Consistency: Does CPA-Daemon produce results that are consistent with
CPAchecker?

RQ 2 Response Time: Have the CPA-Daemon backends Native Execution and
Library a smaller response time compared to Separate JVM?
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RQ 3 Application to Cooperative Verification: Can cooperative verifi-
cation approaches benefit from CPA-Daemon, compared to off-the-shelf
CPAchecker?

Tool Versions. We use verification tasks from sv-benchmarks [51] in the version
used for SV-COMP 2023 [52]. We use CPA-Daemon release 1.0 [53] (branch main),
which includes CPAchecker [1] revision 44879 (branch refactor-run-method) as
a sub-module. This branch of CPAchecker includes memory-leak fixes for use in Li-
brary. We use this version for both standalone CPAchecker and as the basis for the
different CPA-Daemon backends. We use Oracle GraalVM 21+35.1 to run CPA-
Daemon. To run C-CEGAR, we use CoVeriTeam [54] revision 722b8d4. For reliable
resource measurement, we use BenchExec [55] revision 6e7f9c5. Response time is
the elapsed time while the run was executed (called ‘wall time’ in BenchExec).

Experiment Design. For RQ 1 and RQ 2, we run CPAchecker as a stand-
alone tool and CPA-Daemon with its three different backends, each with the
CPAchecker configuration of SV-COMP 2023. We use the Python client that is
distributed with CPA-Daemon. We configure CPA-Daemon and the accompanying
watchdog to perform a server restart after every 100th verification run. The server
restart is implicitly measured in the response time when a client tries to run a
verification task while CPA-Daemon is restarting. We use all verification tasks
with the reachability-safety property unreach-call that are easy to solve for
CPAchecker. We define ‘easy to solve’ as all tasks that CPAchecker can solve
correctly in less than 60 s of response time; this accounts to 1 416 tasks. While
we are interested in the response time and BenchExec can measure that well, it
limits the run time using a CPU time limit. So we give both CPAchecker and
CPA-Daemon a generous maximum time limit of 300 s of CPU time per task.

For RQ 3, we compare C-CEGAR in its original configuration [3] with
CPAchecker in all three components, and C-CEGAR with the Python client
for CPA-Daemon in all three components. For each verification run, a single new
local instance of CPA-Daemon is started. All three Python clients connect to this
instance. We use all 8 872 available verification tasks with the reachability-safety
property unreach-call. Each full C-CEGAR run gets a maximum memory limit
of 15GB and a CPU-time limit of 900 s per task. These resource limits are the
same that SV-COMP uses. The start of CPA-Daemon at the beginning of each
verification run is part of the resource measurements.

All experiments are carried out on machines equipped with one CPU (Intel
Xeon E3-1230 v5, 3.4GHz, 8 processing units) and 33GB of RAM, running
Ubuntu 22.04.3 LTS with 64 bit and GNU/Linux 5.15.0. All runs have access
to all 8 processing units and at most 10GB Java heap memory.

RQ 1 Consistency. We compare the overall verification results of all four
considered approaches: CPAchecker as a standalone application, as well as CPA-
Daemon with the three backends Separate JVM, Native Execution, and Library.
Table 1 shows that CPA-Daemon with backends Separate JVM and Library
provides results that are consistent with CPAchecker: Separate JVM and Library
can solve two and one tasks more than CPAchecker, respectively. Backend

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23
https://gitlab.com/sosy-lab/software/cpa-daemon/-/tree/1.0
https://gitlab.com/sosy-lab/software/cpachecker/-/tree/f4b50ac
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/722b8d4
https://github.com/sosy-lab/benchexec/tree/6e7f9c5


CPA-Daemon: Mitigating Tool Restarts for Java-Based Verifiers 9

0 150 300

CPAchecker (s)

0

150

300
S

ep
ar

at
e

JV
M

(s
)

Fig. 4: Response time

CPA-Daemon

Result CPAchecker Separate JVM Native Library

Correct 1 411 1 413 1 390 1 412
Wrong 0 0 0 0
Unknown 5 3 26 4

Table 1: Overall verification results

Native Execution can solve 21 tasks less than CPAchecker, due to a high number
of non-optimized equals-comparison invocations in the explicit-state analysis.
CPAchecker, Separate JVM, and Library perform a JIT-optimization for these
comparisons and can solve them very quickly. The response-time comparison of
CPAchecker with Separate JVM in Fig. 4 shows that CPA-Daemon does not
introduce significant overhead. The median response time per verification task of
CPA-Daemon is only 89% compared to the response time of CPAchecker.

CPA-Daemon is consistent with CPAchecker. Under certain conditions,
backend Native Execution shows worse results than the other backends.

RQ 2 Response Time. Figures 6a and 6c compare the response times (in
seconds) of CPA-Daemon with backend Separate JVM (on the x-axis) and CPA-
Daemon with backend Native Execution or Library (on the y-axis), respectively.
We consider only verification tasks that both backends can solve in 10 s or less.
This highlights fast-response scenarios, the focus of CPA-Daemon. Points below
the diagonal show that Native Execution (resp. Library) responds faster than
Separate JVM. The violin plots in Fig. 6b and Fig. 6d summarize the effect
that the backends have on the response time compared to backend Separate
JVM, and how this effect distributes across tasks. A value below 100% means
that CPA-Daemon with backend Native Execution (or Library) is faster than
Separate JVM. A value above 100% means that CPA-Daemon with backend
Native Execution (or Library) is slower than Separate JVM. It is visible that
for most of the tasks, both Native Execution and Library are significantly faster
than Separate JVM. In the worst case, Native Execution takes about the same
time as Separate JVM. For Library, there is a small number of tasks for which
it is slower than Separate JVM. We attribute this to the more complex memory
management with Library. The median response time of Library is only 17% of
the response time of Separate JVM, and in 95% of the cases, Library requires
less than 59% the time that Separate JVM takes.

To evaluate scalability, Figs. 6a and 6c compare the response times of back-
ends over all considered verification tasks. This shows that CPA-Daemon with
backend Native Execution is still significantly faster than Separate JVM for
most tasks (median: 27%). But there are also tasks for which Native Execution
is visibly slower than Separate JVM. This can be attributed to the difference
between native execution and interpretation by the JVM with JIT optimiza-
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Fig. 6: Response time (in s) per verification task of backends Native Execution
and Library in relation to backend Separate JVM (all tasks)

tions. In contrast, we observe that Library stays competitive to Separate JVM
over all tasks: The response times of both backends converge, but Library is
faster than Separate JVM in almost all cases.

In fast-response scenarios, both Native Execution and Library are signifi-
cantly faster than Separate JVM for the majority of verification tasks. For
longer-running tasks, Native Execution does not scale well, but Library
scales comparable to Separate JVM and is a bit faster for most tasks.

RQ 3 C-CEGAR. For this research question, we use all 8 872 ReachSafety
verification tasks of SV-COMP and a time limit of 900 s. Figure 7 compares
the response times (in seconds) of C-CEGAR in its original configuration with
CPAchecker, and C-CEGAR that instead connects to CPA-Daemon with backend
Native Execution and backend Library. On the x-axis, the quantile plot shows
the nth fastest correct result for each approach. On the y-axis, the quantile plot
shows the response time that this nth fastest correct result took. For example,
the plot shows at x-value 500 that C-CEGAR with Native Execution produces
its 500 fastest correct results in 3 s or less per result, while C-CEGAR with
CPAchecker and C-CEGAR with Library require for their 500 fastest correct
results up to 5 s per result. In fact, C-CEGAR with CPAchecker and C-CEGAR
with Library only start producing results at about 3 s (y-value at the start of
their plots). Looking at the overall results, C-CEGAR with Native Execution
and C-CEGAR with Library are both significantly faster than C-CEGAR with
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rithmic scale on y-axis

the original CPAchecker: their y-values are significantly smaller for x-values 800
to 3 000. C-CEGAR with Library solves the most tasks (right end of plot).
It solves 35 tasks more than C-CEGAR with the original CPAchecker, and
reduces the median response time down to 70%.

Figure 7 also visualizes the generic difference between the CPA-Daemon
backends Native Execution and Library: Native Execution starts out faster than
Library for fast-to-solve tasks, because it does not have to load Java classes for
the first run (remember that C-CEGAR performs three verifier calls for each
complete CEGAR iteration). But Library scales better for longer-running tasks,
and the initial overhead is amortized if CPA-Daemon is called more often.

The cooperative verification approach C-CEGAR benefits from CPA-
Daemon: The application of CPA-Daemon with Library reduces its median
response time to 70%.

5 Conclusion

CPA-Daemon is a microservice for continuous software verification. It uses two
systematic approaches to reduce the response time of CPAchecker: native com-
pilation and daemonization via use as a library. Our evaluation shows that
CPA-Daemon can reduce the median response time of CPAchecker to 26% and
to 17%, respectively, for simple verification tasks. This speed up and architecture
finally enables the integration of Java-based software verifiers into continuous
software-development workflows. Perhaps even more importantly, we have shown
how to convert a standalone verifier into a microservice with a simple interface.
We expect these approaches to transfer to other Java-based verification tools.
Data-Availability Statement. CPA-Daemon release 1.0 is freely available [53].
The tools that we used for our experiments and all data are available as reproduc-
tion artifact [56] and at: https://www.sosy-lab.org/research/cpa-daemon/
Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY) and the LMU PostDoc Support Fund.

https://www.sosy-lab.org/research/cpa-daemon/
http://gepris.dfg.de/gepris/projekt/378803395
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