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Abstract. This tutorial provides an introduction to CPAchecker for users.
CPAchecker is a flexible and configurable framework for software veri-
fication and testing. The framework provides many abstract domains,
such as BDDs, explicit values, intervals, memory graphs, and predicates,
and many program-analysis and model-checking algorithms, such as ab-
stract interpretation, bounded model checking, Impact, interpolation-based
model checking, k -induction, PDR, predicate abstraction, and symbolic
execution. This tutorial presents basic use cases for CPAchecker in formal
software verification, focusing on its main verification techniques with
their strengths and weaknesses. An extended version also shows further
use cases of CPAchecker for test-case generation and witness-based result
validation. The envisioned readers are assumed to possess a background in
automatic formal verification and program analysis, but prior knowledge
of CPAchecker is not required. This tutorial and user guide is based on
CPAchecker in version 3.0. This user guide’s latest version and other docu-
mentation are available at https://cpachecker.sosy-lab.org/doc.php.

Keywords: CPAchecker · Configurable Program Analysis · Formal Verification ·
Model Checking · Software Verification · Program Analysis · Testing · Tutorial ·
Correctness Certification · Witnesses · Witness Validation · Fault Visualization

1 Introduction

CPAchecker [35] is a framework for configurable software verification with a focus
on the verification of C programs. It is based on the concept of configurable pro-
gram analysis [26, 28, 29] and provides an extensive collection of verification algo-
rithms and abstract domains. Throughout the past years, CPAchecker has been a
top contender in the International Competition on Software Verification [11, 12, 13]
and has helped identify over 240 bugs in Linux device drivers [45, 64, 84].

An extended version of this user guide is available in a technical report [7].
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Fig. 1: Inputs and outputs of CPAchecker when it is used as a verifier, witness
validator, or test-case generator

CPAchecker is open source and written in Java. Founded in 2007 at Simon
Fraser University, it is now maintained by an active community (project statistics
can be found on OpenHub.net). It puts a high priority on extensibility and flexible
reuse of components for developers. The architecture and features of the framework
are described in other articles [35, 48]. More information about the achievements,
history, and license of CPAchecker are available in the extended version [7].

1.1 Use Cases of CPAchecker

There are three main use cases of CPAchecker, with their inputs and outputs
summarized in Fig. 1: (1) As a verifier, CPAchecker takes as input a program
and a specification, and returns a verdict, a verification report, and a verification
witness. The verdict specifies whether the given program adheres to the specifica-
tion, the verification report allows users to examine the verification result, and the
witness contains a machine-readable justification for the returned verdict. (2) As
a witness validator [5, 19], CPAchecker takes as input a program, a specification,
and a witness, and returns a verdict that indicates whether the witness could be
confirmed by CPAchecker. (3) As a test-case generator [32, 52, 75], CPAchecker
takes as input a program and a test-coverage specification, and returns a set of
test cases that cover the program according to the specification.

CPAchecker is also used for program transformation [31, 33, 34, 41, 42], to
explore decompositions of verification problems [4, 27, 37], and to parallelize
verification approaches [23, 37]. This tutorial focuses on using CPAchecker as
a verifier. Information about CPAchecker as a witness validator and test-case
generator is present in the extended version [7].

1.2 Configurable Program Analysis

CPAchecker uses configurable program analysis (CPA) [26, 28, 29] to compute a
program’s reachable states. A CPA specifies an abstract domain and a precision
used to explore a program’s reachable states. The abstract domain defines the
representation of a program’s state, while the precision defines how precise the
abstraction should be. Various CPAs have been implemented in CPAchecker,
each tailored to handle specific program features and perform a dedicated analysis.
CPAs can also be combined to achieve synergy. Furthermore, precisions can be
adjusted dynamically [29], making an analysis coarse but efficient, or precise

https://openhub.net/p/cpachecker
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but resource-consuming. CPAchecker automatically adjusts the precisions via
counterexample-guided abstraction refinement (CEGAR) [24, 43, 44, 53] or some
carefully-designed procedures [15].

1.3 Documentation and Communication

The README and directory doc/ in the CPAchecker project provide useful in-
formation for users and developers. For an overview on the architecture, we
recommend the tool paper [35] on CPAchecker and the publications regard-
ing the CPA concept [26, 28, 29]. CPAchecker supports various verification
algorithms and techniques. The most important techniques in CPAchecker
are explained in separate publications, including data-flow and value analy-
sis [15, 26, 43], SMT-based verification algorithms [22, 38, 39], block-abstraction
memoization [23, 24, 25, 83], program transformations [31, 33, 34, 41, 42], coopera-
tive verification [16, 20], witness certification and validation [5, 19], and test-case
generation [32, 52, 75]. The configurations of CPAchecker that were submit-
ted to competitions are described in the competition contribution papers of
SV-COMP [2, 3, 8, 55, 57, 66, 68, 69, 70, 74, 81, 82], Test-Comp [30, 60, 61, 62], and
RERS [46, 47]. These publications give an indication of the breadth of analyses
available in CPAchecker and its power and flexibility as a verification framework.

Questions, bug reports, and feature requests for CPAchecker are always
welcome on its mailing list (https://groups.google.com/g/cpachecker-users) and
the issue tracker (https://gitlab.com/sosy-lab/software/cpachecker/-/issues).

1.4 CPAchecker in Education

Due to the many algorithms and abstract domains, and the clean and extensi-
ble architecture, CPAchecker is an ideal tool for teaching of program-analysis
techniques. The techniques can be explored in comparison and their effects ob-
served. Visualizations of abstract states and error paths help understand the
reasons for correctness or violation of the specification. We use CPAchecker
in various courses on software engineering, software verification, software test-
ing, and program semantics.

1.5 Outline

This tutorial starts in Sect. 2 with installation instructions and a first example of
running CPAchecker. Section 3 explains the inputs and outputs of CPAchecker.
Finally, Sect. 4 gives an overview on the most important analysis techniques that
CPAchecker provides for software verification.

The extended version [7] includes further information on CPAchecker, pro-
vides an overview of all concrete example command lines together with references
to the respective part of the tutorial, provides more information about the
CPAchecker project, its development history, achievements, and licensing, pro-
vides some more detailed examples for the presented analysis techniques, and
explains how to use CPAchecker for witness validation and test-case generation.

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/README.md
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc
https://groups.google.com/g/cpachecker-users
https://gitlab.com/sosy-lab/software/cpachecker/-/issues
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2 Getting Started with CPAchecker

In the following, we explain the installation and a few alternatives for executing
CPAchecker on individual verification tasks.

For trying out CPAchecker and following this tutorial we provide a few
example programs in a reproduction package [6]. We assume this package was
downloaded and unpacked, and that the current working directory is its root
directory (where directory examples/ is visible). The execution of each example
in this tutorial should take less than 10 seconds.

2.1 Local Installation

Installation Requirements. Most features of CPAchecker require a 64-bit
GNU/Linux machine, unless users build the required libraries themselves. A limited
feature set is usable on other platforms. We recommend a current LTS version of
Ubuntu; recent versions of other distributions can be expected to work as well.

Installation. For users on Debian or Ubuntu we provide a package repository
at https://apt.sosy-lab.org. Please follow the instructions on that webpage
to enable the repository. Afterwards, the latest version of CPAchecker can be
installed with sudo apt install cpachecker.

For users without root access or on other distributions, we also provide
CPAchecker as pre-built binary releases via Zenodo [49] and our download
page. Please ensure that a Java Runtime Environment (JRE) is available (for
CPAchecker 3.0, Java version 17 or newer is required). Unpack the archive for
CPAchecker after the download. We recommend adding CPAchecker’s bin/
directory to the PATH environment variable. This way the examples provided in
this tutorial work as is, without having to specify the full path to the cpachecker
executable every time. If CPAchecker was installed via the package repository,
changing the PATH variable is not necessary.

Execution. To try out CPAchecker, run the following command from the
reproduction package’s [6] root directory:

cpachecker examples/example-safe.c

This will verify that there is no assertion violation in program example-safe.c,
and report that the program satisfies the specification. Further information
is provided in Sect. 2.4.

2.2 Execution via Container

CPAchecker is available as an image in OCI format, for use with container
runtimes like Podman and Docker. The identifiers of the images are sosylab/
cpachecker (always the latest release) and sosylab/cpachecker:3.0 for version 3.0.
The following command line executes CPAchecker 3.0 from a container (may
require sudo, depending on the Docker installation):

https://apt.sosy-lab.org
https://doi.org/10.5281/zenodo.3816620
https://cpachecker.sosy-lab.org/download.php
https://cpachecker.sosy-lab.org/download.php
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://podman.io/
https://hub.docker.com/r/sosylab/cpachecker/
https://hub.docker.com/r/sosylab/cpachecker/
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docker run -v "$(pwd)":/workdir sosylab/cpachecker:3.0 \
examples/example-safe.c

Command-line argument -v "$(pwd)":/workdir makes the current working
directory ($(pwd)) available in the started container at path /workdir. This
is the default entrypoint of the CPAchecker images. Command-line argument
-u $UID:$GID might be added after docker run to set the user and group ID
of the container to the current user and group ID: output files produced by
CPAchecker are then owned by the current user instead of root. Argument
examples/example-safe.c is passed to CPAchecker and will be explained in
Sect. 2.4. The command-line arguments and input files can be adjusted as usual.

2.3 Remote Execution via Website

We provide a web interface for CPAchecker at https://vcloud.sosy-lab.
org/cpachecker/webclient/run/. The examples of this paper are available as
Examples on the left of the page.

2.4 Example Verification Task

For all example command lines in this paper we assume a local installation
of CPAchecker and that the artifact with the examples [6] has been
unpacked in the current directory (such that the directory examples/ is
present). If necessary, e.g., for Docker usage, please adjust the command
lines accordingly.

Program Description. We use the program in Fig. 2a. This program initializes
variables n and x to two nondeterministic but concrete values of type unsigned
int (modeled by calls to __VERIFIER_nondet_uint()) and then initializes y to
the difference between n and x. As long as x is larger than y, the while loop
decrements x and increments y by one. If the sum of x and y does not equal n at
the end of a loop iteration, __assert_fail at line 10 triggers a program error
(arguments omitted for simplicity). The program is correct with respect to the
specification that __assert_fail is unreachable, because the sum of x and y
always equals n at the end of every loop iteration. A variant of this program is
shown in Fig. 2b. The variant follows the same execution except at line 9. Here
an error is triggered if x is smaller than y. This error is reachable by initializing
n to 3 and x to 2 (among many other possibilities).

Verification Run. To verify the example program in Fig. 2a with CPAchecker,
execute the below command in a terminal (cf. example default on the web service):

cpachecker examples/example-safe.c

This command line does not specify an explicit configuration. In this case
CPAchecker uses the default configuration, which is the currently recommended

https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/default
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1 extern unsigned
__VERIFIER_nondet_uint();

2 extern void __assert_fail();
3 int main() {
4 unsigned n =

__VERIFIER_nondet_uint();
5 unsigned x =

__VERIFIER_nondet_uint();
6 unsigned y = n − x;
7 while(x > y) {
8 x−−; y++;
9 if (x + y != n) {

10 __assert_fail();
11 }
12 }
13 return 0;
14 }

(a) example-safe.c (error unreachable)

1 extern unsigned
__VERIFIER_nondet_uint();

2 extern void __assert_fail();
3 int main() {
4 unsigned n =

__VERIFIER_nondet_uint();
5 unsigned x =

__VERIFIER_nondet_uint();
6 unsigned y = n − x;
7 while(x > y) {
8 x−−; y++;
9 if (x < y) {

10 __assert_fail();
11 }
12 }
13 return 0;
14 }

(b) example-unsafe.c (error reachable)

Fig. 2: Example C programs

configuration. Like most configurations shipped with CPAchecker, the default
configuration uses the default specification, which specifies that no C assertion
error __assert_fail and no label named ERROR should be reachable. The speci-
fications, configurations, and the available analyses are described in more detail
in Sect. 3.2, Sect. 3.3, and Sect. 4.

At the end of its execution, CPAchecker produces the following messages:
Verification result: TRUE. No property violation found by chosen configuration.
More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

The verification result TRUE indicates that the error (line 10 in Fig. 2a) is
not reachable. We can also change the input program to example-unsafe.c in
the command line. In this case, the verification result is FALSE, meaning that
CPAchecker finds an execution path that triggers the error. The meanings of
verification results and how to navigate through the generated report is the topic
of Sect. 3.4 and Sect. 3.5, respectively.

3 Input and Output Interface of CPAchecker

Figure 1 shows the inputs and outputs of CPAchecker. CPAchecker always
takes a program, a specification, and a configuration as input. It always produces
a verdict and a report. Depending on how the user intends to use it, either as a
verifier, a witness validator, or a test-case generator, CPAchecker may also take
a verification witness as input, or produce witnesses or test cases as output.

3.1 Input Program

CPAchecker supports a large subset of the GNU-C11 features. Normally, the
verifier expects pre-processed input files. CPAchecker supports compiler direc-
tives (e.g., #include or #define) if the command-line argument --preprocess

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c
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Table 1: Provided specifications (files in config/specification/)
Specification Description

ErrorLabel Labels named ERROR (case insensitive) are never reachable.
Assertion All assert statements hold.
default Both ErrorLabel and Assertion hold.
overflow All operations with a signed-integer type never produce values outside

the range representable by the respective type.
datarace Concurrent accesses to the same memory location must be atomic if

at least one of them is a write access.
memorysafety All memory deallocations and pointer dereferences are valid and all

allocated memory is pointed to or deallocated when the program exits.
memorycleanup All allocated memory is deallocated before the program exits.

is given, in which case CPAchecker pre-processes the input C program. To
guarantee a meaningful verification of programs that use external functions, in-
cluding functions in the C standard library, the implementations of the functions
have to be provided in the input programs. Otherwise, CPAchecker overapprox-
imates their behavior, potentially leading to false alarms. Two exceptions are
the function pthread_create for creating a new thread and functions malloc,
memset, etc., for manipulating memory, which are handled out-of-the-box by
CPAchecker’s concurrency and memory analyses, respectively. To verify a soft-
ware project that consists of multiple C files, all relevant files must be listed
on the command-line. By default, CPAchecker starts the analysis from the
function main. Another entry function can be specified with the command-line
argument --entry-function <entry function>.

The semantics of a C program depends on the runtime platform, which consists
of a machine architecture, a data model, and an operating system. CPAchecker
assumes a single platform during verification. The command-line argument --32
(default) sets the platform to 32-bit x86 Linux (ILP32) and --64 sets the platform
to 64-bit x86 Linux (LP64) [78].

3.2 Program Specification

Besides the input program, a specification is needed as input for CPAchecker.
The specification defines what property of the program should be checked.
CPAchecker supports an automaton-based specification language (similar to
Blast [17] and Slam [9]) to define program specifications (documented in
doc/SpecificationAutomata.md). CPAchecker ships with several common spec-
ifications in the directory config/specification/. A selection is listed in Ta-
ble 1. CPAchecker also supports property files written in the specification
language that was standardized by the International Competition on Software
Verification (SV-COMP) [13].

The command-line argument --spec <specification> defines the specifica-
tion to use. It accepts the path to a specification-automaton file, an SV-COMP prop-
erty file, or the name of one of the specifications that ship with CPAchecker. For

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/default.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/overflow.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/datarace.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorysafety.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorycleanup.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/SpecificationAutomata.md
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/properties
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1 OBSERVER AUTOMATON AssertionErrorAutomaton
2 INITIAL STATE Init;
3 STATE USEFIRST Init :
4 // AST -based matching of function calls to __assert_fail
5 MATCH {__assert_fail($?)}
6 -> ERROR("assertion in $location");
7 END AUTOMATON

Fig. 3: Example of automaton-based specification for checking assert statements

example, to verify a program against the provided specification Assertion with
CPAchecker’s default analysis, we run (cf. example assert on the web service):

cpachecker [--preprocess] --spec Assertion examples/example-safe.c

The square brackets in the above command indicate that argument --preprocess
may be omitted if the program does not contain compiler directives (cf. Sect. 3.1).

Figure 3 shows a simplified version of the Assertion specification. The speci-
fication is violated if a call to function __assert_fail is reachable in the given
input program, which matches how assert statements appear in a C program af-
ter pre-processing. The automaton starts in the initial state Init and observes the
analyzed program operations until an operation matches a call to __assert_fail
(line 5) with an arbitrary number of function-call arguments (denoted by $?).
In this case, the automaton transitions to the special state ERROR (line 6) that
signals a specification violation with the given explanation.

3.3 CPAchecker Configuration

CPAchecker is highly configurable via a set of configuration options, which are
documented in the file doc/ConfigurationOptions.txt. Configuration options
are specified as key-value pairs in a configuration file or on the command line. An
extensive set of bundled configuration files is available in directory config/. Most
of these bundled configurations specify default values for common configuration
options, e.g., the specification config/specification/default.spc and a time
limit of 900 s. Command-line arguments overwrite these defaults.

It is possible to write and provide own configuration files. Their format
is inspired by Windows INI files with some extensions like include directives.
A full description is available in doc/Configuration.md. Configuration files may
use relative paths. CPAchecker interprets these relative paths relative to the
directory of the respective configuration file.

Command-line argument --config CONFIG_FILE selects a configuration file.
The bundled configuration files can also be selected with short-hand arguments
that consist of the base name of the configuration file, e.g., --kInduction for
the configuration file config/kInduction.properties or --svcomp24 for the
configuration file config/svcomp24.properties. When no configuration file is
explicitly specified, CPAchecker runs in its default configuration (defined by
the configuration file config/default.properties).

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/assert
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/ConfigurationOptions.txt
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/default.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/Configuration.md#configuration-file-format
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/svcomp24.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/default.properties
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The command-line argument --option key=value sets a single configuration
option. The order of command-line arguments is irrelevant. If an option is set
both in the configuration file and through --option, the --option value takes
precedence and overwrites any value from the configuration file.

CPAchecker provides shortcuts for the most common configuration op-
tions, for example --64 to specify the platform as 64-bit x86 Linux (LP64),
or --timelimit to set an analysis time limit. A full list of shortcuts is available
via cpachecker -h and in doc/Configuration.md. For technical reasons, a few
command-line arguments exist that can only be specified through command-line
arguments and not via configuration files. These arguments include --benchmark
(which leads to better performance by disabling CPAchecker-internal assertions,
writing no output files, and much more) and --heap (which adjusts the amount
of memory used by the JVM for CPAchecker).

As an example, consider the following command line (cf. example settingOptions
on the web service):

cpachecker --kInduction --timelimit 900s --heap 2000M \
--spec ErrorLabel examples/example-safe.c \
--option solver.solver=MATHSAT5

This invokes CPAchecker with the configuration for k -induction, sets the con-
figuration option limits.time.cpu for the time limit to 900 s, tells the JVM to
use 2 000MiB of heap memory, chooses the specification file ErrorLabel, the pro-
gram program.c as input file, and sets the configuration option solver.solver
to MATHSAT5.

3.4 Verification Verdict

CPAchecker may report three different verification verdicts: (1) TRUE, if it proves
that the program satisfies the specification; (2) FALSE, if it proves that the
program does not satisfy the specification; (3) UNKNOWN, if it cannot decide the
verification task using the given resource limits and configuration.

3.5 Interactive Report in HTML Format

In addition to a verification verdict, CPAchecker produces detailed information
about the performed analysis in directory output/ in the current working directory.
This usually includes an interactive report in HTML format. Note that different
configurations may produce different output files.

The interactive report offers a graphical interface for users to inspect the
results of CPAchecker. It allows to inspect, among others: the control-flow
automata (CFA) of the input program, the abstract reachability graph (ARG)
that was constructed by the chosen configuration, statistics, and an error path
that violates the specification (if the verdict is FALSE).

In the following we explain the most important parts of this report. A screen-
shot of the report is shown in Fig. 4. An example report is provided online. If

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/Configuration.md
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/settingOptions
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://cpachecker.sosy-lab.org/counterexample-report/ErrorPath.0.html
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Fig. 4: Screenshot of the HTML report for program example-unsafe.c

CPAchecker reports the verdict FALSE and the used analysis provides detailed
counterexample information, the report file is output/Counterexample.0.html
(number 0 may differ). Otherwise, the report file is output/Report.html.

Control-Flow Automata. The tab CFA in the report shows the input program
in the internal representation of CPAchecker, the control-flow automata (CFA).
A CFA consists of program locations (nodes of the graph) and program statements
(edges of the graph). In the report, a double-click on a CFA edge navigates to
the source-code line it represents. The drop-down menu “Displayed CFA” can be
used to display a single CFA for a single program function.

Abstract-Reachability Graph. The tab ARG in the report shows a graphical
representation of the program states that were explored by CPAchecker in the
form of an abstract-reachability graph (ARG). The right-hand side of Fig. 4 shows
an ARG. Each node in the ARG represents an abstract state of the input program.
CPAchecker constructs abstract states according to the selected configuration.
An abstract state usually represents a set of concrete program states in order to
overapproximate the reachable state space. Two abstract states are connected
by a directed edge if one state is the successor to the other. The directed edge
goes from predecessor to successor and is labeled with a program operation that
induced the predecessor-successor relation during analysis.

If CPAchecker reported the verdict TRUE, the ARG represents all reachable
abstract program states. If CPAchecker reported the verdict FALSE, nodes and
edges that are part of the error path are marked in red (as in Fig. 4).

Error Path. If the verification verdict is FALSE and the analysis provides detailed
counterexample information, the report includes a textual error-path section
as separate panel on the left (toggle with button “Show Error-Path Section”).
This allows users to step through the error path that CPAchecker computed.
The textual error path is a list of program statements, accompanied by concrete
assignments to all variables on the error path. A button -V- is displayed next
to each statement, which indicates the concrete variable assignments at the
respective location. To replay the error path step-by-step, users can click on

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c
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<...>
content:
- invariant:

type: "loop_invariant"
location:

file_name: "example -safe.c"
line: 7
column: 3
function: "main"

value: "( x + y == n )"
format: "c_expression"

(a) Relevant sections of a correctness
witness for the safe program in Fig. 2a

<...>
content:
- segment:

- waypoint:
type: assumption
location:

file_name: "example -unsafe.c"
line: 6

constraint:
value: "x == 0 && n == 1"

- segment:
- waypoint:

type: target
location:

file_name: "example -unsafe.c"
line: 10

(b) Relevant sections of a violation witness
for the unsafe program in Fig. 2b

Fig. 5: Example verification witnesses (format version 2.0, slightly shortened for
readability)

the Start button on the top left. Then, two buttons Next and Prev can be
used to navigate through the error path.

3.6 Statistics

CPAchecker collects a variety of statistics, depending on the chosen analysis.
These are presented in the interactive report under tab Statistics and are also writ-
ten to file output/Statistics.txt. With the command-line argument --stats,
CPAchecker prints the statistics to the console at the end of the verification run.

The statistics help users to evaluate the performance of the analysis. Below is an
example excerpt of a run’s statistics that shows the time spent on SMT solving, the
total number of computed reachable abstract states, and the consumed CPU time.

Total time for SMT solver (w/o itp): 0.017s
[...]
Size of reached set: 10
[...]
CPU time for analysis: 0.860s

A separate tutorial covers how to interpret CPAchecker statistics in more detail.

3.7 Verification Witnesses

Verification witnesses [5, 19] help users and tools to reason about verification
results and allow independent validation of the verification result. Validation is
usually easier than verification, thanks to the additional information the witness
provides. CPAchecker can both export witnesses for verification results and
validate witnesses that other tools produce. The extended version [7] explains
witness validation in detail.

Correctness Witnesses. Correctness witnesses are defined for reachability of
error locations and detection of signed-integer overflows in sequential programs.

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/tutorials/interpret-statistics.md
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1 unsigned __VERIFIER_nondet_uint() {
2 static unsigned call_count = 0;
3 unsigned retval;
4 switch (call_count) {
5 case 0: retval = 2U; break;
6 case 1: retval = 2U; break;
7 }
8 ++call_count;
9 return retval;

10 }

Fig. 6: Test harness generated for the example program in Fig. 2b

CPAchecker produces such a witness not only if the verdict is TRUE, but also if it is
UNKNOWN (in this case with partial information). The witness contains information
about the explored program state space in the form of loop and location invariants.
In case the analysis result is TRUE, the invariants hold whenever the program
execution passes through the respective location.

Figure 5a shows an excerpt of a correctness witness for the safe program in
Fig. 2a. It reports the loop invariant x + y == n for the loop head in line 7.

Violation Witnesses. Violation witnesses represent one or more program paths
that lead to a specification violation. This is achieved by specifying assumptions
about the program inputs and the control flow of the program.

Figure 5b shows an excerpt of a violation witness for the unsafe program in
Fig. 2b. It shows the program path that leads to the assertion failure at line 10
when x is assigned value 0 and n is assigned value 1.

3.8 Test Harnesses

If CPAchecker finds a specification violation (verdict FALSE), it produces a
test harness that triggers this violation through test execution. A test harness
contains a sequence of external inputs (e.g., for inputs modeled by __VERIFIER_-
nondet*) to the program that trigger an execution path to the specification
violation. Figure 6 shows an excerpt of a test harness for the example program
in Fig. 2b. The two return values 2U (lines 5 and 6) initialize, in the program
under analysis (Fig. 2b), both variables n and x with value 2. This triggers the
assertion failure at line 10 of the program.

The test harness can be compiled with the program under analysis:

gcc output/Counterexample.1.harness.c examples/example-unsafe.c

This produces a binary a.out. The execution of ./a.out exhibits that the claimed
specification violation is actually reachable. It reports:

CPAchecker test harness: property violation reached

The extended version [7] gives more details on test generation with CPAchecker.
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Table 2: Commonly-used configurations and supported specifications
Configuration Specification (cf. Sect. 3.2) Description

Configurations for reachability specifications:
--valueAnalysis-NoCegar-join

default, Assertion, ErrorLabel,
custom automaton specifications,
and SV-COMP property
unreach-call.prp

Section 4.2
--symbolicExecution-NoCegar Section 4.4
--predicateAnalysis Section 4.5
--bmc-incremental Section 4.6
--kInduction Section 4.7

Special-purpose configurations:
--smg memory safety (memorysafety

and memorycleanup)
Section 4.8

--lassoRankerAnalysis termination Section 4.9
--terminationToSafety
--predicateAnalysis--overflow overflow Section 4.10
--dataRaceAnalysis datarace Section 4

Meta configurations:
--svcomp24 reachability specifications

and all SV-COMP properties
[8]

default (no argument) Section 4.1

4 Verification Analyses and How to Select Them

This section shows how to execute various commonly-used verification analyses
in CPAchecker. These analyses can be divided into three groups depending on
the kind of specifications they can check. First, there are analyses that perform a
reachability analysis. These support common specifications, for example, reacha-
bility of an error location or an assertion violation. Second, there are analyses
that support a particular special-purpose specification. Third, there are meta
analyses that implement strategy selection and delegate to one of the above
depending on the provided specification. Table 2 lists common configurations
and the respective specifications they support. Apart from the configuration
--dataRaceAnalysis, which performs partial order reduction [73] over memory
accesses in combination with value analysis [43], the following sections explain
these configurations in more detail.

4.1 Selecting an Analysis

Selecting an analysis of CPAchecker primarily depends on the kind of specifica-
tion that should be verified. Memory safety, overflows, and data races can each be
verified by exactly one recommended analysis, which is listed in Table 2. For termi-
nation, there are two recommendations, described in Sect. 4.9. If SV-COMP prop-
erty files are used to encode the specification, meta configurations of CPAchecker
automatically select a recommended analysis depending on the specification.

For standard reachability specifications a wide range of different analyses and
techniques is available in CPAchecker. Each of them has their strengths and
weaknesses, and while some of them are more powerful or efficient in general,

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar-join.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/default.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/properties/unreach-call.prp
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/symbolicExecution-NoCegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-incremental.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/smg.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorysafety.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorycleanup.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/lassoRankerAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/terminationToSafety.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis-{}-overflow.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/overflow.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/dataRaceAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/datarace.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/svcomp24.properties
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp24/c/properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/dataRaceAnalysis.properties


556 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

Table 3: Main configuration flavors of value analysis
Precision Refinement Path Sensitivity Configuration

✗ ✗ --valueAnalysis-NoCegar-join
✗ ✓ --valueAnalysis-NoCegar
✓ ✓ --valueAnalysis-Cegar

none of them always outperforms all of the others, so it can be worthwhile
experimenting with several analyses.

The general recommendation for most use cases is the default analysis of
CPAchecker (used if no other configuration is selected on the command line).
It is a meta configuration that uses k -induction (--kInduction, most effective
overall in our experience) for reachability specifications.

CPAchecker’s value analysis (--valueAnalysis-NoCegar-join), symbolic
execution (--symbolicExecution-NoCegar), and bounded model checking (BMC,
--bmc-incremental) are mostly suited for finding specification violations. While
they are often quite efficient in finding bugs, they are often inefficient for proving
correctness for large programs. In our experience these configurations usually
either succeed quickly or will not produce a result at all.

To prove the absence of specification violations in larger programs, either
abstraction of the program state space or a proof technique such as induction
needs to be used. Value analysis and symbolic execution support a limited form
of abstraction (ignoring irrelevant program variables and clauses) if their configu-
ration variants with precision refinement are chosen as described in the respective
sections below. Predicate abstraction (--predicateAnalysis) is stronger and
can in principle find arbitrary loop invariants as long as the loop invariants do
not require quantifiers nor floating-point arithmetic. k -Induction (--kInduction)
on the other hand requires that an induction proof can be found for the program.

Another aspect that needs to be considered is that value analysis and symbolic
execution in CPAchecker do not support precise reasoning about dynamically
allocated memory and data structures on the heap, whereas BMC, predicate
abstraction, and k -induction do support this. However, the latter three are based
on solving (sometimes large) formulas with an SMT solver, which may not scale.
Value analysis has the advantage that it does not require SMT solving, but
the disadvantage that it cannot reason about non-deterministic values. Symbolic
execution uses an SMT solver, but only when required for non-deterministic values.

The value analysis can be considered comparatively easy to understand con-
ceptually, which makes it a good starting point for the use of CPAchecker.

4.2 Value Analysis

CPAchecker’s value analysis tracks concrete value assignments. There are two
main configuration choices for the value analysis: (1) whether to use precision
refinement, and (2) whether to be path sensitive. Table 3 lists the available

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar-join.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-Cegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar-join.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/symbolicExecution-NoCegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-incremental.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
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1 extern void __assert_fail();
2 int main() {
3 int x = 0;
4 int y = 0;
5 int z = 0;
6 while (x < 2) {
7 x++;
8 y = z + 1;
9 }

10 if (z != 0) {
11 __assert_fail();
12 }
13 return 0;
14 }

1 extern unsigned __VERIFIER_nondet_uint();
2 extern void __assert_fail();
3 int main() {
4 unsigned int x = __VERIFIER_nondet_uint();
5 unsigned int y = x;
6 unsigned int z = __VERIFIER_nondet_uint();
7 while (x < 2) {
8 x++;
9 y++;

10 z = x + z;
11 }
12 if (x != y) {
13 __assert_fail();
14 }
15 return 0;
16 }

Fig. 7: Program example-const.c Fig. 8: Program example-sym.c

command-line arguments to run CPAchecker with the corresponding config-
uration of value analysis. For example, the following command runs a config-
uration of value analysis that implements constant propagation [1] (no preci-
sion refinement, no path sensitivity) on the program in Fig. 7 (cf. example
valueAnalysis-NoCegar-join on the web service):

cpachecker --valueAnalysis-NoCegar-join examples/example-const.c

This configuration tracks only value assignments that always hold on a given
location, because abstract states are joined when control flow meets. This is
efficient, but in most cases not powerful enough to verify programs. For Fig. 7, it
suffices because only the value of variable z is needed to prove the program safe, and
this is always 0. The extended version [7] shows the state-space exploration of the
value analysis for this example in more detail. If, however, the program safety would
also depend on the values of x or y after the loop, the verification result would be
UNKNOWN because the analysis does not track these non-constant variable values.

The value analysis with path sensitivity tracks value assignments per program
path and location. For the example in Fig. 7, it would keep track of all variable
values and fully unroll the loop. This leads to path explosion when many paths with
distinct value assignments exist, because the analysis tracks all of them separately.

Value analysis with path sensitivity and precision refinement mitigates this
path explosion by tracking only those value assignments that are necessary for
the analysis to prove the program safe. This is more efficient than value analysis
without precision refinement in the common case where not all variables in
the program are relevant for safety, like in Fig. 7. The relevant variables are
detected automatically through counterexample-guided abstraction refinement
(CEGAR) with Craig interpolation [43].

Because the value analysis always tracks concrete value assignments and
overapproximates nondeterministic values, it may find false alarms. To mitigate
this, CPAchecker runs a precise, SMT-based feasibility check on every found
potential error path and only reports confirmed specification violations. This can
be seen in the output of CPAchecker, which is provided in the extended version [7].

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-const.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-sym.c
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/valueAnalysis-NoCegar-join
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4.3 Interval-Based Data-Flow Analysis

The data-flow analysis (DF) of CPAchecker is a lightweight proof-finding tech-
nique that uses arithmetic expressions over intervals as its abstract domain [15, 21].
It tracks, for an automatically-selected set of program variables, the range of values
that each variable can take in the form of interval expressions, e.g., [l1, u1]∪ [l2, u2],
where li (resp. ui) is a numerical value representing the lower (resp. upper) bound
of an interval. DF supports dynamic precision refinement. At the beginning of
the analysis, it performs a coarse but efficient program exploration. If some
abstract state reachable in the exploration violates the safety specification, DF
incrementally increases its precision by tracking more program variables, allowing
more complex expressions of intervals, and disabling widening [54]. To run DF in
CPAchecker, provide the configuration --dataFlowAnalysis on the command
line (cf. example dataFlowAnalysis on the web service):

cpachecker --dataFlowAnalysis examples/example-const.c

For the above example, CPAchecker produces the verdict TRUE. A limitation of
DF is that its abstract program exploration cannot identify concrete error paths
when there are specification violations and may sometimes be too imprecise to
find a safety proof. For example, when CPAchecker analyzes example-safe.c
or example-unsafe.c in Fig. 2 with DF, it produces the verdict UNKNOWN. DF
cannot only run standalone but also serve as an auxiliary invariant generator
that assists other analyses, e.g., k -induction [20] (cf. Sect. 4.7).

4.4 Symbolic Execution

The symbolic execution [40] of CPAchecker tracks concrete value assignments
the same way as the value analysis. But for every value that cannot be tracked
concretely, for example because it is assigned non-deterministically, symbolic
execution introduces a new symbolic value si. Whenever a symbolic value is used
in an expression, symbolic execution stores the expression over this symbolic
value without evaluating it. In addition, symbolic execution tracks the constraints
over these symbolic values for each program path. This produces a symbolic-
execution tree (cf. the extended version [7] for details). From this, concrete variable
assignments can be derived for any program path. The symbolic execution of
CPAchecker also supports precision refinement through CEGAR with Craig
interpolation [39]. This determines which variables and constraints must be
tracked through the program.

The below command runs a configuration of symbolic execution [65] without
precision refinement (cf. example symbolicExecution-NoCegar on the web service):

cpachecker --symbolicExecution-NoCegar examples/example-sym.c

Because symbolic execution tracks the expressions over symbolic values without
further abstraction, it is well suited for collecting constraints on inputs for certain
program paths. But this precision also leads to path explosion: The analysis of

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/dataFlowAnalysis.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/dataFlowAnalysis
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/symbolicExecution-NoCegar
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symbolic execution on program example-safe.c (Fig. 2a) does not terminate. To
prove the program safe, it is important to know that the sum of x and y equals n
at line 9. Symbolic execution tracks this by storing the expressions n = s1, x =
s2, y = s1 − s2, x = s2 − 1, y = s1 − s2 + 1, x = s2 − 1− 1, y = s1 − s2 + 1 + 1,
and so on. This produces ever more complicated expressions and does not scale.

The following command runs a configuration of symbolic execution with
precision refinement (cf. example symbolicExecution-Cegar on the web service):

cpachecker --symbolicExecution-Cegar examples/example-sym.c

On the program of Fig. 8, this only tracks assignments and constraints over
x and y, which are necessary to prove the program safe. Assignments to z
are not tracked.

4.5 Predicate Abstraction

Predicate abstraction [36, 59, 63] abstracts the program’s state space with predi-
cates that it learns using CEGAR [53] and Craig interpolation [59]. Compared to
symbolic execution, predicate abstraction is not limited to tracking (symbolic)
values and constraints in the program, but can derive more powerful abstractions.
The computation of abstractions can be costly, thus predicate abstraction uses
large-block encoding [18, 36] to compute abstractions only at certain program lo-
cations, which by default are the loop-head locations. This reduces the number of
abstractions calculated and, hence, the overall cost. To run predicate abstraction,
use the command (cf. example predicateAnalysis on the web service):

cpachecker --predicateAnalysis examples/example-safe.c

In this example, predicate abstraction derives the loop invariant x + y == n,
which proves that __assert_fail in Fig. 2a is unreachable, and hence returns the
verdict TRUE. Learned predicates at these locations are written down in a format
based on SMT-LIB2 [10] into the file output/predmap.txt of the current working
directory. Take the program in Fig. 2a for example. Predicate abstraction can
derive the invariant x + y == n for the while loop at line 7 in function main that
suffices to prove the safety specification that the assertion error is unreachable.
In predmap.txt, this is represented as follows:

(declare-fun |main::n| () (_ BitVec 32))
(declare-fun |main::y| () (_ BitVec 32))
(declare-fun |main::x| () (_ BitVec 32))

main:
(assert (= |main::n| (bvadd |main::y| |main::x|)))

Predicate abstraction can abstract the program state space concisely in a way
that proves the program safe, if it learns the right predicates. Unfortunately, there
is no mechanism forcing predicate abstraction to find predicates that abstract well.
Especially for concrete value assignments in the program, the learned predicates

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/symbolicExecution-Cegar
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/predicateAnalysis


560 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

might enumerate all possible states. For instance, predicate abstraction may
unnecessarily learn the predicates x == 0, x == 1, and x == 2 at line 6 of Fig. 7,
instead of z == 0. Alternatively, Impact [72] is another analysis that abstracts a
program’s state space with predicates. It computes and refines abstractions in
a lazier way compared to predicate abstraction, and can be initiated using the
configuration --predicateAnalysis-ImpactRefiner-ABEl. The two analyses
have shown different and complementing strengths in our empirical evaluations [22]:
Predicate abstraction is more effective at deriving proofs, whereas Impact is more
efficient at finding specification violations.

4.6 Bounded Model Checking

Bounded model checking (BMC) [22, 51] is an analysis specialized in finding
specification violations. Given a bound n, BMC symbolically unrolls the loops
in the program n times, encodes all execution paths and specification violations
(within the unrolling bound n) into an SMT formula, and checks the satisfiability
of the formula with an SMT solver. The satisfiability of the formula directly
corresponds to the feasibility of the encoded error paths. If the formula is satisfiable,
then a specification-violating execution path (with n loop unrollings) exists and
can be extracted from the satisfying assignment. A bounded model checker then
reports the verification verdict FALSE. In case the formula is unsatisfiable, the
program is considered safe up to the bound n. A bounded model checker reports
the verification verdict TRUE if the loops in the program have finite bounds and are
fully unrolled by the bound n. Otherwise, the verdict is UNKNOWN, as the behavior
of the program at higher unrolling bounds is still unknown.

CPAchecker automatically determines the required unrolling bound by in-
crementally increasing the bound using configuration --bmc-incremental. In-
cremental BMC starts with an unrolling bound of 0 and increments the bound
by 1 after each iteration. The analysis terminates once an error path is found,
the safety specification is proven (by fully unrolling all loops in the program),
or a resource limit is reached. For instance, the following command runs BMC
with incrementally increasing loop bound on the program in Fig. 2b (cf. example
bmc-unsafe on the web service):

cpachecker --bmc-incremental examples/example-unsafe.c

CPAchecker finds the bug inside the loop body of the program in Fig. 2b on
its first encounter of the assertion, with zero complete unrollings of the loop.
Running incremental BMC on the correct program in Fig. 2a does not succeed (cf.
example bmc-safe on the web service). During the process, CPAchecker produces
log messages that show the current unrolling bound:

Adjusting maxLoopIterations to 2
(LoopBoundCPA:LoopBoundPrecisionAdjustment.nextState, INFO)↪→

CPAchecker eventually reaches the time limit and the verdict is UNKNOWN, since a
really large unrolling bound (roughly 231) is required to fully explore the program.
If the loop condition at line 7 changes to x > 0 && x < 3 in Fig. 2a, incremental
BMC can prove the program safe with 2 complete loop unrollings.

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis-ImpactRefiner-ABEl.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-incremental.properties
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4.7 Extensions of BMC for Unbounded Verification

BMC can be extended for unbounded verification of programs by employing the
k -induction principle [20, 77] or constructing fixed points, i.e., inductive invariants,
via Craig interpolation [38, 71, 79, 80]. To run k -induction in CPAchecker, use
the configuration --kInduction, which combines k -induction with an auxiliary
invariant generator based on data-flow analysis [15, 20] (described in Sect. 4.3). The
invariants produced by the latter are used to strengthen the induction hypotheses
of the former. This is more effective than plain k -induction [20]. As opposed
to incremental BMC, k -induction could easily prove the safety of the example
programs in Fig. 2a with the command (cf. example kInduction on the web service):

cpachecker --kInduction examples/example-safe.c

CPAchecker has three verification algorithms based on BMC and Craig
interpolation: interpolation-based model checking (IMC) [38, 71], interpolation-
sequence-based model checking (ISMC) [14, 79], and dual approximated reachabil-
ity (DAR) [14, 80]. From unsatisfiable BMC queries, the three algorithms derive
interpolants to construct inductive invariants at loop heads. Such an invariant
overapproximates the reachable states of the program that conforms to the safety
specification, and hence could serve as a proof for the program’s correctness.
IMC, ISMC, and DAR are enabled via the configurations --bmc-interpolation,
--bmc-interpolationSequence, and --bmc-interpolationDualSequence, re-
spectively, and currently support only programs with at most one loop. The tool
CPAchecker verifies the program in Fig. 2a with IMC (--bmc-interpolation)
via the command (cf. example bmc-interpolation on the web service):

cpachecker --bmc-interpolation examples/example-safe.c

It produces the below log message:

The current image reaches a fixed point
(IMCAlgorithm.reachFixedPointByInterpolation, INFO)↪→

The message indicates that IMC has found an inductive invariant for the while
loop at line 7 and proved the safety specification of the program.

4.8 Symbolic Memory Graphs with Symbolic Execution

CPAchecker’s symbolic-memory-graph (SMG) analysis [56] combines symbolic
execution [65] with a graph-based domain that tracks all memory. It is usable in
CPAchecker with the configuration --smg. In addition to common state-space
exploration, the SMG analysis can check for memory safety. The analysis can
detect memory leaks, invalid memory access, and invalid freeing of memory.

SMGs accurately track most memory operations, including pointer arithmetics
and bit-precise reading of memory. They also store memory boundaries and can
thus be used to reason about the validity of pointer dereferences. A distinguishing
feature of SMGs is that linked lists of arbitrary length can be abstracted under

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/kInduction
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolation.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolationSequence.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolationDualSequence.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolation.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/bmc-interpolation
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/smg.properties
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1 #include <stdlib.h>
2 #include <assert.h>
3 extern int __VERIFIER_nondet_int();
4 int main() {
5 int size = 100;
6 int num = __VERIFIER_nondet_int();
7 int * arr = malloc(sizeof(int) * size);
8 for (int i = 0; i < size; i++) {
9 arr[i] = num;

10 num++;
11 }
12 for (int i = size; i >= 0; i−−) {
13 assert(*(arr + i) == num);
14 num−−;
15 }
16 return 0;
17 }

Fig. 9: example-unsafe-memsafety.c with two distinct memory-safety violations

certain circumstances. This is currently limited to lists that terminate in indef-
initely repeating equal values. If the analysis fails to abstract lists of arbitrary
length, it enumerates all possible list lengths. This may lead to a path explosion,
but can still find violations to safety specification.

We can see some capabilities of the SMG analysis on the example program
in Fig. 9. The program first allocates some memory at line 7, then uses this
memory to store some distinct but non-deterministic values in a loop at line 9,
filling the entire memory allocated in arr. Then, in a reversed loop, the saved
values are compared to their expected values at line 13. Please note that this
example is not pre-processed and thus the command-line argument --preprocess
is needed. To start the verification of memory safety with the configuration --smg
on this program, run the following command:

cpachecker --preprocess --smg --spec memorysafety \
examples/example-unsafe-memsafety.c

This detects that the first memory access of the second loop at line 12 is unsafe
(i.e., the verdict is FALSE), as the pointer dereference exceeds the bounds of the
allocated memory. Another error can be found before line 16, as the memory
allocated in arr is never freed. This second memory-safety violation can be found
either by fixing the invalid dereference at line 13, or by using the dedicated
specification memorycleanup:

cpachecker --preprocess --smg --spec memorycleanup \
examples/example-unsafe-memsafety.c

4.9 Termination Analysis

The specification termination requires a program to always terminate. A program
that can execute infinitely is called non-terminating.

CPAchecker provides two approaches for termination analysis: the termination-
as-safety analysis [76] --terminationToSafety and the lasso-based analysis [58]
--lassoRankerAnalysis. Analysis --terminationToSafety is based on loop un-
rolling (similar to BMC, cf. Sect. 4.6). It can prove termination only if all loops

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe-memsafety.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/smg.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorycleanup.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/terminationToSafety.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/lassoRankerAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/terminationToSafety.properties
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1 extern unsigned
__VERIFIER_nondet_uint();

2 int main() {
3 unsigned int n = 1;
4 unsigned int z =

__VERIFIER_nondet_uint();
5 while (n <= z) {
6 n = n + 1;
7 z = z - 1;
8 }
9 return 0;

10 }

(a) example-terminating.c

1 extern unsigned
__VERIFIER_nondet_uint();

2 int main() {
3 int n = 1;
4 int z =

__VERIFIER_nondet_uint();
5 while (n <= z) {
6 n = (n - 1) % 3;
7 z = (z + 1) % 3;
8 }
9 return 0;

10 }

(b) example-nonterminating.c
Fig. 10: Example C programs for demonstration of termination analyses

in the program can be fully unrolled, but is often efficient in finding speci-
fication violations, i.e., counterexamples that show non-termination. Analysis
--lassoRankerAnalysis constructs ranking functions and does not need to unroll
all loops in the program for termination proofs.

Termination-as-Safety Analysis. The termination-as-safety analysis trans-
forms a verification task for a termination specification into a verification task for
reachability. It stores the values of variables that were seen at the programs’ loop
heads. For example, the loop head for the two programs in Fig. 10 is the location
that corresponds to line 5. Similar to BMC (cf. Sect. 4.6), when the analysis visits
a loop head for the n + 1-st time, it constructs an SMT formula that symbolically
represents n loop unrollings. Via satisfiability queries, the analysis checks whether
there exists a reachable state that is visited twice within n loop iterations. If
such a state is found, the program is non-terminating.

The following command line runs the analysis on the program in Fig. 10b
(cf. example terminationToSafety on the web service):

cpachecker --terminationToSafety examples/example-nonterminating.c

CPAchecker reports the verdict FALSE and produces a counterexample that
shows the following three unrollings of the loop (visible in the output file output/
Counterexample.1.core.txt):

(n, z): (1, 2) → (0, 0) → (-1, 1) → (-2, 2) → (0, 0)

The unrolling represents an execution with assignment z = 2 at line 4. By inspecting
the values of n and z at the loop-head location of each iteration, we see that the
state (n,z) = (0,0) is visited twice. This represents a non-terminating loop.

Lasso-Based Analysis. The main idea of the lasso-based analysis is to ex-
tract potentially non-terminating structures called lassos and then pass each
of them to the library LassoRanker [67]. This library constructs ranking func-
tions, which are arguments for termination. Simultaneously, it is looking for a
non-termination argument. If it finds a non-termination argument for at least one
lasso, CPAchecker claims that the program is non-terminating.

https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-terminating.c?p=47297
https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-nonterminating.c?p=47297
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/lassoRankerAnalysis.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/terminationToSafety
https://www.ultimate-pa.org/?ui=tool&tool=lasso_ranker
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The lasso-based analysis complements the termination-as-safety analysis. The
analysis can verify that program example-terminating.c in Fig. 10a terminates,
but not that program example-nonterminating.c in Fig. 10b might not termi-
nate. The following command line runs the lasso-based analysis on the program
in Fig. 10a (cf. example lassoRankerAnalysis on the web service):

cpachecker --lassoRankerAnalysis examples/example-terminating.c

CPAchecker reports the verdict TRUE and produces the output file output/termi-
nationAnalysisResult.txt. This contains a termination argument in the form
of the ranking function 3∗z−3∗n+4. As n is always positive, if the loop condition
n ≤ z is satisfied, 3 ∗ z− 3 ∗n+4 ≥ 0 holds. In addition, after each loop iteration,
the resulting value of the ranking function strictly decreases. After a finite number
of iterations, the value will eventually become smaller than zero,which implies
the negation of the loop condition and thus termination.

4.10 Integer-Overflow Detection

To detect integer overflows, CPAchecker uses a standard reachability analysis,
such as those explained in Sects. 4.2, 4.5, and 4.6, together with an internal en-
coding of overflow conditions as error locations (CPAchecker’s overflow analysis
also checks for underflows). The configurations supporting overflow detection
have the suffix --overflow in their names. By default, CPAchecker only checks
for signed integer overflows, as these are declared undefined behavior by the
C standard. To additionally check for unsigned integer overflows, set the op-
tion overflow.checkUnsigned to true. For instance, to determine whether the
example program in Fig. 2a is free of signed and unsigned integer overflows
while using predicate abstraction (cf. Sect. 4.5), run the command (cf. example
predicateAnalysis-unsigned-overflow on the web service):

cpachecker --predicateAnalysis--overflow \
--option overflow.checkUnsigned=true examples/example-safe.c

The verification verdict is FALSE, because an overflow could happen at line 6 if
n and x are initialized to 0 and 1, respectively.

5 Conclusion

This tutorial gives an introduction to the CPAchecker framework and how to use
it to verify programs. It gives an overview of the main analysis techniques that
CPAchecker offers, together with their strengths and weaknesses, and provides
guidance on how to use CPAchecker in several analysis situations.

We hope that our tutorial is useful for researchers, practitioners, and educators,
and that we stimulate interest and curiosity to dig deeper into the full potential
of software model checking. Interested readers can find more information on the
CPAchecker project web page, in the research publications on CPAchecker, the
CPAchecker GitLab repository, and the CPAchecker mailing list.

https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-terminating.c?p=47297
https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-nonterminating.c?p=47297
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/lassoRankerAnalysis
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/predicateAnalysis-unsigned-overflow
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org/publications.php
https://gitlab.com/sosy-lab/software/cpachecker
https://groups.google.com/forum/#!forum/cpachecker-users
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