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Abstract. Tight automata are useful in providing the shortest coun-
terexample in LTL model checking and also in constructing a maximally
satisfying strategy in LTL strategy synthesis. There exists a translation of
LTL formulas to tight Büchi automata and several translations of Büchi
automata to equivalent tight Büchi automata. This paper presents an-
other translation of Büchi automata to equivalent tight Büchi automata.
The translation is designed to produce smaller tight automata and it
asymptotically improves the best-known upper bound on the size of a
tight Büchi automaton equivalent to a given Büchi automaton. We also
provide a lower bound, which is more precise than the previously known
one. Further, we show that automata reduction methods based on quo-
tienting preserve tightness. Our translation was implemented in a tool
called Tightener. Experimental evaluation shows that Tightener usually
produces smaller tight automata than the translation from LTL to tight
automata known as CGH.

1 Introduction

When a model checking algorithm decides that a given system violates a given
specification, a counterexample showing the undesired system behavior is pro-
duced. If the system has only finitely many states and it violates the specification
given by a formula of Linear Temporal Logic (LTL) or directly by a Büchi au-
tomaton accepting all erroneous behaviors, there exists a counterexample of the
form u.vω called lasso-shaped or ultimately periodic. A serious research effort
has been devoted to algorithms that produce short counterexamples, where the
length of a counterexample u.vω is given by |uv| [7, 12,13,15,19,22,24].

In 2005, Schuppan and Biere [24] defined tight Büchi automata, where each
lasso-shaped word accepted by such an automaton is accepted by a lasso-shaped
run of the same length. Hence, the product of a tight automaton A with an arbi-
trary transition system accepts the shortest lasso-shaped behavior of the system
that is in the language of A by the shortest lasso-shaped accepting run. This
property makes tight automata very useful for automata-based model checking
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algorithms looking for shortest counterexamples, which was the original motiva-
tion for the definition. Tight automata found another application in autonomous
robot action planning, where they are used in the algorithm synthesizing a max-
imally satisfying discrete control strategy while taking into account that the
robot’s action executions may fail [27].

There exist only few algoritms producing tight automata. The oldest is the
translation of LTL formulas into generalized Büchi automata introduced by
Clarke, Grumberg, and Hamaguchi [6] in 1994. The fact that this translation cre-
ates tight automata was shown about 10 years later by Schuppan and Biere [24],
who named the translation CGH. They extended the translation to handle also
past LTL operators and implemented it. The implementation produces automata
in symbolic representation suitable for the model checker NuSMV [5].

There are also two constructions transforming Büchi automata into tight
Büchi automata. The first was introduced by Schuppan [23] and it accepts even
generalized Büchi automata as input. For a (non-generalized) Büchi automaton
with n states, this construction creates a tight automaton with O((

√
2n)2n)

states. The second (and completely different) construction was introduced by

Ehlers [13] and it produces tight automata of size 2O(n2) states. Kupferman
and Vardi [20] provided the lower bound 2Ω(n) as a side result when analyzing
counterexamples of safety properties. We are not aware of any implementation
of these constructions.

This paper presents another construction transforming Büchi automata to
tight Büchi automata. More precisely, our construction accepts (state-based)
Büchi automata (BA) or transition-based Büchi automata (TBA) and produces
tight BA or tight TBA. The construction is similar to the one of Schuppan [23],
but it produces less states: while Schuppan’s construction creates states that
represent a sequence of up to 2n states of the original automata, our construc-
tion creates states representing at most n states of the original automaton and
these n states are pairwise different (potentially with a single exception). The
construction gives us an upper bound in O(n! · n3) which is strictly below both

O((
√
2n)2n) and 2O(n2). We also provide a lower bound in Ω(n−1

2 !) for any
transformation of BA into equivalent tight BA or TBA and a lower bound in
Ω((n − 1)!) for any transformation of TBA into equivalent tight BA or TBA.
Note that the lower bound Ω(n−1

2 !) is strictly above the previous lower bound

2Ω(n). Additionaly, we show that tight automata can be reduced by quotienting
with use of an arbitrary good-for-quotienting (GFQ) relation [8] and the resulting
automaton is equivalent and tight.

Our paper also delivers some practical results. The tightening algorithm has
been implemented in a tool called Tightener. The tool can be easily combined
with other automata tools as it accepts and produces automata in the HOA
format [2]. Furthermore, it also accepts LTL formulas on input. When Tightener
receives an LTL formula, it calls the LTL to TBA translation of Spot [10] as the
first step. We compare Tightener against the CGH translation as this is (as far as
we know) the only other implemented algorithm producing tight automata. Our
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experimental evaluation shows that tight automata produced by CGH usually
have more states than the ones by Tightener.

Contributions of the paper. The paper brings the following contributions:

• a construction transforming BA/TBA into tight BA/TBA with the lowest
theoretical upper bound on the rise of the state space so far,

• lower bounds on any transformation of BA or TBA into equivalent tight
BA/TBA that are currently the highest lower bounds,

• a proof that the automata reduction based on quotienting preserves tight-
ness,

• a tool Tightener producing tight BA/TBA from LTL formulas or BA/TBA,
• an experimental comparison of tight automata by Tightener and CGH.

Structure of the paper. The following section introduces the basic terminology
used in the paper. Section 3 formulates some observations crucial for our tighten-
ing construction, which is then presented in Section 4 together with the implied
upper bound. Section 5 shows the lower bounds on the tightening process. The
postprocessing of tight automata is discussed in Section 6. Section 7 describes
the implementation of our tightening construction in Tightener and Section 8
compares it to the CGH translation in terms of the sizes of produced tight au-
tomata. Finally, Section 9 concludes the paper.

2 Preliminaries

A transition-based Büchi automaton (TBA) is a tuple A = (Q,Σ, δ, I, δF ), where

• Q is a finite set of states,
• Σ is a finite alphabet,
• δ ⊆ Q×Σ ×Q is a transition relation,
• I ⊆ Q is a set of initial states, and
• δF ⊆ δ is a set of accepting transitions.

A run of A over an infinite word u = u0u1 . . . ∈ Σω is an infinite sequence
ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω of consecutive transitions starting in an initial
state q0 ∈ I. By ρi, we denote the transition (qi, ui, qi+1) from ρ. A run ρ is
accepting if (qi, ui, qi+1) ∈ δF holds for infinitely many i. An automaton accepts
a word u if there exists an accepting run over this word. A language of automaton
A is the set L(A) of all words in Σω accepted by A. AutomataA,B are equivalent
if L(A) = L(B).

A transition (p, a, q) ∈ δ is also denoted as p
a−→ q. In graphical representation,

accepting transitions are these marked with the blue dot . In the following,
word without any adjective refers to an infinite word. A path in A from a state
q0 to a state qn over a finite word r = r0r1 . . . rn−1 ∈ Σ∗ is a finite sequence
σ = (q0, r0, q1)(q1, r1, q2) . . . (qn−1, rn−1, qn) ∈ δn of consecutive transitions. We
refer to a first state q0 of a path as to initial state of the path. We naturally
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extend the notation for transitions and write that the path σ has the form
q0

r−→ qn. If such a path exists, we say that qn is reachable from q0 over r. For
a word or a run u = u0u1 . . ., by ui.. we denote its suffix uiui+1 . . . and by ui,j ,
for i < j, we denote its subpart uiui+1 . . . uj−1.

The paper intensively works with lasso-shaped words and runs, which are
sequences of the form s.lω, where s is called a stem and l ̸= ε is called a loop.
Further, s is a mininal stem and l is a minimal loop of a lasso-shaped sequence
u = s.lω if for each s′, l′ satisfying u = s′.l′ω it holds |s|+ |l| ≤ |s′|+ |l′|.

Lemma 1. For each lasso-shaped sequence, there exist a unique minimal stem
and a unique minimal loop.

Proof. The existence of some minimal stem and loop for each lasso-shaped se-
quence u is obvious. We prove its uniqueness by contradiction. Assume that
there are two different pairs s, l and s′, l′ of minimal stem and loop, which
implies that u = s.lω = s′.l′ω and |s| + |l| = |s′| + |l′|. Without loss of gen-
erality, assume that |s| < |s′| and |l| > |l′|. As |s| + |l| = |s′| + |l′|, we get
lω = u|s|+|l|.. = u|s′|+|l′|.. = l′ω and thus s.lω = s.l′ω. However, this is a contra-
diction with the minimality of s, l and s′, l′ as |s|+ |l′| < |s|+ |l| = |s′|+ |l′|. ⊓⊔

The minimal stem and the minimal loop of a lasso-shaped sequence u is
denoted by minS (u) and minL(u), respectively. Moreover, we set |minSL(u)| =
|minS (u)|+ |minL(u)| and call it the size of u.

If ρ is a lasso-shaped run over a word u, then u is a lasso-shaped word such
that |minS (u)| ≤ |minS (ρ)| and |minL(u)| ≤ |minL(ρ)|.

A TBA A is tight [24] iff for each lasso-shaped word u ∈ L(A) there exists an
accepting lasso-shaped run ρ satisfying |minSL(u)| = |minSL(ρ)|. We call such
runs tight.

A state-based Büchi automaton (BA) is a tuple A = (Q,Σ, δ, I, F ), where
Q,Σ, δ, I have the same meaning as in a TBA and F ⊆ Q is a set of accepting
states. The definition of all terms is the same as for TBA with the exception of
accepting run. A run ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω is accepting if qi ∈ F
for infinitely many i. Note that BA can be seen as a special case of TBA as
each BA can be easily transformed into an equivalent TBA only by replacing
its accepting states F with the set of transitions δF leading to these states, i.e.,
δF = {(p, a, q) ∈ δ | q ∈ F}.

Finally, a (state-based) generalized Büchi automaton (GBA) is a tuple A =
(Q,Σ, δ, I,F), where Q,Σ, δ, I have the same meaning as in a TBA and F =
{F1, . . . , Fk} is a finite set of sets Fj ⊆ Q. The definition of all terms is the same
as for TBA, except for an accepting run. A run ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω

is accepting if for each Fj ∈ F there exist infinitely many i satisfying qi ∈ Fj .

3 Observations

First of all, we explain why our definition of TBA considers multiple initial
states. As every TBA can be transformed into an equivalent TBA with a single
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a b
a b a b

Fig. 1. TBA with a single initial state (left) and an equivalent tight TBA with two
initial states (right).

initial state, some definitions of TBA consider exactly one initial state. However,
a tight TBA with one initial state would have only a restricted expressive power.
Indeed, each TBA can be transformed to an equivalent tight TBA with multiple
initial states (as we show in the following section), but there exist TBA that
cannot be transformed into equivalent tight TBA with a single initial state.

Lemma 2. There exists a TBA such that there is no equivalent tight TBA with
a single initial state.

Proof. Let A be the TBA in Figure 1 (left). For the sake of contradiction, assume
that there is a tight TBA B with one initial state q0 and equivalent to A. Then
B must accept aω and bω. Furthermore, since |minSL(aω)| = |minSL(bω)| = 1
and B is tight, there must exist accepting self-loops over a and b in q0. However,
B then accepts for instance a.bω /∈ L(A), which is a contradiction. ⊓⊔

As the (un)tightness of an automaton depends purely on lasso-shaped words
accepted by the automaton and the corresponding accepting runs, we turn our
attention to these words. We start with the definiton of significant positions in
a lasso-shaped word u as positions i where ui.. = minL(u)ω. Formally, we set

Sign (u) = {k, k + o, k + 2o, k + 3o, . . .}

where k = |minS (u)| and o = |minL(u)|. We first prove that for every lasso-
shaped word u accepted by a TBA, there exists a lasso-shaped accepting run
over u.

Lemma 3. Let A be a TBA. For each lasso-shaped word u ∈ L(A) there exists
a lasso-shaped accepting run over u of the form τ.πω, where

• τ is a path over minS (u).minL(u)i for some i ≥ 0 and
• π is a path over minL(u)k for some k > 0.

Proof. Let u ∈ L(A) be a lasso-shaped word and ρ = (q0, u0, q1)(q1, u1, q2) . . . be
an accepting run of A over this word. We focus on states of this run at significant
positions, i.e., states qk, qk+o, qk+2o, . . . where k = |minS (u)| and o = |minL(u)|.
The run and its states at significant positions are depicted in Figure 2. Since A
has finitely many states, there are positions p1, p2 ∈ Sign (u) such that p1 < p2,
qp1 = qp2 , and path ρp1,p2 contains an accepting transition. We set τ = ρ0,p1 and
π = ρp1,p2

. As p1, p2 are significant positions, τ is a path over minS (u).minL(u)i

for some i ≥ 0 and π is a path over minL(u)k for some k > 0. As qp1
= qp2

and
π contains an accepting transition, τ.πω is an accepting run over u. ⊓⊔
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q0 q1 . . . qk . . . qk+o . . . qk+2o . . .
u0 u1 uk−1 uk uk+o−1 uk+o uk+2o−1 uk+2o

minS(u) minL(u) minL(u) minL(u)

states at significant positions

Fig. 2. A run over a lasso-shaped word u = u0u1 . . . with states at significant positions
typeset in red.

Once we know that each lasso-shaped word u ∈ L(A) has a lasso-shaped
accepting run, we also know that there exists at least one accepting lasso-shaped
run ρ over u with the minimal size |minSL(ρ)|. We call such runs minimal. For
example, consider the word b.(abc)ω accepted by the automaton in Figure 3.
The minimal run for this word is τ.πω with the following minimal stem τ and
minimal loop π.

τ = p0
b−→ p1

a−→ p2
b−→ p3

c−→ p4
a−→ r0

π = r0
b−→ r1

c−→ r2
a−→ r2

b−→ r3
c−→ r4

a−→ r5
b−→ r4

c−−→ r6
a−→ r0

Now we formulate and prove Lemma 4, which says that each minimal run
ρ has a specific property regarding repetition of states. The property considers
states of ρ at the positions at least |minS (u)| and less than |minSL(ρ)|. The
property says that there cannot be the same state twice on the considered posi-
tions from which the same suffix of u is read. It can be illustrated on the minimal
run τ.πω mentioned above. If we write the states of this run such that the states
reading the same suffix of u are vertically aligned (see Table 1), the considered
states in each column are pairwise different.

Lemma 4. Let A be a TBA and ρ = (q0, u0, q1)(q1, u1, q2) . . . be a minimal run
over a lasso-shaped word u ∈ L(A). For each |minS (u)| ≤ m < l < |minSL(ρ)|
satisfying um.. = ul.. it holds that the states qm and ql are different.

p0 p1 p2 p3 p4 r0

r1 r2

r3

r4 r5r6

b a b c a

b

c

b

a, b, c

c a

b
c

a

Fig. 3. An example of a TBA that is not tight.
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Table 1. Illustration of the property formulated in Lemma 4. Unconsidered states are
struck through and states at significant positions are typeset in red.

suffices of u : b.(abc)ω (abc)ω bc.(abc)ω c.(abc)ω

states of τ.πω: ��p0 p1 p2 p3
p4 r0 r1
r2 r2 r3
r4 r5 r4
r6 ��r0 ��r1
��r2 ��r2 ��r3
��r4 . . .

Proof. Let A be a TBA and ρ = (q0, u0, q1)(q1, u1, q2) . . . be a minimal run over
a lasso-shaped word u ∈ L(A). For the sake of contradiction, assume that there
are positions |minS (u)| ≤ m < l < |minSL(ρ)| such that um.. = ul.. and qm = ql.
We will show that there exists another lasso-shaped accepting run ρ′ over u of
a smaller size than ρ. This will give us a contradiction with the minimality of ρ.

We start with the case that the path ρm,l from qm to ql contains an accepting
transition. The equation um.. = ul.. implies that um.. = ul.. = (um,l)

ω. Hence,
ρ′ = ρ0,m.(ρm,l)

ω is a lasso-shaped accepting run over u. Moreover, the size of
ρ′ is smaller than the size of ρ as |minSL(ρ′)| ≤ |ρ0,m|+ |ρm,l| = l < |minSL(ρ)|.

Now we solve the case when there is no accepting transition in the path
ρm,l. First, assume that ρm,l is completely included in the minimal stem of
ρ, i.e., m < l ≤ |minS (ρ)|. Then we simply exclude ρm,l from the stem and
get an accepting lasso-shaped run ρ′ over u, which has a shorter stem than
ρ. Second, assume that ρm,l is partly in the minimal stem and partly in the
minimal loop of ρ, i.e., m < |minS (ρ)| < l. Let ρ′ = ρ0,m.ρl.. be the run
ρ without the path ρm,l. Note that ρ′ is again an accepting run over u as
um.. = ul... As ρ is lasso-shaped, we know that ρl.. = (ρl,l+|minL(ρ)|)

ω. Hence,
ρ′ = ρ0,m.(ρl,l+|minL(ρ)|)

ω is also lasso-shaped. Moreover, the size of ρ′ is smaller
than the size of ρ as |minSL(ρ′)| ≤ m + |minL(ρ)| < |minS (ρ)| + |minL(ρ)| =
|minSL(ρ)|. Finally, assume that ρm,l is completely included in the minimal loop
of ρ, i.e., |minS (ρ)| ≤ m < l. Then we exclude ρm,l from the minimal loop of ρ
and get an accepting run ρ′ = ρ0,|minS(ρ)|.(ρ|minS(ρ)|,m.ρl,|minSL(ρ)|)

ω of a smaller
size than ρ. We need to show that ρ′ accepts u. The run ρ′ accepts the word
u′ = u0,|minS(ρ)|.(u|minS(ρ)|,m.ul,|minSL(ρ)|)

ω = u0,m.(ul,|minSL(ρ)|.u|minS(ρ)|,m)ω.
As u|minS(ρ)|,m = u|minSL(ρ)|,m+|minL(ρ)|, we get u

′ = u0,m.(ul,m+|minL(ρ)|)
ω. Fur-

ther, um.. = ul.. = um+|minL(ρ)|.. implies um.. = ul.. = (ul,m+|minL(ρ)|)
ω and thus

u′ = u0,m.um.. = u. ⊓⊔

The next lemma shows that each minimal run over u can be denoted as a
lasso-shaped structure build from one path over minS (u) and at most n paths
over minL(u), where n is the number of states in the automaton. For example,
the minimal run τ.πω over b.(abc)ω presented above can be also denoted as
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π0π1π2.(π3π4π5)
ω, where the paths πi are defined as follows.

π0 = p0
b−→ p1 π3 = r2

a−→ r2
b−→ r3

c−→ r4

π1 = p1
a−→ p2

b−→ p3
c−→ p4 π4 = r4

a−→ r5
b−→ r4

c−−→ r6

π2 = p4
a−→ r0

b−→ r1
c−→ r2 π5 = r6

a−→ r0
b−→ r1

c−→ r2

Note that the stem π0π1π2 is not the minimal stem and π3π4π5 is not the minimal
loop of the minimal run τ.πω. Further, note that the paths π1, . . . , π5 start in
the considered states at significant positions, which are typeset in red and not
struck through in Table 1.

Lemma 5. Let A be a TBA with n states and ρ be a minimal run over a lasso-
shaped word u ∈ L(A). Then ρ can be denoted as π0π1 . . . πi.(πi+1πi+2 . . . πk)

ω,
where π0 is a path over minS (u), π1, π2, . . . , πk are paths over minL(u), and
0 ≤ i < k ≤ n. Moreover, |minSL(ρ)| ≤ |π0π1 . . . πk| < |minSL(ρ)| + |minL(u)|
and the last |π0π1 . . . πk| − |minSL(ρ)| transitions of πk and πi are identical.

Proof. Let A be a TBA with n states and ρ = (q0, u0, q1)(q1, u1, q2) . . . be a
minimal run over a lasso-shaped word u ∈ L(A). The lasso shape of ρ implies
that ρ|minS(ρ)|.. = ρ|minSL(ρ)|.. and thus also u|minS(ρ)|.. = u|minSL(ρ)|... This
means that |minL(ρ)| = j · |minL(u)| for some j > 0.

Let i ≥ 0 be the smallest number such that minS (u).minL(u)i is at least as
long as minS (ρ). As |minL(ρ)| = j · |minL(u)|, then k = i + j is the smallest
number such that minS (u).minL(u)k is at least as long as minS (ρ).minL(ρ). Let
p1, p2, . . . , pk, pk+1 be the first k+1 significant positions in u. We set π0 = ρ0,p1

to be the prefix of ρ over minS (u) and, for each 1 ≤ l ≤ k, we set πl = ρpl,pl+1

to be the l-th successive subpart of ρ over minL(u). The definition of k implies
that |minSL(ρ)| ≤ |π0π1 . . . πk| < |minSL(ρ)|+ |minL(u)|.

We have π0π1 . . . πk = minS (ρ).minL(ρ).π′, where π′ is a prefix of minL(ρ)
such that 0 ≤ |π′| = |π0π1 . . . πk| − |minSL(ρ)| < |πk|. As |πi+1πi+2 . . . πk| = j ·
|minL(u)| = |minL(ρ)|, we get that π0π1 . . . πi = minS (ρ).π′ and this means that
πk and πi have the same suffix π′ of the length |π′| = |π0π1 . . . πk| − |minSL(ρ)|.
Note that this holds also in the case when i = 0 because this situation implies
that π0 = minS (ρ) and thus π′ = ε.

As π0π1 . . . πi = minS (ρ).π′ and π0π1 . . . πk = minS (ρ).minL(ρ).π′, we get
that there exists π′′ such that minL(ρ) = π′.π′′. Then

π0π1 . . . πi.(πi+1πi+2 . . . πk)
ω = minS (ρ).π′.(π′′.π′)ω = minS (ρ).(π′.π′′)ω = ρ.

It remains to show that k ≤ n. For each significant position pl such that
1 ≤ l ≤ k, it holds that |minS (u)| ≤ pl < |minSL(ρ)| and upl.. = minL(u)ω.
Lemma 4 says that states of the run ρ at positions p1, p2, . . . , pk are pairwise
different. Hence, k ≤ n. ⊓⊔
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4 Tightening construction and upper bound

Our tightening construction extends a given automaton A with new states and
transitions to make it tight. Let n be the number of states in A. Lemmata 3–5
imply that for each lasso-shaped word u ∈ L(A), there exists an accepting run
ρ = π0π1 . . . πi.(πi+1πi+2 . . . πk)

ω over u where 0 ≤ i < k ≤ n, π0 is a path
over minS (u) and π1, π2, . . . , πk are paths over minL(u). Moreover, the states
at an arbitrary but fixed position in π1, π2, . . . , πk are pairwise different with
the exception of the last x states of πk for some 0 < x ≤ |minL(u)|, which are
identical to the corresponding states in πi.

To accept a lasso-shaped word u ∈ L(A) by a tight run, the extended au-
tomaton nondeterministically guesses the moment when minS (u) is read and the
path π0 terminates. In this moment, it nondeterministically guesses the num-
bers i, k and the initial states of π2, . . . , πk and sets the initial state of π1 to the
current state of the original automaton. When reading minL(u), it simultane-
ously tracks these paths and if there are more than one possible successors in
a path, it chooses one nondeterministically. The extended automaton closes a
cycle over minL(u) via an accepting transition if the tracked paths π1, π2, . . . , πk

form together a path π1π2 . . . πk leading to the first state of πi+1 and such that
πi+1πi+2 . . . πk contains at least one accepting transition.

Note that our tightening construction considers only the cases when k ≥ 2.
If k = 1, then ρ can be denoted as π0.π

ω
1 where π0 is a path over minS (u) and

π1 is a path over minL(u). This means that the run ρ of A is tight and we do
not have to extend the automaton because of the corresponding word u.

Let A be a TBA with n states. The tightening construction adds to A so-
called macrostates. Each macrostate s1...si[si+1...sk]

⋆
j represents

• the current states s1, s2, . . . , sk of paths π1, π2, . . . , πk where 2 ≤ k ≤ n,
• the number 0 ≤ i < k marking the beginning of the loop πi+1πi+2 . . . πk,
• the number i < j ≤ k such that πj is the leftmost path in this loop containing

an accepting transition, and
• the information ⋆ ∈ {◦, •} whether the accepting transition of πj has been
already passed (•) or not (◦).

As the paths π1, π2, . . . , πk are tracked in a parallel and synchronous way, the
states s1, s2, . . . , sk of a macrostate have to be pairwise different with a possible
exception of states si = sk. Formally, we define the set of macrostates built from
the set of states Q as

MQ = {s1...si[si+1...sk]
⋆
j | 2 ≤ k ≤ |Q|, 0 ≤ i < j ≤ k, ⋆ ∈ {◦, •},

s1, . . . , sk ∈ Q where sm = sl implies m = l or m, l ∈ {i, k}}.

Now we are ready to define a tight automaton A† equivalent to A.

Definition 1. Let A = (Q,Σ, δ, I, δF ) be a TBA. We define the TBA A† as
A† = (Q ∪MQ, Σ, δ ∪ δ′, I ∪ I ′, δF ∪ δ′F ), where
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• δ′ = δ1 ∪ δ2 ∪ δ3 consists of three kinds of transitions,
• I ′ = {s1...si[si+1...sk]

◦
j ∈ MQ | s1 ∈ I, si ̸= sk}, and

• δ′F = δ3.

The transitions in δ1 ∪ δ2 ∪ δ3 involve macrostates. They are defined as follows.

δ1 = {q a−→ s1...si[si+1...sk]
◦
j | q a−→ s1 ∈ δ, si ̸= sk}

These transitions are used to nondeterministically choose the numbers i, j, k and
the initial states of π2, π3, . . . , πk when reading the last symbol of minS (u). If
minS (u) = ε, the nondeterministic choice is done by starting the computation
in a macrostate of I ′.

δ2 = {s1...si[si+1...sk]
∗
j

a−→ r1...ri[ri+1...rk]
⋆
j | ∗, ⋆ ∈ {◦, •},

∀ 1 ≤ l ≤ k . if i < l < j then sl
a−→ rl ∈ δ ∖ δF else sl

a−→ rl ∈ δ,

si = sk implies ri = rk, if sj
a−→ rj ∈ δF then ⋆ = • else ⋆ = ∗}

These transitions simultaneously track the progress on the paths π1, π2, . . . , πk

including the information whether πj has already passed an accepting transition

or not. The condition sl
a−→ rl ̸∈ δF for i < l < j enforces that πj is the leftmost

path on the loop π1π2 . . . πk containing an accepting transition.

δ3 = {s1...si[si+1...sk]
⋆
j

a−→ r1...ri[ri+1...rk]
◦
j | ⋆ ∈ {◦, •}, sk

a−→ ri+1 ∈ δ,

∀ 1 ≤ l < k . if i < l < j then sl
a−→ rl+1 ∈ δ ∖ δF else sl

a−→ rl+1 ∈ δ,

ri ̸= rk, ⋆ = • or (j <k ∧ sj
a−→ rj+1 ∈ δF ) or (j= k ∧ sk

a−→ ri+1 ∈ δF )}

These accepting transitions can enclose a cycle on macrostates if the last state of
πl matches the first state of πl+1 for each 1 ≤ l < k, the last state of πk matches
the first state of πi+1, and πj has passed an accepting transition in the past or
during this step.

Theorem 1. Let A = (Q,Σ, δ, I, δF ) be a TBA. Then L(A) = L(A†).

Proof. The inclusion L(A) ⊆ L(A†) is trivial as each accepting run of A is also
an accepting run of A†.

We show that L(A†) ⊆ L(A). Let σ be an accepting run of A† that in-
volves some macrostates. Note that all macrostates in the run have to use the
same numbers i, j, k. We construct an accepting run ρ of A over the same word
as σ. Intuitively, ρ will consistently use the transitions of some element of the
macrostates in σ, starting with the first element. Each time σ uses a transition
of δ3, ρ will switch to the next element and after the k-th element, it will switch
back to the (i+ 1)-st element.

First we define an auxiliary function g that determines for each l ≥ 0 the
element of the macrostate in σ that will be followed by the transition ρl.

g(0) = 1 g(l + 1) =


g(l) if σl ̸∈ δ3

g(l) + 1 if σl ∈ δ3 and g(l) < k

i+ 1 if σl ∈ δ3 and g(l) = k
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Now we construct ρ as follows.

ρl =


σl if σl ∈ δ

q
a−→ s1 if σl = q

a−→ s1...si[si+1...sk]
◦
j ∈ δ1

sg(l)
a−→ rg(l+1) if σl = s1...si[si+1...sk]

∗
j

a−→ r1...ri[ri+1...rk]
⋆
j ∈ δ2 ∪ δ3

One can easily check that ρ is a run of A over the same word as σ. Further,
because σ is accepting, it contains infinitely many transitions of δ3. Hence, there
are infinitely many pairs m, l such that 0 < m < l and

g(m− 1) ̸= j = g(m) = g(m+ 1) = . . . = g(l − 1) ̸= g(l).

The definition of g implies that σm−1,l ∈ δ3.δ
∗
2 .δ3, which means that the j-th

element of some macrostate in σm,l takes an accepting transition in δF . The
construction of ρ guarantees that ρm,l contains the same transition in δF . Hence,
ρ contains infinitely many accepting transitions and it is therefore accepting. ⊓⊔

Theorem 2. Let A = (Q,Σ, δ, I, δF ) be a TBA. Then A† is tight.

Proof. Lemma 3 implies that for each lasso-shaped word u ∈ L(A), there exists
a minimal run of A over u. The validity of the statement then follows directly
from the properties of minimal runs proven in Lemmata 4 and 5 and from the
design of the tightening construction. ⊓⊔

4.1 State-based tight automata

While our tightening construction produces automata with transition-based ac-
ceptance, the previous tightening constructions [13, 23, 24] produce automata
with state-based acceptance. Some applications [27] also work with tight state-
based automata on the input. Therefore, we present a transformation of a tight
TBA to an equivalent BA preserving tightness.

Let A = (Q,Σ, δ, I, δF ) be a tight TBA. An equivalent tight BA B can be
constructed as follows. We define the set of accepting states as duplicates of
states q ∈ Q that have some accepting transition starting in q, i.e., F = {q |
q

a−→ p ∈ δF }. We extend the initial states and the transition relation in such a
way that whenever the original automaton can use an accepting transition from
a state q, the resulting state-based automaton can reach the corresponding state
q and use an analogous transition from it. Formaly, the tight BA B equivalent
to A is constructed as B = (Q ∪ F,Σ, δ ∪ δ′, I ∪ I ′, F ), where

• I ′ = {q | q ∈ I} ∩ F and

• δ′ = {p a−→ q | p a−→ q ∈ δ, q ∈ F} ∪ {p a−→ q | p a−→ q ∈ δF , p, q ∈ F} ∪
∪ {p a−→ q | p a−→ q ∈ δF , p ∈ F}.

Each accepting run σ of B can be transformed to an accepting run ρ of A
over the same word simply by replacing each state q ∈ F by the corresponding
state q. Thus we get L(B) ⊆ L(A).
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Further, each accepting run ρ of A can be transformed into an accepting
run σ of B over the same word simply by replacing each state q from which
an accepting transition is taken with the corresponding state q. This implies
L(A) ⊆ L(B). Moreover, when we apply this transformation to a tight run ρ of
A, we obtain a tight run σ of B. To sum up, the automata A and B are equivalent
and if A is tight, then B is also tight.

4.2 Upper bound for tightening

Lemma 6. Let A be a TBA with n states. The number of states in A† is at
most

n + 2 ·
n∑

k=2

n! · k · (k + 1)

(n− k)!
∈ O(n! · n3).

Proof. Let Q be the set of states of A. First we bound the number of macrostates
of the form s1...si[si+1...sk]

⋆
j ∈ MQ for a fixed i, j, k. There are n!

(n−k)! · 2 cases

where all states s1, s2, . . . , sk are pairwise different and n!
(n−(k−1))! ·2 cases where

s1, s2, . . . , sk−1 are pairwise different and sk = si. The factor 2 comes from
⋆ ∈ {◦, •}. Altogether, MQ contains at most 4 · n!

(n−k)! macrostates for fixed

i, j, k. Further, for a fixed k ≥ 2, there are k·(k+1)
2 possible pairs of values of

i, j satisfying 0 ≤ i < j ≤ k. Altogether, the number of macrostates in MQ can

be bounded by
∑n

k=2 4 ·
n!

(n−k)! ·
k·(k+1)

2 = 2 ·
∑n

k=2
n!·k·(k+1)
(n−k)! . When we add the

number n = |Q| of the original states, we get the statement. ⊓⊔

Recall that each BA can be seen as a special case of a TBA. Further, note
that the transformation of tight TBA to tight BA presented in Section 4.1 only
doubles the state space in the worst case. Hence, we also proved that each BA or
TBA with n states can be transformed into an equivalent tight BA with at most
O(n! ·n3) states. This upper bound is tighter (i.e., asymptotically smaller) than

the upper bound 2O(n2) by Ehlers [13] and than the upper bound O((
√
2n)2n)

derived from the Schuppan’s construction [23] as

lim
n→∞

n! · n3

2n2 = lim
n→∞

n! · n3

(
√
2n)2n

= 0.

5 Lower bound for tightening

We present a lower bounds for any transformation of a TBA or a BA to an
equivalent tight TBA or BA.

Lemma 7. For each n > 0, there is a TBA A with n+1 states and an equivalent
BA A′ with 2n+1 states such that for every equivalent tight TBA B with the set
of states Q it holds that

|Q| ≥
n∑

k=1

n!

(n− k)!
.
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q0 s1

s2

··
·

sk

a

b b

bb

Fig. 4. The construction of the transitions for a given [s1...sk].

q0

r

s

a1, a2

b3b1

b2

a0, a3

b1 b3

b0

Fig. 5. The automaton A for n = 2. The construction considers 4 sequences and each
sequence induced transitions that accept the following words: [s] relates to the word
a0.b

ω
0 , [rs] to a1.b

ω
1 , [r] to a2.b

ω
2 , and [sr] to a3.b

ω
3 .

Proof. Let us fix some n > 0. We construct the TBAA with n+1 states gradually
as follows. The automaton uses states {q0} ∪ Q′ where q0 is the only initial
state and Q′ contains another n states. The construction works with nonempty
sequences [s1...sk] of pairwise different states from Q′. For each [s1...sk], we add
fresh symbols a, b to the alphabet of A and the transitions depicted in Figure 4 to
the transition relation of A. The automaton accepts a.bω with these transitions.
The constructed automaton for n = 2 is in Figure 5. The equivalent BA A′ is
constructed from A by the transformation given in Section 4.1.

Now we assume that B = (Q,Σ, δ, I, δF ) is a tight TBA equivalent to A.
Each [s1...sk] induces the acceptance of a new word a.bω ∈ L(A) = L(B). As

B is tight and |minSL(a.bω)| = 2, there have to be transitions p
a−→ q ∈ δ and

q
b−→ q ∈ δF for some states p ∈ I and q ∈ Q. We prove by contradiction that the

state q has to be different for each [s1...sk].

Let us assume that [s1...sk] and [r1...rk′ ] are different sequences inducing
the acceptance of a.bω and a′.b′ω, respectively, and B accepts these two words

using transitions p
a−→ q, p′

a′

−→ q ∈ δ and q
b−→ q, q

b′−→ q ∈ δF . The situation is
depicted in Figure 6. We distinguish two cases.

1. {s1, . . . , sk} ̸= {r1, . . . , rk′}: Without loss of generality, we assume that
rj ̸∈ {s1, . . . , sk}. As B accepts all words in {a′}.{b, b′}ω, it also accepts the
word a′.b′j−1.bω. However, this word is not in L(A) as A is deterministic and
after reading a′.b′j−1 it gets to state rj which has no transition over b since
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p q p′
a a′

b′b

Fig. 6. Illustration of the assumption. States p and p′ does not have to be different.

since rj ̸∈ {s1, . . . , sk}. Hence, L(B) ̸= L(A) and this is a contradiction with
our assumptions.

2. {s1, . . . , sk} = {r1, . . . , rk′}: As states in each sequence are not repeating,
we get k = k′. We use the fact that the only accepting transitions over b and
b′ in A are those from s1 and r1, respectively. We distinguish two subcases:

(a) s1 = r1: Let j be the smallest number such that sj ̸= rj . As the sets
of states are equal, there exist j < m,m′ ≤ k, such that sm = rj and
rm′ = sj . Consider the run τ.πω of A, where

τ = q0
a−→ s1

b−−→ s2
b−→ . . .

b−→ sj and

π = sj
b−→ sj+1 . . .

b−→ (sm = rj)
b′−→ rj+1

b′−→ . . .
b′−→ (rm′ = sj).

As π contains no accepting transition, the run is not accepting. Since A
is deterministic, it is the only run of A over a.bj−1.(bm−jb′m

′−j)ω. As
the word is accepted by B, we get a contradiction with L(A) = L(B).

(b) s1 ̸= r1: Since the sequences contain the same states, there are some

1 ≤ m, l ≤ k such that s1
b′m−−→ r1 and r1

bl−→ s1. Consider the run τ.πω

of A, where

τ = q0
a−→ s1 and π = s1

b′m−−→ r1
bl−→ s1.

The run is not accepting as the only accepting transitions over b or b′

starting in s1 and r1, respectively, are never taken. Since A is determin-
istic, it is the only run of A over a.(b′mbl)ω. As the word is accepted by
B, we get a contradiction with L(A) = L(B).

To sum up, we proved that every tight TBA B satisfying L(B) = L(A) must have
at least one state for every nonempty sequence [s1...sk]. This directly implies
that the number of its states is at least

∑n
k=1

n!
(n−k)! . ⊓⊔

The previous lemma says that for each n ≥ 2, there exists a TBA with n
states such that the smallest equivalent tight TBA (and thus also the smallest

equivalent tight BA) has at least
∑n−1

k=1
(n−1)!

(n−1−k)! states. This function is clearly

in Ω((n− 1)!) as

lim
n→∞

∑n−1
k=1

(n−1)!
(n−1−k)!

(n− 1)!
= lim

n→∞

n−1∑
k=1

1

(n− 1− k)!
=

∞∑
k=0

1

k!
= e.
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Note that the difference between the upper bound O(n! · n3) = O((n− 1)! · n4)
given in Lemma 6 and the lower bound Ω((n− 1)!) is only the factor n4.

Analogous arguments lead to the statement that for each odd n ≥ 3 there
exists a BA with n states such that the smallest equivalent tight TBA (and thus
also the smallest equivalent tight BA) has at least Ω(n−1

2 !) states. This lower

bound is above the previously known lower bound 2Ω(n) as for each c it holds

lim
n→∞

2cn

n−1
2 !

= 0.

6 Postprocessing of tight automata

This section shows that a standard automata reduction technique called quoti-
enting [8] preserves tightness. Hence, it can be applied to reduce tight automata
before they are further processed.

Consider an automaton with the set of states Q. A preorder ⊑ ⊆ Q×Q is a
reflexive and transitive relation. Every preorder defines an induced equivalence
≈ = ⊑ ∩ ⊒. Given a state q, we denote by [q] the equivalence class of q with
respect to a fixed equivalence ≈. Furthermore, for every P ⊆ Q, by [P ] we denote
the set [P ] = {[q] | q ∈ P} of all equivalence classes of states in P .

Given a TBA A = (Q,Σ, δ, I, δF ) and a preorder ⊑ on Q with its induced
equivalence ≈, the quotient of A is the TBA A/⊑ = ([Q], Σ, δ′, [I], δ′F ), where

δ′ = {[q] a−→ [p] | q a−→ p ∈ δ} and δ′F = {[q] a−→ [p] | q a−→ p ∈ δF }.
A preorder ⊑ is good for quotienting (GFQ) [8] if L(A) = L(A/⊑) for each

TBA A. There exist many preorders that are GFQ, for example various kinds of
forward or backward simulation or trace inclusion. For their definition and more
information about automata reduction techniques we refer to the comprehensive
paper by Clemente and Mayr [8].

Lemma 8. Let A be a tight TBA and let ⊑ be a GFQ preorder. The automaton
A/⊑ is tight and L(A) = L(A/⊑).

Proof. The language equivalence trivially follows from the definition of GFQ.
Let us consider an arbitrary lasso-shaped word u ∈ L(A). As A is tight, it has an

accepting run ρ = τ.πω where τ has the form q0
minS(u)−−−−−→ l and π has the form

l
minL(u)−−−−−→ l. The definition of quotient implies that for each accepting run of

A there exists an accepting run over the same word through the corresponding
equivalence classes in A/⊑. Hence, A/⊑ has an accepting run ρ′ = τ ′.π′ω where

τ ′ has the form [q0]
minS(u)−−−−−→ [l] and π′ has the form [l]

minL(u)−−−−−→ [l]. It is easy to
see that |minSL(ρ′)| ≤ |minSL(ρ)| and thus ρ′ is tight. Therefore, the automaton
A/⊑ is tight. ⊓⊔

7 Implementation

We have implemented our tightening construction in a tool called Tightener.
The tool is written in Python 3.8.15 and it is built upon the library for LTL and
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ω-automata called Spot [10] in version 2.11.4. Spot provides state-of-the-art LTL
to automata translations, efficient transformations of arbitrary automata in the
HOA format [2] to equivalent TBA, and some automata reduction techniques,
in particular direct simulation [8] that is good for quotienting.

Tightener can take as an input either an LTL formula or an automaton in the
HOA format. The input is internally translated into an equivalent TBA using
the functionality provided by the Spot library. The TBA is then transformed
into a tight TBA or tight state-based BA using the construction presented in
this paper. The tight automaton is then optionally reduced using Spot’s func-
tion reduce direct sim which performs quotienting by direct simulation. The
resulting tight automaton is encoded in DOT or in the HOA format.

Tightener is available in an artifact at Zenodo3 and at the project repository4

under the GNU Public License, version 3 [1]. The tool can be run in the direc-
tory Tightener project using the command python Tightener.py [flags]

"input". The tool supports the following flags.

-h or --help describes the basic usage of the tool.
-f or --formula says that the "input" is an LTL formula (e.g., "Fp1 | Fp2")

on the command line. Tightener uses the same syntax for LTL formulas as
Spot, see https://spot.lre.epita.fr/ioltl.html.

-F or --file says that the "input" is a path to a text file containing an LTL
formula in the format mentioned above.

-a or --HOA says that the "input" is a path to a file containing an automaton
in the HOA format.

-s or --sbacc asks to produce a state-based tight automaton. The tool pro-
duces tight TBA by default.

-r or --reduces applies reductions preserving tightness before the tight au-
tomaton is returned. These reductions are not applied by default.

-o or --outputHOA outputs the tight automaton in the HOA format. By default,
the tool returns a tight automaton in DOT format, which can be easily vi-
sualized, for example at https://dreampuf.github.io/GraphvizOnline/.
Note that the DOT format does not support multiple initial states. Hence, if
the returned automaton has multiple initial states, one of them is marked as
initial and the others are identified by an auxiliary incomming edge labeled
with init.

8 Experimental results

We compare Tightener against the translation of LTL to state-based generalized
Büchi automata introduced by Clarke, Grumberg, and Hamaguchi [6] and called
CGH. Schuppan and Biere [24] proved that the automata produced by CGH
are tight. As far as we know, this is the only existing implementation besides
Tightener that produces tight automata. Still, the comparison is not entirely

3 https://zenodo.org/records/10512677
4 https://gitlab.com/mjankola/tightener/-/tree/main?ref_type=heads

https://spot.lre.epita.fr/ioltl.html
https://dreampuf.github.io/GraphvizOnline/
https://zenodo.org/records/10512677
https://gitlab.com/mjankola/tightener/-/tree/main?ref_type=heads
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Table 2. We compare the tight TBA and BA produced by Tightener against the
GBA constructed by CGH. For both datasets, the table shows the number [#] and the
percentage [%] of cases where the corresponding tool provided a tight automaton with
fewer states than the other tool. Columns avg. size represent the average number of
states of the automata constructed by the corresponding tool. Columns TO indicate
the number of timeouts. Cases where Tightener timed out are counted in the CGH
winning columns, but these cases are excluded from the computation of average size.

642 random formulas 219 formulas from literature

tool [#] [%] avg. size TO [#] [%] avg. size TO

Tightener (TBA) 482 75.1% 20.03 44 179 81.7% 37.00 28
CGH (GBA) 149 23.2% 73.9 0 39 17.8% 161.51 0

Tightener (BA) 381 59.3% 32.54 44 141 64.4% 60.44 28
CGH (GBA) 243 37.8% 73.9 0 72 32.8% 161.51 0

fair as Tightener and CGH have different input and different output: Tightener
can transform any LTL formula or automaton in the HOA format to tight TBA
or BA, CGH accepts only an LTL formula and produces a tight GBA. BA can
be seen as a special case of both TBA and GBA, but the opposite does not
hold. We provided a transformation of tight TBA into equivalent tight BA in
Section 4.1. Each GBA can be transformed into an equivalent BA (this so-
called degeneralization process has been recently significantly improved [3]), but
the transformation increases the number of states and it does not guarantee to
preserve tightness. We therefore compare the size of tight GBA produced by
CGH against the size of tight TBA and tight BA produced by Tightener.

Since CGH produces tight GBA in symbolic representation, we implemented
a process that enumerates automata states from this symbolic representation and
uses the SMT solver Z3 [9] to prune unreachable and contradictory states. In the
end, we count the number of reachable states. This implementation can be also
found in our repository in script Tightener project/CGH implementation.py.

We compare CGH and Tightener on two sets of LTL formulas. The first
dataset contains 642 formulas produced by random formulas generator rand ltl

of Spot’s. These formulas are stored in file ltlDataSet random.txt in our
repository. The second dataset consists of 219 formulas taken from literature
[4,11,14,16–18,21,25,26]. We obtained these formulas from the tool gen ltl of
Spot and they are stored in file ltlDataSet pattern.txt in our repository.

We ran the experiments on a machine with an AMD Ryzen 7 PRO 4750U
processor and 32 GB of RAM. We set 15 minutes timeout limit per task with
no explicit memory limit.

Each formula has been translated by Tightener to a tight TBA and to a tight
BA with reduction switched on in both cases, and by CGH to a tight GBA.
Table 2 summarizes the cummulative results for the two datasets. One can see
that Tightener constructs smaller automata in substantially more cases than
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Fig. 7. The comparison of the number of states of the tight automata produced by
Tightener and CGH for individual LTL formulas of each dataset. In the top row,
Tightener produces tight TBA. In the bottom row, it produces tight BA. CGH always
produces GBA. The red crosses display the cases where Tightener reaches a time limit.

CGH in both considered datasets and with both settings. However, Tightener
run out of time in some cases.

The scatter plots in Figure 7 compare the number of states of the tight au-
tomata constructed by CGH and Tightener for individual LTL formulas in each
dataset. Since some of the produced automata are rather large, we use logarith-
mic scale in all of the scatter plots. The graphs clearly show that Tightener often
produces dramatically smaller tight automata than CGH.

8.1 Experiments on formulas for robot action planning

Tumova et al. [27] introduced a technique that generates control strategies for
a robot planning problem. They represent the strategies as lasso-shaped words,
where alphabet is a set of locations and possible actions in the respective location.
Their approach takes advantage of tight BA to obtain the strategies with the
shortest length of the stem and the loop.

The paper contains three LTL formulas representing meaningful properties.
Table 3 compares the sizes of tight BA obtained from Tightener and tight GBA
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Table 3. Sizes of tight automata constructed from LTL formulas taken from the study
of Tumova et al. [27]. TO indicates a timeout.

number of states

Tightener CGH
formula (BA) (GBA)

GF(R4 ∧ grab ∧ F(R2 ∧ drop)) ∧ GFlight up 38 224

GF(((R4 ∧ grab) ∨ (R5 ∧ grab)) ∧ F(R2 ∧ drop)) ∧ GFlight up 43 317

G(R1 →
∧

i̸=1 ¬Ri U R2 ∧ (
∧

i ̸=2 ¬Ri U R3 ∧
2 TO(

∧
i̸=3 ¬Ri U (R6 ∧ drop) ∧

∧
i ̸=6 ¬Ri U R5 ∧

(
∧

i̸=5 ¬Ri U (R4 ∧ drop) ∧ (
∧

i̸=4 ¬Ri U R1))))) ∧ GFlight up

from CGH on these formulas. For two of the formulas, Tightener constructed
dramatically smaller automaton than CGH. On the third formula, Tightener
produced a tight BA with 2 states while CGH ran out of time.

9 Conclusions

In this paper, we presented a new approach for converting TBA or BA to tight
TBA or BA. We proved that the asymptotical rise of the state space is O(n! ·n3),
which is the smallest upper bound so far reached. Further, we proved the highest
lower bounds on the rise of the state-space of tight automata so far reached,
making the theoretical construction of tight automata significantly tighter. We
also showed that the good-for-quotienting simulations can be used to reduce
automata while preserving tightness.

Our tool Tightener opens new ways to construct tight automata as it is
the first tool that can create tight automata from arbitrary automata in the
HOA format or from LTL formulas. We compared Tightener against the LTL to
tight automata translation CGH on two datasets of LTL formulas. Experiments
show that Tightener constructs smaller tight automata in substantially more
cases. Moreover, we compared the two tools on three formulas for which a tight
automaton was explicitly desired before. In all three cases, Tightener provided
a dramatically better result.
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