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Assuring the correctness of computing systems is fundamental to our society and economy, and formal

verification is a class of techniques approaching this issue with mathematical rigor. Researchers have invented

numerous algorithms to automatically prove whether a computational model, e.g., a software program or

a hardware digital circuit, satisfies its specification. In the past two decades, Craig interpolation has been

widely used in both hardware and software verification. Despite the similarities in the theoretical foundation

between hardware and software verification, previous works usually evaluate interpolation-based algorithms

on only one type of verification tasks (e.g., either circuits or programs), so the conclusions of these studies do

not necessarily transfer to different types of verification tasks. To investigate the transferability of research

conclusions from hardware to software, we adopt two performant approaches of interpolation-based hardware

model checking, (1) Interpolation-Sequence-BasedModel Checking (Vizel andGrumberg, 2009) and (2) Intertwined

Forward-Backward Reachability Analysis Using Interpolants (Vizel, Grumberg, and Shoham, 2013), for software

verification. We implement the algorithms proposed by the two publications in the software verifier CPAchecker

because it has a software-verification adoption of the first interpolation-based algorithm for hardware model

checking from 2003, which the two publications use as a comparison baseline. To assess whether the claims

in the two publications transfer to software verification, we conduct an extensive experiment on the largest

publicly available suite of safety-verification tasks for the programming language C. Our experimental results

show that the important characteristics of the two approaches for hardware model checking are transferable

to software verification, and that the cross-disciplinary algorithm adoption is beneficial, as the approaches

adopted from hardware model checking were able to tackle tasks unsolvable by existing methods. This work

consolidates the knowledge in hardware and software verification and provides open-source implementations

to improve the understanding of the compared interpolation-based algorithms.
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1 INTRODUCTION

Formal verification aims to analyze computing systems with mathematical rigor. In the past few
decades, it has received attention from both academy and industry. Since the modern society relies
heavily on computing systems, formal verification is an indispensable pillar to assure their quality
and correctness. Among various schools of formal verification, model checking [1] is a class of fully
automatic methods for the following problem: Given a description of a computational model and a
specification for the model as input, decide whether the model satisfies the specification. While
the problem of model checking is undecidable in general, researchers have invented approaches
applicable to practical systems.

Numerous model-checking techniques have been developed for different computational models.
Early studies onmodel checkingmainly target finite-state transition systems [2, 3]. Such a formalism
is suitable for modeling sequential digital circuits. The behavior of a sequential circuit can be
encoded as propositional formulas because of its finite state space, and Boolean satisfiability (SAT)
solvers [4] can be used to reason about the circuit under verification. After the breakthrough in SAT
solving in the early 2000s [5], SAT-based approaches have become mainstream for finite-state model
checking and remained the state of the art up to now. Recent advancements in satisfiability modulo

theories (SMT) [6] have further enabled SMT-based model-checking algorithms for infinite-state
systems, for example, programs. Software verification is an active research field where SMT solving
plays an essential role [7]. Many successful SAT-based techniques for hardware model checking,
such as bounded model checking (BMC) [8], k-induction [9], and IC3/PDR [10], have been adapted
to infinite-state systems and used to verify programs with the help of SMT solving. In addition
to SAT/SMT solving, Craig interpolation [11] is a cornerstone for both hardware and software
verification. It provides model-checking algorithms with the information relevant to an unsatisfiable
formula,1 which the algorithms can leverage to construct invariants of the model.

Despite the common theoretical foundation of hardware and software verification, it is unclear
whether the results and observations reported for hardware model checking are transferable to
software verification, and vice versa. In individual works, a newly proposed algorithm is usually
implemented for one specific type of computational models (e.g., either a circuit or a program), and
the conclusions about the characteristics of the algorithm are drawn solely from verification tasks
of this type. Such a research practice creates a gap in the generalizability of existing publications
and hinders the mutual learning between the two communities. While prior efforts [12–14] in
extending algorithms for hardware model checking to software verification help to fill the gap
partially, systematically investigating the transferability of results between hardware and software
verification is essential for consolidating the knowledge of model checking.

As a step toward the exchange and unification of the knowledge in hardware and software
verification, we perform a transferability study on interpolation-based hardware model checking to
software verification. According to the ACM SIGSOFT Empirical Standards for Software Engineering

Research [15, 16], transferability is defined as “the extent to which a study’s results could plausibly
apply to other sites, people, or circumstances.” Transferability and generalizability of research
results are gaining more and more attention in software engineering [17, 18]. They are especially
important for model checking because: (1) software verification is often inspired by hardware
model checking, and the transferability from hardware to software is key to successful adoption;
(2) formal verification is challenging, and we should embrace every possibility in the literature
by transferring advancements made in one community to others. In the following, we outline the
design of our transferability study and highlight our contributions.

1Given an unsatisfiable formula �1 ∧�2, a Craig interpolant g of the formula satisfies three conditions: (1) �1 ⇒ g is valid,

(2) g ∧�2 is unsatisfiable, and (3) g only refers to common variables of �1 and �2.
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1.1 Design and Outcomes of the Transferability Study

To study how well the results obtained from hardware circuits can be transferred to software
programs, we select two publications on interpolation-based hardware model checking as the
subjects of our transferability study. Both report considerable improvement over the algorithm
interpolation-based model checking (IMC) [19] from 2003, which was the first approach employ-
ing Craig interpolation to verify safety properties of sequential circuits. The two publications
are (1) Interpolation-Sequence-Based Model Checking [20] from 2009 and (2) Intertwined Forward-
Backward Reachability Analysis Using Interpolants [21] from 2013. The former proposes an algorithm
called interpolation-sequence-based model checking (ISMC), and the latter proposes an algorithm
called dual approximated reachability (DAR). Our goal is to validate the claims about IMC, ISMC, and
DAR from the two publications in the context of software verification. In the rest of this paper, we
refer to the algorithms and the corresponding publications interchangeably with the abbreviations.

Recently, IMC has been adopted to analyze programs and shown to compete well against other
polished algorithms for software verification [22]. The software-verification adoption of IMC is
implemented in CPAchecker [23, 24], an award-winning framework for software verification. We
choose to implement ISMC and DAR also in CPAchecker because (1) it provides reliable and well-
maintained components needed for the two algorithms and (2) confounding variables (parser, SMT
solver, library, etc.) can be kept to a minimum when ISMC and DAR are compared to IMC. In the
following, we briefly describe the compared algorithms.
IMC unrolls (i.e., duplicating the combinational logic of the circuit) a sequential circuit like

BMC, overapproximates states that are reachable within a certain number of steps by interpolating
unsatisfiable BMC queries, and attempts to construct a fixed point of the circuit. Similar to IMC, ISMC
also unrolls the input circuit but differs from IMC in the way it performs Craig interpolation. Instead
of a single interpolant, ISMC computes a sequence of interpolants [25, 26] from an unsatisfiable BMC
query and keeps refining overapproximated sets of states by conjoining them with new interpolants.
DAR maintains two sequences of overapproximated state sets and computes interpolants from
both forward and backward directions. It aims to avoid unrolling the input circuit (referred to as
global strengthening in the DAR paper) by posing small and local queries about the circuit. For
the compared interpolation-based algorithms, the convergence length is defined to be the number
of steps for overapproximation required to reach a fixed point.
The main claims in the ISMC [20] and DAR [21] papers are listed below. To assess whether

they can be transferred to software verification, we compare IMC, ISMC, and DAR on the largest
publicly available benchmark suite [27] of safety-verification tasks in the programming language C.
The results of this experiment are reported in Sect. 6. On more than 8 000 verification tasks, we
successfully transfer the important claims about the algorithmic characteristics of ISMC and DAR
to software verification. However, some claims in the original papers do not generalize to our
settings. We use a green check-mark (resp. red question mark) to denote that a claim transfers
(resp. does not transfer) to software verification in our transferability study.

Claims in the ISMC Publication [20]. The authors compared ISMC and IMC on 136 verification
tasks derived from industrial CPU designs. There are 67 tasks with property violation, and the
other 69 tasks satisfy their specifications. Both ISMC and IMC were implemented in the same
framework. A time limit of 10 000 s was imposed on each verification task, and the evaluation was
conducted on a machine with 32GB of memory. The authors draw the following conclusions about
the characteristics of ISMC and IMC from their evaluation.

H1.A: ISMC is faster than IMC on tasks with property violation. (✓)
H1.B: ISMC is faster than IMC when IMC finds a proof only at high unrolling bounds. (?)
H1.C: Overall, ISMC is faster than IMC (by 30 % in this experiment). (?)
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Claims in the DAR Publication [21]. The authors compared DAR and IMC on 37 verification
tasks derived from industrial designs. There are at least four tasks with property violation.2 All
compared approaches were implemented in the same framework. A time limit of 1 800 s was
imposed on each verification task, and the evaluation was conducted on a machine with 24GB

of memory. The authors draw the following conclusions about the characteristics of DAR and
IMC from their evaluation.3

H2.A: For DAR, the ratio of the iterations using global strengthening to the total number of
iterations is less than 0.5 in most tasks. (✓)

H2.B: IMC finds a proof slower than DAR in many tasks even though it has a smaller convergence
length. (?)

H2.C: DAR computes more interpolants than IMC. (✓)
H2.D: DAR’s run-time is more sensitive to the sizes of interpolants than IMC. (?)
H2.E: Overall, DAR is faster than IMC (by 36 % in this experiment). (?)

1.2 Our Contributions

The transferability study presented in this paper makes the following contributions:

(1) It is the first systematic investigation of the transferability of the two interpolation-based
algorithms ISMC [20] and DAR [21] from hardware model checking to software verification.

(2) Its evaluation confirms the important claims of the studied publications and discovers that
the characteristics of the two algorithms are transferable to software verification.

(3) The study additionally compares IMC, ISMC, and DAR to predicate abstraction [25] and
Impact [26], two interpolation-based approaches that originated from the software-verification
community. In the evaluation, the verification algorithms from the hardware domain solved
about 20 % more tasks than predicate abstraction and Impact, showing that transferring
knowledge from the hardware domain can improve software model checking.

(4) The open-source implementations of the two competitive algorithms for hardware model
checking in CPAchecker enlarge the body of available software-verification techniques.

These contributions are original because of the new knowledge on the transferability, which was
unknown before our study, and the novel analyses for software verification. They are also important

as the transferability study consolidates the knowledge about the compared interpolation-based
algorithms for hardware and software computational models. Formal verification is challenging, so
it is imperative to leverage every possibility to advance the state of the art. The results in this paper
can shed light on combining forces from the two research communities to invent more effective
approaches for complex systems involving both hardware and software components.

2 RELATED WORK

This transferability study, which transfers interpolation-based techniques from hardware model
checking to software verification, is related to the following research areas.

2.1 Reliability and Transferability of Research Findings

Reliability and transferability of research results are fundamental to science and technology, but
findings published in peer-reviewed venues are not always reliable or transferable [28]. This
issue was first noticed in medicine [29] and has received broader attention in computer science
and software engineering [30–34]. To mitigate the situation, standards for empirical research

2This can be seen from Table 1 of the paper [21]. The precise number is not explicitly stated.
3The authors also evaluated IC3/PDR [10]. We drop the claims about IC3/PDR because it is not based on Craig interpolation.
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are proposed to assess the reliability and transferability of research results [15, 16]. Software-
engineering conferences nowadays encourage or require authors to submit their research artifacts
along with the manuscripts and organize a committee to evaluate the artifacts. There are also studies
on the quality and community expectations of software artifacts [35–38] and methodologies to
improve the reliability and transferability of results [17, 18, 39]. Our transferability study contributes
to the reliability of model-checking research on hardware and software. Especially, our open-source
implementations of the compared algorithms offer a solid baseline for future studies. A recent
work on Klee [40], a symbolic-execution engine for software testing, emphasizes the importance
of a well-maintained software infrastructure and reports that 27 % of the publications depending
on Klee can be questioned [41].

2.2 Interpolation-Based Verification Techniques

Craig interpolation [11] is widely used in hardware and software model checking for abstracting
objects appearing in the process of verification, such as sets of reachable states [19, 26], execution
traces [42], transition relations [43], subroutines [44], and predicates over program variables [25].
Many state-of-the-art hardware model checkers and software verifiers also employ Craig interpola-
tion [23, 45–48]. Therefore, it is important to understand how interpolation-based algorithms work
and how well the results can be transferred from one type of verification tasks to another. Our
transferability study answers this question for the two interpolation-based algorithms ISMC [20]
and DAR [21] when they are adopted for software verification.

2.3 Applying Concepts from Hardware Model Checking to So�ware Verification

Thanks to the similarities between finite-state and infinite-state model checking, algorithms for hard-
ware model checking are often lifted to software verification. For example, BMC [8], k-induction [9],
IMC [19], and IC3/PDR [10] were originally conceived for finite-state transition systems like se-
quential circuits. After becoming popular in the hardware community, they were also applied to
program analysis [12–14, 22, 49, 50]. Such technology transfer is conducted under the assumption
that the observations made for hardware model checking are likely to hold for software verification.
The successful experiences reported in the above publications strengthen this assumption, but to
what degree the assumption is correct remains unknown. This paper investigates this assump-
tion by implementing two algorithms for interpolation-based hardware model checking [20, 21]
in the software verifier CPAchecker [23] and by applying them to verify a large set of software-
verification tasks. We successfully transfer the important claims in the original publications about
the characteristics of the two algorithms from hardware model checking to software verification.

2.4 Applying Tools from Hardware Model Checking to So�ware Verification

Recently, it was shown using the tool CPV [51] that hardware model checkers can be applied to
solve software-verification tasks. The tool translates a given C program to a Btor2 [52] circuit
using the tool Kratos [53] and then applies hardware model checkers, such as ABC [45] and AVR [46]
to the translated verification task. The tool CPV performed well in the competition on software
verification [54] (6th place in category ReachSafety in SV-COMP 2024).

3 BACKGROUND

In this section, we provide the preliminaries for the interpolation-based algorithms [19–21] com-
pared in our transferability study and the software-verification framework CPAchecker [23] we
used to implement them. The descriptions of the compared algorithms and their implementations
in CPAchecker will be presented in Sect. 4 and Sect. 5, respectively. Logical connectives ¬, ∨, ∧,
and⇒ are used under their conventional semantics, and we use ⊤ and ⊥ to represent logical true
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and false, respectively. A first-order predicate over state variables is interpreted interchangeably
as the set of states satisfying the predicate.

3.1 Model Checking of Reachability Safety

First, we formulate the problem of model checking for a reachability-safety property. To simplify
the presentation of the compared algorithms in Sect. 4, we base our formulation on state-transition
systems. Section 3.3 will outline a generic approach to facilitate the adoption of hardware model
checking to software verification [22].

3.1.1 State-Transition System. A state-transition systemM can be described by two predicates � (B)
and ) (B, B′), where B and B′ are state variables. If state B is an initial state ofM, then � (B) evaluates
to ⊤, and if state B can transit to state B′ via one step inM, then ) (B, B′) evaluates to ⊤.

3.1.2 Reachability-Safety Property. Model checking determines whether a state-transition system
M = (� ,) ) fulfills a certain property. A reachability-safety property forM can be expressed as
a predicate % (B) over the state variable B , and is expected to hold at every reachable state ofM.
A state B8 is reachable if there exists a sequence ⟨B0, B1, . . . , B8⟩ of states such that � (B0) ∧) (B0, B1) . . .∧
) (B8−1, B8 ) evaluates to ⊤, that is, there is a feasible path from an initial state B0 to B8 via 8 transitions.
M satisfies % (shortM |= % ) if % (B) holds for every reachable state B ofM. Otherwise,M violates
% , and a sequence ⟨B′

0
, B′

1
, . . . , B′9 ⟩ of states exists such that � (B′

0
) ∧) (B′

0
, B′

1
) . . . ∧) (B′9−1, B

′
9 ) ∧ ¬% (B

′
9 )

evaluates to ⊤. The path from B′
0
to B′9 is called a counterexample to the reachability-safety property,

and the safety-violating state B′9 is called a target state.

3.2 Craig Interpolation

Craig interpolation is the foundation of the compared algorithms in this paper, facilitating the
abstraction from infeasible counterexamples to invariants of the state-transition system. We briefly
describe the properties of a Craig interpolant below.

3.2.1 Craig’s Interpolation Theorem. Let�1 and�2 be two logical formulas. If�1∧�2 is unsatisfiable,
then Craig’s interpolation theorem [11] ensures the existence of an interpolant g , which is a logical
formula satisfying the following properties:

• �1 ⇒ g is valid,
• g ∧�2 is unsatisfiable, and
• g refers only to variables that occur in both �1 and �2.

3.2.2 Inductive Interpolation Sequence. Given a sequence of formulas ⟨�1, . . . , �=⟩, with
∧=

9=1� 9

being unsatisfiable, a formula sequence ⟨g0, . . . , g=⟩ is called an inductive interpolation sequence if

• g0 = ⊤ and g= = ⊥,
• g8−1 ∧�8 ⇒ g8 is valid for 1 ≤ 8 ≤ =, and
• g8 refers only to variables that occur in both

∧8
9=1� 9 and

∧=
9=8+1� 9 for 1 ≤ 8 < =.

3.3 Adopting Hardware Model Checking to So�ware Verification

To adopt a model-checking algorithm designed for hardware, usually depicted as a state-transition
system, it is necessary to extract the three predicates � , ) , and % from a software-verification task.
We use the conversion proposed in the software-verification adoption of IMC [22], which applies
large-block encoding (LBE) [55] to the program, in order to encode its structure into the formulas
that represent the program semantics. Since the conversion and the adoption of IMC [22] are
available in CPAchecker [23, 24], which also offers well-maintained components necessary for the
compared algorithms, we chose CPAchecker as our implementation framework. In the following,
we first recap the basic concepts of CPAchecker and then explain the conversion [22].
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3.3.1 Program Representation. An imperative program can be represented as a control-flow automa-

ton (CFA) C = (!, ;0, �) [56, 57], where ! is the set of nodes corresponding to program locations,
;0 ∈ ! is the initial program location, and � is the set of directed edges between nodes, where the
edges are annotated with program operations. A safety-reachability task of a CFA asks to decide
the existence of a feasible program path from the initial location ;0 to a target location. Without
loss of generality, we assume the CFA has exactly one target location ;) ∈ !.

3.3.2 Configurable Program Analysis. The software verifier CPAchecker is based on the concept
of configurable program analysis (CPA) [58, 59]. A CPA defines an abstract domain for program
analysis. For example, the Location CPA L tracks the explicit program location; the Loop-Bound
CPA LB counts the number of visits of a loop head on a program path; the Predicate CPA P encodes
program paths into logical formulas. A CPA has an initial abstract state representing the start
of the program analysis. For example, the initial abstract state of the Location CPA is the initial
program location, and the initial abstract state of the Predicate CPA uses ⊤ to encode the path
formula because no program paths were traversed.
Several CPAs can be combined into a Composite CPA, which can be utilized by the CPA++

algorithm [7] for reachability analysis. Given a set of already-reached abstract states (a reached set)
and a list of abstract states to be processed (a wait list), the CPA++ algorithm explores the CFA of
the input program, constructs an abstract reachability graph (ARG) in the abstract domains of the
given CPAs, and returns the updated reached set and wait list. Our implementations of ISMC [20]
and DAR [21] in CPAchecker use a composite CPA of the Location, Loop-Bound, and Predicate CPAs.

3.3.3 So�ware Programs as State-Transition Systems. The software-verification adoption of IMC [22]
employs LBE [55] to obtain a state-transition system from a program. Without loss of generality,
we assume the input program has at most one loop. A multi-loop program can be transformed into
a single-loop program with an equivalent behavior by a standard preprocessing [60, 61] before
its state-transition system is extracted [22]. Considering the loop-head location and the target
location as the end of a large block, LBE constructs path formulas that capture the executions of
the program between its initial location, loop-head location, and target location, from which an
analogy to a state-transition system can be drawn. Specifically, the path formula between the initial
program location and the loop-head location corresponds to the initial states � , the path formula
between two consecutive visits to the loop-head location corresponds to the transition relation ) ,
and the path formula between the loop-head location and the target location corresponds to the
negated safety property ¬% . The model-checking algorithms based on state-transition systems can
be performed on a program using this analogy without a symbolic program counter.

4 DESCRIPTIONS OF THE COMPARED INTERPOLATION-BASED ALGORITHMS

In this transferability study, we adopt two interpolation-based hardware-model-checking algorithms,
ISMC [20] and DAR [21], to verify software programs. Both algorithms are compared to IMC [19],
the first model-checking algorithm based on Craig interpolation. Below we explain how these
algorithms work and how they differ from each other.

4.1 Interpolation-Based Model Checking (IMC)

McMillan proposed IMC [19], the first interpolation-based algorithm for hardware model checking,
in 2003. IMC extends BMC to unbounded verification by constructing a fixed point (i.e., inductive
invariant) of the circuit’s states from Craig interpolants. It has inspired numerous interpolation-
based verification approaches, including ISMC [20] and DAR [21]. IMC consists of two nested
computational stages: (1) The outer BMC stage unrolls the state-transition system and checks the
reachability of target states within some number of transitions. (2) The inner interpolation stage

constructs fixed points via interpolating unsatisfiable BMC queries.
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Given an unrolling bound : , a transition system is unwound into : copies in the BMC stage.
A BMC query that encodes all possible paths from an initial state (described by � (B)) to a target
state (described by ¬% (B)) via at most : transitions is then posed to a satisfiability solver:

� (B0) ∧) (B0, B1)
︸             ︷︷             ︸

�1 (B0,B1 )

∧) (B1, B2) ∧ . . . ∧) (B:−1, B: ) ∧ (¬% (B1) ∨ . . . ∨ ¬% (B: ))
︸                                                                  ︷︷                                                                  ︸

�2 (B1,B2,...,B: )

, (1)

where B8 denotes the state variable after the 8-th transition. If Eq. (1) is satisfiable, a violation of the
reachability-safety property is found. Otherwise, IMC proceeds to the interpolation stage.
During the interpolation stage, IMC tries to prove the safety property by constructing an over-

approximation of reachable states from the unsatisfiable BMC query. According to Craig’s in-
terpolation theorem, an interpolant g1 (B1) for formulas �1 and �2 in Eq. (1) exists and satisfies:

(1) � (B0) ∧) (B0, B1) ⇒ g1 (B1) is valid and (2) g1 (B1) ∧
∧:−1

8=1 ) (B8 , B8+1) ∧
∨:

8=1 ¬% (B8 ) is unsatisfiable.
In other words, g is an overapproximation of the set of states that (1) are reachable from an initial
state via one transition and (2) do not violate the safety property within : − 1 transitions.
Such an overapproximation of states can be generated iteratively and accumulated to a fixed

point. By replacing � (B0) by g1 (B0) in Eq. (1), another BMC query starting form the first interpolant
g1 can be posed. If the query remains unsatisfiable, a second interpolant g2 (B1) can be derived,
overapproximating the set of states via two transitions from initial states. The routine continues
until, at some iteration =, � ∨

∨=
8=1 g8 becomes inductive with respect to the transition relation ) .

That is, the union of the initial states and all computed interpolants grows to a fixed point. Since
each interpolant satisfies the safety property thanks to the second criterion of Craig’s interpolation
theorem, the fixed point also satisfies the safety property. In this case, IMC proves the system safe
at the unrolling bound of : and constructs a fixed point � ∨

∨=
8=1 g8 at the convergence length of =.

In the other case, namely, some BMC query in the interpolation stage is satisfiable, we cannot be
certain whether the safety property is violated. The violation could correspond to an infeasible
counterexample because the interpolant may contain unreachable states. To decide whether the
counterexample is feasible, IMC will increment the unrolling bound : and return to the BMC stage,
checking the feasibility of error paths starting from initial states.

4.2 Interpolation-Sequence-Based Model Checking (ISMC)

In 2009, Vizel and Grumberg introduced ISMC [20], which derives inductive interpolation sequences
from unsatisfiable BMC queries to construct fixed points. Similar to IMC, ISMC also has a BMC
stage and an interpolation stage, but the two stages in ISMC are executed sequentially. ISMC can
be seen as a variation of McMillan’s Impact algorithm [26] for software verification from 2006.

After checking that there are no target states in � (B), ISMC starts the BMC stage with the unrolling
bound set to one. Given an unrolling bound : , a BMC query that encodes all paths from an initial
state to some target state via exactly : transitions is posed:

� (B0) ∧) (B0, B1)
︸             ︷︷             ︸

�1 (B0,B1 )

∧) (B1, B2)
︸   ︷︷   ︸

�2 (B1,B2 )

∧ · · · ∧) (B:−1, B: )
︸      ︷︷      ︸

�: (B:−1,B: )

∧¬% (B: )
︸ ︷︷ ︸

�:+1 (B: )

. (2)

If Eq. (2) is satisfiable, a target state via : transitions from an initial state is discovered. Otherwise,
ISMC proceeds to the interpolation stage.
During the interpolation stage, ISMC constructs a reachability sequence by interpolation se-

quences. A reachability sequence ⟨'1, '2, . . . , ':⟩ is a sequence of formulas, with each image '8
being an overapproximation of the set of states reachable via 8 transitions from an initial state.
ISMC partitions the BMC formula in Eq. (2) into a sequence ⟨�1, �2, . . . , �:+1⟩, as indicated un-
der Eq. (2). Since Eq. (2) is unsatisfiable, an inductive interpolation sequence ⟨⊤, g:

1
, g:

2
, . . . , g:

:
,⊥⟩
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can be derived, where the superscript : indicates the current unrolling bound. According to the
inductiveness condition, each g:8 is an overapproximation of reachable states after 8 transitions

from the initial states. Note that the last interpolant g:
:
contains no target state because g:

:
∧ ¬% is

unsatisfiable. To refine a reachability sequence by these interpolants, ISMC conjoins all interpolants
derived in previous interpolation stages. That is, the image '8 for the 8-step overapproximation

at the current unrolling bound : is computed as
∧:

9=8 g
9
8 . Note that each image '8 contains no

target state because g88 ∧ ¬% is unsatisfiable.

After a reachability sequence ⟨'1, '2, . . . , ':⟩ is obtained, ISMC examines whether
∨:

8=1 '8 has
reached a fixed point. Since the images in the reachability sequence do not contain any target
state, ISMC can then conclude that the transition system satisfies the safety property in this case.
If, nevertheless, the fixed-point check fails, ISMC will increment the unrolling bound by one and
proceed to another BMC stage.

4.3 Dual Approximated Reachability (DAR)

In 2013, Vizel, Grumberg, and Shoham proposed DAR [21], which intertwines forward and back-
ward derivation of Craig interpolants for unbounded verification of state-transition systems. The
algorithmmaintains two reachability sequences, one in the forward direction and one backwards, re-
fining and extending the images by interpolation. A forward reachability sequence ⟨�0, �1, . . . , �=−1⟩

(resp. backward reachability sequence ⟨�0, �1, . . . , �=−1⟩) is a sequence of = formulas such that
(1) �0 = � (resp. �0 = ¬% ), (2) �8 contains no target state (resp. �8 contains no initial state), and (3) �8
overapproximates the set of states reachable from an initial state via 8 transitions (resp. �8 overap-
proximates the set of states that can reach a target state via 8 transitions). The existence of a forward
or a backward reachability sequence demonstrates that there is no counterexample of length = − 1.

The computation of DAR is partitioned into two stages: (1) The local-strengthening stage refines
and extends forward and backward reachability sequences via interpolating local queries about two
consecutive steps. This is done using iterative pairwise strengthening, which iteratively computes
interpolants from a pair of forward and backward overapproximations. (2) The global-strengthening
stage unrolls the system when the local-strengthening stage is not strong enough to refute poten-
tially infeasible counterexamples. This stage is also followed by an iterative pairwise strengthening.
After checking that the initial states do not overlap with the target states, DAR initializes the

forward and backward reachability sequences as ⟨� ⟩ and ⟨¬%⟩, respectively, and enters the local-
strengthening stage. DAR attempts to find the smallest4 index 8 such that �8 (B)∧) (B, B

′)∧�=−1−8 (B
′)

is unsatisfiable. If such an 8 exists, it indicates that every state in �8 cannot reach a state in �=−1−8
via one transition, i.e., there is no feasible counterexample of length =. In this case, DAR invokes
iterative pairwise strengthening to refine and extend the reachability sequences based on this local
unsatisfiability. For each 8 ≤ 9 < = − 1, an interpolant g 9+1 between � 9 (B) ∧) (B, B

′) and �=−1− 9 (B
′),

called forward interpolant, is computed and used to refine � 9+1. Likewise, for each=−1−8 ≤ 9 < =−1,
an interpolant g ′9+1 between � 9 (B

′) ∧) (B, B′) and �=−1− 9 (B), called backward interpolant, is computed

and used to refine � 9+1. At last, for 9 = = − 1, the forward and backward interpolants, g= and g ′= , are
appended to the forward and backward reachability sequences, respectively.
If such an index 8 cannot be found in the local-strengthening stage, DAR enters the global-

strengthening stage to precisely analyze the existence of counterexamples of length =. It incremen-
tally unrolls the state-transition system and tries to find the smallest unrolling bound< such that

� (B0) ∧) (B0, B1)
︸             ︷︷             ︸

�1 (B0,B1 )

∧ · · · ∧) (B<−1, B<)
︸        ︷︷        ︸

�< (B<−1,B< )

∧�=−< (B<)
︸     ︷︷     ︸

�<+1 (B< )

(3)

4The algorithm actually works with any such index. We follow the original publication [21] and use the smallest.
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is unsatisfiable. If such a bound< exists, DAR concludes that a counterexample of length = does not
exist because it is not possible to reach �=−< in< steps. An interpolation sequence ⟨⊤, g1, . . . , g<,⊥⟩
is derived from the sequence ⟨�1, �2, . . . , �<+1⟩ of formulas, and g8 is used to refine the forward
reachability image �8 . Afterwards, iterative pairwise strengthening is invoked to refine and extend
the forward and backward reachability sequences. If such a bound< does not exist, i.e., Eq. (3) is
satisfiable for< = =, DAR discovered a counterexample of length = and terminates.

If both reachability sequences are refined and extended to ⟨�0, �1, . . . �=⟩ and ⟨�0, �1, . . . �=⟩ with
the newly derived forward and backward interpolants, DAR examines whether the accumulated
overapproximation of reachable states has grown into a fixed point in either direction. That is,
DAR checks whether

∨=
8=0 �8 or

∨=
8=0 �8 is inductive. Since every forward reachability image �8

(except �0) is initialized by some interpolant g8 , with g8 ∧¬% being unsatisfiable, �8 does not contain
any target state. Similarly, every backward reachability image �8 does not contain any initial state.
Therefore, DAR successfully proves the system safe at a convergence length of =, and

∨=
8=0 �8 or

¬(
∨=

8=0 �8 ) is a safe invariant of the system. If a fixed point has not yet been reached, DAR will
enter the local-strengthening stage again.

4.4 Differences between the Three Algorithms

Although IMC [19], ISMC [20], and DAR [21] all depend on Craig interpolation for abstracting
reachable states, they differ in how the satisfiability queries are posed and how the overapproxima-
tions are constructed. IMC, ISMC, and DAR pose different BMC queries as shown in Eq. (1), Eq. (2),
and Eq. (3), respectively. Unlike IMC and ISMC, which unroll the system when the currently com-
puted overapproximated images fail to reach a fixed point, DAR tries to find a shorter unsatisfiable
BMC query in order to avoid additional unrolling of the system. For constructing overapproxima-
tions, IMC forgets the previously computed abstractions and derives a new one from scratch after
increasing the unrolling bound. By contrast, ISMC and DAR accumulate all interpolants derived
throughout their executions. Furthermore, DAR poses local queries that involve only one copy of
the transition relation, whereas IMC and ISMC rely solely on global queries of complete unrolling.
The algorithmic differences of these algorithms result in their distinct strengths, which we will
study in a large-scale empirical evaluation and report its results in Sect. 6.

5 ADOPTING ISMC AND DAR TO SOFTWARE VERIFICATION IN CPACHECKER

This section discusses the implementation details of ISMC [20] and DAR [21] in CPAchecker [23].
Both algorithms assume as inputs single-loop programs and apply a standard single-loop transfor-
mation [60, 61] to multi-loop programs as preprocessing. We utilize a composite CPA D of Location,
Predicate, and Loop-Bound CPAs as well as other supportive CPAs5 and the CPA++ algorithm [7] to
unroll the program. The Predicate CPA is configured to use LBE [55] for extracting the predicates
� , ) , and % from the input program.

5.1 Interpolation-Sequence-Based Model Checking (ISMC)

The main procedure of ISMC is summarized in Alg. 1. The algorithm CPA++ [7] unrolls the CFA of an
input program into an ARG up to the given unrolling bound : . The subroutine extract_formulas()

is used to collect the formulas for the initial states, transition relation, and (negated) safety property
from the ARG [22], as discussed in Sect. 3.3.

After obtaining the formulas for the initial and target states, ISMC inspects whether they intersect
with each other at line 6. If not, ISMC initializes a reachability sequence images and tries to construct
a fixed-point in the loop starting from line 9. Given an unrolling bound : , a BMC query at line 13 is

5These helper CPAs deal with features specific to software, such as the call stack and function pointers. We leave out the

discussion of these CPAs to ease the presentation of the algorithm implementations.
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Algorithm 1 ISMC: main procedure

Input: a composite CPA D of L, P, and LB
Output: true if the program is proven to be safe; false if a feasible error path is found
1: : ← 0;

2: 40 ← (L.get_initial(), P.get_initial(),LB.get_initial()); // Create the initial abstract state
3: reached← waitlist← {40};

4: reached,waitlist← CPA++(D, reached,waitlist, :);

5: ⟨� (B0),¬% (B0)⟩ ← extract_formulas(reached);

6: if sat(� (B0) ∧ ¬% (B0)) then

7: return false; // Initial state set contains target states
8: images← ⟨⊥⟩; // Initialize a reachability sequence with ⊥ at the 0th step6

9: while (true) do
10: : ← : + 1;

11: reached,waitlist← CPA++(D, reached,waitlist, :); // Unroll program
12: ⟨� (B0),) (B0, B1), . . . ,) (B:−1, B: ),¬% (B: )⟩ ← extract_formulas(reached);

13: if sat(� (B0) ∧) (B0, B1) ∧ . . . ∧) (B:−1, B: ) ∧ ¬% (B: )) then

14: return false; // BMC finds a feasible error path
15: ⟨⊤, g1, . . . , g: ,⊥⟩ ← interpolate(� (B0) ∧) (B0, B1),) (B1, B2), . . . ,) (B:−1, B: ),¬% (B: ));

// Compute inductive interpolation sequence
16: for (8 ← 1; 8 < : ; 8 ← 8 + 1) do
17: images[8] ← images[8] ∧ g8 ; // Refine reachability sequence
18: images.append(g: ); // Extend reachability sequence
19: if check_fixed_point(images) then

20: return true; // Fixed point reached

Algorithm 2 check_fixed_point (used in both Alg. 1 and Alg. 3)

Input: a reachability sequence images

Output: true if the accumulated reachability images form a fixed point; false otherwise
1: _ ← images[0]; // Accumulation of reachability images
2: for (8 ← 1; 8 < images.len(); 8 ← 8 + 1) do
3: if ¬sat(images[8] ∧ ¬_) then
4: return true; // images[8] is contained in the accumulation _

5: _ ← _ ∨ images[8]; // Accumulate images
6: return false

posed to examine whether a counterexample of length : exists. If the query is unsatisfiable, ISMC
enters the interpolation stage (lines 15 to 18) and computes an inductive interpolation sequence to
refine and extend the reachability sequence. After the refinement, ISMC checks whether the current
reachability sequence has converged to a fixed-point using the subroutine check_fixed_point()
at line 19. If so, ISMC concludes that the program is safe. Otherwise, it increments the unrolling
bound by one and starts another iteration.
Algorithm 2 outlines the fixed-point checking procedure used by ISMC (and DAR in Alg. 3). It

iterates through the given reachability sequence and checks whether the image at the frontier is
contained in the union of all previous images at line 3. A fixed point is found if the check succeeds.
Otherwise, the frontier image is added to the union at line 5, and the check continues. In case no
check succeeded after iterating through the whole reachability sequence, the subroutine reports
to the main procedure that a fixed point has not been reached.
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Algorithm 3 DAR: main procedure

Input: a composite CPA D of L, P, and LB
Output: true if the program is proven to be safe; false if a feasible error path is found
1: : ← 0;

2: 40 ← (L.get_initial(), P.get_initial(),LB.get_initial()); // Create the initial abstract state
3: reached← waitlist← {40};

4: reached,waitlist← CPA++(D, reached,waitlist, :);

5: ⟨� (B0),¬% (B0)⟩ ← extract_formulas(reached);

6: if sat(� (B0) ∧ ¬% (B0)) then

7: return false; // Initial state set contains target states
8: for_seq← ⟨� ⟩; back_seq← ⟨¬%⟩; // Initialize forward and backward sequences
9: : ← 1;

10: reached,waitlist← CPA++(D, reached,waitlist, :); // Unroll once more to get ) (B, B′)
11: ⟨� (B0),) (B0, B1),¬% (B1)⟩ ← extract_formulas(reached);

12: while ¬check_fixed_point(for_seq) ∧ ¬check_fixed_point(back_seq) do
13: 8 ← find_smallest_unsat_index(for_seq, back_seq,) (B, B′)); // Find local unsatisfiability
14: if 8 = −1 then // −1 indicates index unfound: enter global-strengthening stage
15: = ← for_seq.len();
16: for (< ← 1; < ≤ =; < ←< + 1) do
17: if < > : then // If additional program unrolling is required
18: : ←<;

19: reached,waitlist← CPA++(D, reached,waitlist, :); // Unroll program
20: ⟨� (B0),) (B0, B1), . . . ,) (B<−1, B<),¬% (B<)⟩ ← extract_formulas(reached);

21: if ¬B0C (� (B0) ∧) (B0, B1) ∧ . . . ∧) (B<−1, B<) ∧ back_seq[= −<] (B<)) then
22: break; // No feasible error path of length =
23: if < = = then // The check in line 21 is precise: a feasible error path found
24: return false;

25: ⟨⊤, g1, . . . , g<,⊥⟩ ← interpolate(� (B0) ∧) (B0, B1), . . . ,) (B<−1, B<), back_seq[= −<] (B<));
// Compute inductive interpolation sequence

26: for ( 9 ← 1; 9 ≤ min(<,= − 1); 9 ← 9 + 1) do
27: for_seq[ 9] ← for_seq[ 9] ∧ g 9 ; // Refine forward reachability sequence
28: 8 ←< − 1; // Decrement< to match the precondition of pairwise_strengthen()
29: pairwise_strengthening(for_seq, back_seq,) (B, B′), 8); // Iterative pairwise strengthening
30: return true; // Fixed point reached

5.2 Dual Approximated Reachability (DAR)

We sketch the procedure of DAR in Alg. 3. Similar to ISMC, DAR first inspects if the initial states
overlap with the target states at line 6. If not, it initializes the forward reachability sequence
for_seq with � and the backward reachability sequence back_seq with ¬% at line 8. DAR unrolls
the program one more time at line 10 to obtain the formula of the transition relation, required
in the local-strengthening stage at line 13. Before entering the local-strengthening stage, DAR
performs fixed-point checks (outlined in Alg. 2) on the forward and backward reachability sequences,
respectively, at line 12. If either of the checks succeeds, DAR determines the program safe and
terminates at line 30. Otherwise, it attempts to strengthen the reachability sequences locally.

In the local-strengthening stage, given the forward and backward reachability sequences for_seq
and back_seq of length= (which indicate no counterexample up to length=−1 exists), DAR searches

6The initial states � can also be used at the 0th step; we use ⊥ for consistency with the ISMC paper [20].
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Algorithm 4 pairwise_strengthening

Input: sequences for_seq and back_seq of length = for forward and backward reachability, respec-
tively, a transition relation ) (B, B′), and an index 8 such that the formula
for_seq[8] (B) ∧) (B, B′) ∧ back_seq[= − 1 − 8] (B′) is unsatisfiable

1: = ← for_seq.len();
2: for_seq.append(⊤);
3: for ( 9 ← 8; 9 < =; 9 ← 9 + 1) do
4: ⟨⊤, g,⊥⟩ ← interpolate(for_seq[ 9] (B) ∧) (B, B′), back_seq[= − 1 − 9] (B′));

5: for_seq[ 9 + 1] ← for_seq[ 9 + 1] ∧ g ; // Strengthened by forward interpolant
6: back_seq.append(⊤);
7: for ( 9 ← = − 1 − 8; 9 < =; 9 ← 9 + 1) do
8: ⟨⊤, g,⊥⟩ ← interpolate(back_seq[ 9] (B′) ∧) (B, B′), for_seq[= − 1 − 9] (B));

9: back_seq[ 9 + 1] ← back_seq[ 9 + 1] ∧ g ; // Strengthened by backward interpolant

for the smallest index 8 such that the formula for_seq[8] (B) ∧) (B, B′) ∧ back_seq[= − 1 − 8] (B′) is
unsatisfiable. Such an index 8 indicates that it is impossible to transit via one step from any state
reachable via 8 steps from an initial state to a state that can reach a target state via = − 8 − 1 steps. In
other words, this local unsatisfiable query shows that no counterexample of length = exists. Such
local infeasibility of counterexamples is then leveraged by the iterative pairwise strengthening
procedure at line 29 to refine and extend the reachability sequences.
The procedure of iterative pairwise strengthening is summarized in Alg. 4. Given the forward

and backward reachability sequences for_seq and back_seq of length =, the transition relation,
and an index 8 such that for_seq[8] (B) ∧ ) (B, B′) ∧ back_seq[= − 1 − 8] (B′) is unsatisfiable, the
procedure computes forward and backward interpolants from pairs of forward and backward
images in conjunction with the transition relation and uses the interpolants to refine and extend
the reachability sequences in both directions. In lines 2 to 5 (resp. lines 6 to 9), the forward (resp.
backward) sequence is extended and strengthened by forward (resp. backward) interpolants.
DAR repeats the process of identifying local infeasibility and iterative pairwise strengthening

until either of the reachability sequences converges to a fixed point, or the sequences no longer
demonstrate such local unsatisfiability. In the latter case, DAR enters the global strengthening
stage from line 14, where counterexamples of length = are searched with multiple copies of the
transition relation. Instead of directly posing the precise BMC query of length =, which is potentially
expensive, DAR leverages the backward reachability sequence and gradually increases the number
of transitions in the query at line 21 to show that the states that can reach a target state in = −<

steps (overapproximated by back_seq[= −<]) are unreachable via< steps from the initial states.
This query overapproximates the precise BMC query, namely, no counterexample of length = exists
if it is unsatisfiable. Additional program unrolling is performed at line 19 when needed.
If the query at line 21 is unsatisfiable for some number < ≤ =, DAR refines the forward

reachability sequence by the derived inductive interpolation sequence and invokes the iterative
pairwise strengthening procedure at line 29 with< decremented by 1 at line 28 because it follows
from the unsatisfiable query that for_seq[< − 1] (B) ∧) (B, B′) ∧ back_seq[= − 1 − (< − 1)] (B′) is
also unsatisfiable (proof available in paper [21]). The query becomes the precise BMC query if
< = =, and DAR found a feasible counterexample of length = at line 24 if the query is satisfiable.

5.3 Design Choices in the Implementations

We made two relevant design choices in the implementations: (1) the extraction of a transition
relation from a program and (2) the encoding and solving of path formulas.
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To extract a transition relation, we also tried a straightforward approach using single-block
encoding with a symbolic program counter. However, the conversion based on LBE [22] outper-
formed the straightforward method in our evaluation because it takes the program structure into
account. To encode the path formulas, we follow the default settings of CPAchecker [23] and use
the SMT theory of equality with uninterpreted functions, arrays, bit-vectors, and floats. The SMT
solver MathSAT5 [62] is used because it supports interpolation on the theory. This configuration of
CPAchecker has been extensively evaluated and shown to perform well on our benchmark set [27].

We tried our best to faithfully implement the compared algorithms. Unfortunately, to our knowl-
edge, there are no publicly available reference implementations of ISMC [20] and DAR [21], against
which we can check our adoptions to software verification.

6 EVALUATION

To assess whether the claims listed in Sect. 1.1 about IMC, ISMC, and DAR are transferable to
software verification or not, we evaluated the implementations of the three algorithms in the
software verifier CPAchecker on a large set of safety-verification tasks in the programming language C.
We used a much larger input data set than those in the original papers to make the experimental
results more robust. In addition to examining the claims in the original papers [20, 21], we compared
IMC, ISMC, and DAR to predicate abstraction (PredAbs) [25] and Impact [26], two state-of-the-art
interpolation-based algorithms for software verification, to explore how beneficial the approaches
originating from hardware model checking are for conventional program analysis.

6.1 Benchmark Set

We used tasks from the 2023 Competition on Software Verification (SV-COMP ’23) [27] in our
evaluation. We considered the tasks whose safety property is the reachability of an error location
and excluded the tasks from the categories ReachSafety-Recursive and ConcurrencySafety-Main

because the implementations currently do not support them. In total, the benchmark set consists of
8 813 tasks, among which 2 793 contain a feasible execution path to the error location (referred to
as unsafe), and the rest 6 020 are assumed to satisfy their specifications (referred to as safe). The
benchmark set includes subcategories Arrays, BitVectors, ControlFlow, ECA, Floats, Heap, Loops, Pro-
ductLines, Sequentialized, XCSP, Combinations, andHardware from the category ReachSafety and sub-
categories AWS-C-Common-ReachSafety, BusyBox-ReachSafety, DeviceDriversLinux64-ReachSafety,
DeviceDriversLinux64Large-ReachSafety, and uthash-ReachSafety from the category SoftwareSystems.

6.2 Experimental Se�ings

All five compared approaches (IMC, ISMC, DAR, PredAbs, and Impact) were implemented with
a unifying framework in CPAchecker [7] to minimize confounding variables, such as the fron-
tend parser and backend SMT solver, in the evaluation. CPAchecker at revision 45787 of branch
itp-mc-with-slt was used in the evaluation, and the SMT solver MathSAT5 [62] was employed
to handle the SMT queries.
We ran the experiments on machines with a 3.40GHz CPU (Intel Xeon E3-1230 v5) having

8 processing units and 32GB of memory. The operating system was Ubuntu 22.04 (64 bit) running
Linux 5.15 and OpenJDK 17.0. The resource limits imposed on each verification task were two CPU
cores, 15GB of memory, and 1 800 s of CPU time. The benchmarking framework BenchExec [39]
was used to control the computational resources and process the measurement data.

6.3 Assessment of the Claims about ISMC

Table 1 shows a summary of the three interpolation-based algorithms in our evaluation. Like the
polished IMC implementation, the new implementations of ISMC and DAR did not report any
incorrect proofs. All three analyses reported incorrect alarms on two verification tasks. These wrong
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Table 1. Summary of the experimental results for 8 813 safety-verification tasks

Algorithm (#tasks) IMC ISMC DAR

Correct results 8 813 2 791 2 723 2 791

proofs 6 020 1 886 1 713 1 815

alarms 2 793 905 1 010 976

Incorrect results 2 2 2

proofs 0 0 0

alarms 2 2 2

Timeouts 2 367 2 257 2 281

Out of memory 437 662 524

Other inconclusive 3 216 3 169 3 215
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Fig. 1. ISMC: Comparing the CPU time with IMC on (a) unsafe and (b) safe tasks (TO: timeout)

alarms are related to the program encoding of CPAchecker and not caused by our implementations
as other mature approaches in CPAchecker, like PredAbs [25], cannot solve them correctly, either.

Based on the data collected in our evaluation, we investigate whether the claims in the ISMC [20]
and DAR [21] papers can be transferred to software verification below.

H1.A: ISMC is faster than IMC on tasks with property violation (✓). Figure 1a compares the
CPU time ISMC (on the y-axis) and IMC (on the x-axis) took to report alarms in the verification
tasks. Observe that more data points are below the diagonal, indicating that ISMC is faster than
IMC at bug hunting. Moreover, there are 127 tasks (orange marks) for which IMC reached the
time limit but ISMC can find a bug. There are only 27 tasks (blue crosses) the other way around.
Therefore, we conclude that this claim holds in our evaluation.

H1.B: ISMC is faster than IMC when IMC finds a proof only at high unrolling bounds (?).

Figure 1b compares the CPU time ISMC (on the y-axis) and IMC (on the x-axis) took to find proofs
in the verification tasks. The proofs found by completely unrolling the loops in the programs
instead of deriving fixed points were excluded. Because the original claim did not specify what a
high unrolling bound for IMC is, we interpret it as the first quantile (i.e., higher than 75 %) of the
unrolling bounds required by IMC to find fixed points on the whole benchmark set. These tasks are
labelled with red triangles in Fig. 1b. Since most of the red triangles are above the diagonal, IMC is
still faster than ISMC even if it finds a proof at high unrolling bounds. Therefore, we conclude that
this claim does not hold according to our interpretation of high unrolling bounds. It is also worth
noting that IMC never had a higher unrolling bound than ISMC in our evaluation.
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Table 2. Comparing the CPU time of IMC vs. ISMC/DAR on tasks they both correctly solved (time unit: s)

CPU time CPU time

#tasks IMC ISMC ratio #tasks IMC DAR ratio

Total 2 549 143 000 167 000 1.17 2 631 163 000 180 000 1.10

Proofs 1 676 49 400 99 700 2.02 1 762 72 200 95 800 1.33

Alarms 873 93 300 67 300 0.72 869 90 400 84 400 0.93
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Fig. 2. �antile plots for all correct (a) alarms and (b) proofs of IMC, ISMC, and DAR

H1.C: Overall, ISMC is faster than IMC (?). The authors of the ISMC paper [20] report that
ISMC was overall faster than IMC by 30 % in their experiment. We decompose the assessment
into finding alarms and proofs. In the left half of Table 2, we report the numbers of alarms and
proofs found by both IMC and ISMC as well as the sum of CPU time they took to solve these
tasks. ISMC is faster than IMC by 28 % at bug hunting but twice slower at delivering proofs. The
quantile plots in Fig. 2 also show that ISMC is faster at bug hunting but slower at proof finding.
Overall, ISMC spent 17 % more CPU time than IMC to solve these tasks, so we conclude that this
claim does not hold in our evaluation.

6.4 Assessment of the Claims about DAR

H2.A: For DAR, the ratio of iterations using global strengthening to the total number of

iterations is less than 0.5 in most tasks (✓). DAR is designed to avoid large and expensive BMC
queries as much as possible. It achieves this goal by first trying to show that the BMC query is
unsatisfiable with shorter and possibly cheaper satisfiability checks in the local-strengthening stage.
Out of the 1 815 safe tasks that DAR correctly solved, 979 were proven by constructing fixed points,
while the rest were proven by completely unrolling the loops in the programs. In the tasks where
fixed points were derived, the average ratio of the number of iterations in which DAR entered the
global strengthening stage to the number of total iterations is 0.097. Specifically, there are 785 tasks
in which DAR never performed global strengthening in any iteration. Therefore, we conclude that
the claim holds in our evaluation and that DAR’s key insight of using local checks to avoid large
and expensive BMC queries is transferable to software verification.

H2.B: IMC finds a proof slower than DAR in many tasks even though it has a smaller

convergence length (?). Figure 3b shows a scatter plot of the CPU time elapsed for DAR (on the
y-axis) and IMC (on the x-axis) to find proofs by reaching fixed points. The plot confirms that IMC
usually has a smaller convergence length than DAR (the data points shaped as green circles). In
fact, DAR found a proof with a smaller convergence length than IMC only in 16 tasks. However,
the scatter plot contradicts the claim that DAR is faster than IMC. In our evaluation, IMC usually
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Fig. 3. DAR: Comparing the CPU time with IMC on (a) unsafe and (b) safe tasks (TO: timeout)
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Fig. 4. DAR: (a) numbers of interpolants derived by DAR and IMC; (b) size of interpolants (measured by

average numbers of atoms) versus the CPU time consumed to solve a task

found a proof faster than DAR, as shown by the large number of data points above the diagonal.
Therefore, we conclude that this claim does not hold in our evaluation.

H2.C: DAR computes more interpolants than IMC (✓). Figure 4a is a scatter plot of the
numbers of interpolants derived during the computation of DAR and IMC, showing that IMC
never computed more interpolants than DAR on all tasks. Therefore, we conclude that the claim
holds in our evaluation.

H2.D: DAR’s run-time is more sensitive to the sizes of interpolants than IMC (?). To assess
this claim, we define the size of an interpolant as the number of atoms it contains. An atom is a
predicate applied to terms without any boolean connectives. To evaluate if the CPU time of DAR
is more sensitive to the sizes of its interpolants, we plot the CPU time and the average sizes of
interpolants needed by DAR and IMC to solve a task in Fig. 4b.

From the plot, we observe for both DAR and IMC that the CPU time elapsed to solve a task and
average sizes of interpolants are positively co-related. However, the plot does not indicate that
one algorithm is more sensitive to the size of interpolants than the other. We also evaluated this
claim with different measures for the size of an interpolant, including the numbers of Boolean
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Table 3. Summary of the experimental results for 4 790 tasks consisting of programs with at most one loop

Algorithm (#tasks) IMC ISMC DAR Impact PredAbs

Correct results 4 790 2 439 2 372 2 446 2 107 2 026

proofs 3 188 1 755 1 592 1 691 1 433 1 438

alarms 1 602 684 780 755 674 588

Incorrect results 2 2 2 1 1

proofs 0 0 0 0 0

alarms 2 2 2 1 1

Timeouts 1 878 1 778 1 828 1 823 2 231

Out of memory 317 535 401 368 82

Other inconclusive 154 103 113 491 450
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ry ReachSafety-ECA 1 263 562 546 582 571 492

proofs 783 431 319 384 398 362

alarms 480 131 227 198 173 130

ReachSafety-Sequentialized 461 281 251 245 255 204

proofs 131 45 23 19 27 13

alarms 330 236 228 226 228 191

ReachSafety-Loops 445 157 174 172 110 117

proofs 314 93 105 101 79 85

alarms 131 64 69 71 31 32

Other categories 2 621 1 439 1 401 1 447 1 171 1 213
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Fig. 5. �antile plots for all correct (a) alarms and (b) proofs on the tasks with at most one loop

operations and variables in it, but did not find clear evidence to support the claim. Therefore, we
conclude that the claim does not hold in our evaluation.

H2.E: Overall, DAR is faster than IMC (?). The authors of the DAR paper [20] report that DAR
was overall faster than IMC by 36 % in their experiment. In the right half of Table 2, we report
the numbers of alarms and proofs found by both IMC and DAR as well as the sum of CPU time
they took to solve these tasks. DAR is faster than IMC by 7 % at bug hunting but 33 % slower at
delivering proofs. The quantile plots in Fig. 2 and the scatter plots in Fig. 3 also show that DAR
performs similarly to IMC for finding bugs and that IMC is more efficient in finding proofs. Overall,
DAR spent 10 % more CPU time than IMC to solve these tasks, so we conclude that this claim
does not hold in our evaluation.

6.5 Comparison with Other Interpolation-Based So�ware-Verification Approaches

Besides validating the claims in previous publications [20, 21], we compare IMC, ISMC, and DAR to
PredAbs [25] and Impact [26]. Note that PredAbs and Impact are inherently able to handle multi-loop
programs, whereas IMC, ISMC, and DAR require single-loop transformation as preprocessing.
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Therefore, to eliminate the difference in program encoding caused by the transformation, we focus
the comparison on benchmark tasks consisting of programs with at most one loop.

Table 3 summarizes the results of the five compared algorithms on 4 790 safety-verification tasks,
among which 3 188 are safe and 1 602 are unsafe. In the evaluation, DAR was able to solve the most
tasks in total, IMC found the most proofs, and ISMC was the best bug-hunting algorithm. Notably,
all three hardware-verification algorithms produced more correct results than both software-
verification algorithms, and the overall increase in the correct results is about 20 %. IMC, ISMC and
DAR were able to solve 512, 572, and 528 tasks that were unsolvable by either Impact or PredAbs,
respectively. On nearly 300 tasks, PredAbs and Impact posed SMT queries for which MathSAT5

encountered errors, which results in their high numbers of “Other inconclusive” in Table 3. For
the two tasks where IMC, ISMC, and DAR reported incorrect alarms, PredAbs and Impact delivered
an incorrect alarm on one and failed during SMT solving on the other. The quantile plots in Fig. 5
further demonstrate that the three hardware-verification algorithms are not only more effective
but also more efficient than the two software-verification algorithms.

To gain more insights on the strengths of hardware-verification algorithms, we conducted a de-
tailed analysis on selected subcategories of the benchmark set. The results divided by subcategories
are shown in the second half of Table 3. The subcategory ReachSafety-ECA consists of 1263 programs
modeling event-condition-action systems [63]. IMC and ISMC showcased their unique capabilities
in this subcategory by finding the most proofs and alarms, respectively. In comparison, PredAbs
solved the fewest tasks in the subcategory. Profiling its run-time, we found that the abstraction
computation of PredAbs, which involves an expensive model-enumeration step [7, 64], took up a
significant amount of its CPU time and led to timeouts in many tasks. IMC and ISMC avoid the
expensive abstraction computation by taking the union of interpolants as overapproximations.
The subcategory ReachSafety-Sequentialized is another example where IMC demonstrated its

outstanding proof-finding ability. The 461 programs in this subcategory were obtained by sequen-
tializing the execution of concurrent multi-threaded programs [65, 66]. IMC was able to deliver
11 proofs that none of the other four algorithms could find. In subcategory ReachSafety-Loops, all
three hardware-verification algorithms outperformed the two software-verification algorithms
at both proof finding and bug hunting. Particularly, on several programs involving nonlinear
arithmetics, IMC, ISMC, and DAR were able to detect bugs, while PredAbs and Impact got stuck
at some difficult interpolation queries.

Our detailed analysis shows that the algorithms originating from hardware model checking can
improve the state of the art of software verification by more than 40 % in some benchmark families,
demonstrating the importance of systematical knowledge transfer between the two communities.

6.6 Threats to Validity

External Validity. The conclusions of our study are based on the used benchmark set, which is
the largest and most diverse open-source collection of verification tasks for the programming
language C. Although our experiments show that IMC is faster than ISMC and DAR, the benchmark
set contains many more safe than unsafe tasks. Therefore, the improvement of ISMC and DAR
over IMC is biased since IMC is more effective in finding proofs.
We adopted algorithms that were originally designed for hardware circuits to software, and it

was unclear which of the claims in the original papers will hold for software. Our study shows
that the characteristics of the algorithms are transferable to software on the used benchmark set
and that the investigated algorithms are robust regarding the representation of the verification
tasks. However, it is still unclear which claims will hold for software with different features that
are not covered in the used benchmark set. The comparison in Sect. 6.5 was performed on a subset
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of benchmark tasks containing at most one loop. Therefore, it is possible that the performance
characteristics of the evaluated algorithms are different on multi-loop programs.

Internal Validity. To minimize confounding variables in the evaluation, the implementations of the
two algorithms and the compared approaches are all realized in the mature and well-maintained
software verifier CPAchecker. The evaluation is performed on more than 8 000 software-verification
tasks to make the results more robust. Note that the number of verification tasks in our evaluation
is much larger than the two previous works [20, 21].
For executing the experiments, we used the popular benchmarking framework BenchExec [39],

which employs modern features of the Linux kernel, such as cgroups for resource measurement
and control, name spaces for process isolation to prevent interference, and overlay file systems
to prevent experiment runs from changing the state of the system. To mitigate interference from
shared hardware resources, we make sure to never run two executions on the same physical cores
(no hyper-threading across executions). However, the effectivity is more important than the CPU
time in our experiments, therefore, the impact is limited. We set the CPU time limit to 1 800 s as
in the DAR paper. In principle, we could use 10 000 s as in the ISMC paper, but the experiments
will require considerably more time given the size of our benchmark set.

7 CONCLUSION

Hardware and software verification techniques deal with the same problem conceptually and rely
on common theoretical cornerstones such as satisfiability and Craig interpolation. Even though the
areas are closely related, there is a knowledge gap in howwell the results obtained in one community
are transferable to the other. This transferability study contributed to filling this gap. ISMC [20]
and DAR [21] are two successful interpolation-based algorithms for hardware model checking. We
implemented them in the software verifier CPAchecker to analyze C programs. To observe which
claims about their characteristics in the original papers are transferable to software verification, we
evaluated them against the software-verification adoption [22] of IMC [19], the baseline approach
used in the original studies. The experiments were executed on an extensive benchmark set.
From the results, we confirmed the claims about the characteristics of the two algorithms for

software verification: ISMC was faster than IMC to find bugs in programs, and local strengthening
was often enough to refute infeasible error paths and avoid expensive BMC queries in DAR.
However, the claims in the original papers about the speedup of ISMC and DAR over IMC did not
transfer to software verification. Overall, IMC was the fastest among the three algorithms on the
software-verification benchmark set used in our evaluation. When compared to the state-of-the-
art software-verification algorithms, IMC, ISMC, and DAR demonstrated superior effectiveness
and efficiency. Most importantly, all three algorithms were able to solve tasks that the others
could not, proving their indispensable values for software verification. Our work improves the
knowledge about the transferability of ISMC and DAR to software verification and reveals the
potential for improving software verification by adopting methods from hardware model checking.
Our results will shed light on exchanging and unifying research findings between the two areas
in both directions.
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