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There are many approaches for automated software verification, but they are either imprecise, do not scale
well to large systems, or do not sufficiently leverage parallelization. This hinders the integration of software
model checking into the development process (continuous integration). We propose an approach to decompose
one large verification task into multiple smaller, connected verification tasks, based on blocks in the program
control flow. For each block, summaries (block contracts) are computed — based on independent, distributed,
continuous refinement by communication between the blocks. The approach iteratively synthesizes precondi-
tions to assume at the block entry (computed from postconditions received from block predecessors, i.e., which
program states reach this block) and violation conditions to check at the block exit (computed from violation
conditions received from block successors, i.e., which program states lead to a specification violation). This
separation of concerns leads to an architecture in which all blocks can be analyzed in parallel, as independent
verification problems. Whenever new information (as a postcondition or violation condition) is available from
other blocks, the verification can decide to restart with this new information. We realize our approach on
the basis of configurable program analysis and implement it for the verification of C programs in the widely
used verifier CPAchecker. A large experimental evaluation shows the potential of our new approach: The
distribution of the workload to several processing units works well, and there is a significant reduction of the
response time when using multiple processing units. There are even cases in which the new approach beats
the highly-tuned, existing single-threaded predicate abstraction.
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1 INTRODUCTION

Despite recent advances [1] in automated software verification and integration into industrial
development processes [2–7], the response time of tools for formal software verification does
not scale. Comparing the CPU time with the wall time of the results from the International
Competition on Software Verification (SV-COMP [1]), it is visible that none of the 52 verification
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tools uses significant parallelization of the workload onto the available hardware. This makes
formal verification unsuitable for continuous integration [6]. Compositional verification [8] tries
to mitigate this: the verification task is divided into multiple, dependent parts. Program parts are
analyzed separately, which allows to distribute the verification task onto multiple workers; this,
in theory, allows to scale the response time required for verification according to the number of
program parts and workers. But there are two issues with this approach: First, program parts are—so
far—mostly divided using procedure boundaries. This restricts the possible number of parallel
workers to the number of procedures in the program under analysis; scaling to a large number
of workers is not possible. Second, program parts depend on each other; there is only a single
program specification that the program under analysis is verified against, and if one program part
relies on another program part (e.g., one function calls another function), analysis can only continue
when the dependent program part is fully analyzed. This makes workers wait on each other, and
restricts the amount of actual concurrent work.
Our new approach, distributed summary synthesis, solves both issues: Distributed summary

synthesis divides the program under analysis into separate blocks. Each block is considered its
own verification task, with a given precondition to assume, a block summary (postcondition), and
a violation condition to check in addition to the original program specification. All preconditions,
block summaries, and violation conditions are continuously refined through program analysis
and information from predecessor and successor blocks. Preconditions are refined top-down: If
a block’s analysis generates a proof with regards to its violation condition and original program
specification, the corresponding postcondition at the block exit is propagated to all successor blocks.
The violation conditions are refined bottom-up: If an analysis reaches a program state that violates
the block’s violation condition or the original program specification, it constructs a condition for
the block entry that leads to a violation in this block, and propagates it to all predecessor blocks as
new violation condition. If a violation condition is propagated up to the program entry, a violation
is found that cannot be refuted anymore, and the program is considered unsafe. If all blocks produce
a proof, no more violations will be found and the program is considered safe.

We base our formulation of distributed summary synthesis on configurable program analysis [9].
Configurable program analysis is a configurable framework that allows to combine different program
analyses and abstract domains. In the scope of this work, we focus on predicate abstraction [10]
with counterexample-guided abstraction refinement (CEGAR) [11–13].

Example. The program in Fig. 1 is safe since variables x and y have the same initial value and are
incremented synchronously in the body of the while loop. Therefore, it is impossible for x and y to
have different values at the assert in line 8.

Decomposition.We represent programs as control-flow automata (CFA) (Fig. 2). First, distributed
summary synthesis decomposes the CFA into blocks: coherent subgraphs with exactly one entry-
and one exit-location. Based on their entry- and exit-locations, blocks are connected with each
other in a block graph. Fig. 3 shows a possible decomposition of Fig. 2. Table 1 shows one possible
run of distributed summary synthesis on Fig. 3. For simplicity, we assume in our example that
all block-analysis iterations are synchronized. The columns A, B, and C refer to analyses on the
respective blocks in Fig. 3.

Iteration 0. All local analyses start with initial states 'BC0AC0 . The concrete value of 'BC0AC0 depends
on the abstract domain that is used for the analysis and the current block. We use predicate
abstraction [10] and start at the block entries, with no initial information about the program states
(e.g., initial state {?2 = ;1} for block A). Initially, the violation conditions are empty, and the target
states )0 for analysis are the states at location ;4 (that is reached when the assert fails).
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1 int main() {

2 int x = 0;

3 int y = 0;

4 while (n()) {

5 x++;

6 y++;

7 }

8 assert(x == y);

9 }

Fig. 1. Program

l1

l2

l3

l4 l6

l5

l7 l4

l5

x := 0

y := 0

[!(n() == 0)]

x := x + 1

y := y + 1

[n() == 0]

[x == y] [!(x == y)]

Fig. 2. Control-flow automaton of Fig. 1
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A
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Fig. 3. A valid decomposition of Fig. 2

The analyses on blocks A and B reach no target states (proof) and compute the trivial sum-
mary ?2 = ;3 at their block exits and broadcast these summaries as their postconditions to all blocks.
Subscript" denotes that the communicated information is packed in a message. The analysis on
block C reaches the target state ?2 = ;4 (violation). From that, the analysis computes the violation
condition: If, at block entry ;3, condition G ≠ ~ holds, then the program violates the specification.
This violation condition is broadcast to all blocks.

Iteration 1. Because blocks A and B are predecessors of block C, they update their target states ()1)
with the information of the violation condition (message from C). The analysis of block A does
not reach any state in )1 and computes the summary (postcondition) ?2 = ;3 ∧ G = ~ at its block
exit and broadcasts it to the other blocks. Block B reaches target states (violation) and broadcasts a
violation condition. Because block C did not receive new information, it is idle in �1.

Iteration 2. Because blocks B and C are successors of A, they update their initial reached sets 'BC0AC2
with the new postcondition from �. Block B has two predecessors: block A and itself. Distributed
summary synthesis uses Tarjan’s algorithm [14] to identify cyclic dependencies (like block B
depends on itself). Thus, 'BC0AC2 for B is set to the postcondition communicated by A. Block C has
two non-cyclic dependencies: block A and block B. The postcondition ?2 = ;3 from block B in �0 is
joined with the postcondition ?2 = ;3 ∧G = ~ that is communicated from block A in �1. The result is
the least upper bound ?2 = ;3. The target states )2 of blocks A and B are updated with the violation
condition communicated by B.
The analysis of block A does not reach any target state in )2 and computes the same summary

as before. Block B reaches no target state anymore with its updated initial reached set 'BC0AC2 , and
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Table 1. Distributed summary synthesis on Fig. 3

A B C

'BC0AC0 {?2 = ;1} {?2 = ;3} {?2 = ;3}

)0 {?2 = ;4 } {?2 = ;4 } {?2 = ;4 }

�0

proof

⇒ broadcast
(gpost,A, {?2 = ;3}" )

proof

⇒ broadcast
(gpost, B, {?2 = ;3}" )

violation

⇒ broadcast
(gvcond,C, {?2 = ;3 ∧ G ≠ ~}" )

'BC0AC1 {?2 = ;1} {?2 = ;3} {?2 = ;3}

)1 )0 ∪ {?2 = ;3 ∧ G ≠ ~} )0 ∪ {?2 = ;3 ∧ G ≠ ~} )0

�1

proof

⇒ broadcast
(gpost,A, {?2 = ;3 ∧ G = ~}" )

violation

⇒ broadcast (gvcond, B,
{?2 = ;3 ∧ G + 1 = G ′

∧ ~ + 1 = ~′ ∧ G ′ ≠ ~′}" )

idle because no change

'BC0AC2 {?2 = ;1} {?2 = ;3 ∧ G = ~} {?2 = ;3}

)2
)1 ∪ {?2 = ;3 ∧ G + 1 = G ′

∧ ~ + 1 = ~′ ∧ G ′ ≠ ~′}

)1 ∪ {?2 = ;3 ∧ G + 1 = G ′

∧ ~ + 1 = ~′ ∧ G ′ ≠ ~′}
)1

�2

proof

⇒ broadcast
(gpost,A, {?2 = ;3 ∧ G = ~}" )

proof

⇒ broadcast
(gpost, B, {?2 = ;3 ∧ G = ~}" )

idle because no change

'BC0AC3 {?2 = ;1} {?2 = ;3 ∧ G = ~} {?2 = ;3 ∧ G = ~}

)3 )2 )2 )2

�3 idle because no change idle because no change
proof

⇒ broadcast (gpost,C, {?2 = ;5 })

Fixpoint reached, program safe.

computes also the summary ?2 = ;3 ∧ G = ~. Block C is still idle because there is no change in its
conditions.

Iteration 3. The new postcondition from block B makes C update its initial reached set 'BC0AC3 to
?2 = ;3 ∧ G = ~. In the last iteration, the analysis on blocks A and B have no new information and
are idle. Block C reaches no target state anymore (proof). Now the last broadcast of each block is a
proof and a fixed point is reached. The overall verification verdict is that the program is safe.

In summary, we can see that each block was analyzed separately, without any knowledge about
the internals of the other blocks or their analysis. The communication is done via two kinds of
messages, postconditions and violation conditions.

Contribution. We provide the following contributions:

• We define a stateless, concurrent framework for distributed software verification, called
distributed summary synthesis, and implement it for C programs in the formal-verification
tool CPAchecker [15].

• We show the benefits of distributed summary synthesis compared to the existing state of the art
in a thorough empirical study. For this, we use the largest available benchmark set for the
verification of C programs, sv-benchmarks.

• All our implementation and data are available open source.

Related Work. Distributed summary synthesis is inspired by adjustable-block encoding (ABE) [16,
17], block-abstraction memoization (BAM) [18–20], and the SMT-based function summaries of

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/


Decomposing So�ware Verification using Distributed Summary Synthesis 59:5

HiFrog [21]. Adjustable-block encoding (ABE) [16, 17] splits a program into variable-sized blocks
that have a predecessor-successor relationship, as well as a nesting hierarchy. Block-abstraction
memoization [18–20] introduces a cache for block summaries and unifies the concepts of function
and loop summaries. Blocks with a (transitive) predecessor or successor relationship are analyzed
sequentially in a forward program analysis, but blocks that are in no predecessor or successor
relationship can be analyzed concurrently [19]. The blocks of distributed summary synthesis also
have a predecessor-successor relationship, but we decide for a simpler, flat structure. In addition,
we do not wait for predecessor blocks to be analyzed, but immediately start computing a summary
for each block (that may later be refined). This leads to weaker dependencies between blocks and
enables a stronger parallelization. HiFrog [21, 22] splits a program into its individual functions and
analyzes each function independently. The summary per function is computed with BMC, Craig
interpolation [23, 24], and different SMT theories: summaries are first computed with less-precise,
but cheaper integer theories, and on demand, the summaries are recomputed with more-precise
bitvector theories. Similar to HiFrog, distributed summary synthesis refines whenever new violation
conditions arise. In contrast to HiFrog, distributed summary synthesis can encode summaries on a
more fine-grained level than functions: A program can be divided into blocks of arbitrary sizes and
can be analyzed with different verification techniques.

Bi-abduction [3, 25] allows compositional program analysis by inferring necessary preconditions
for each statement handled (including function calls). Multiple techniques [3, 18, 21, 26–33] use
function summaries for interprocedural program analysis. Within our analysis, we use predicate
abstraction [10, 34, 35] with counterexample-guided abstraction refinement (CEGAR) [11–13] and
Craig interpolation [23, 24]. Other SMT-based approaches to model checking [36–39] are also
possible. DSS allows the use of any abstract domain to compute summaries.

Portfolio approaches [40] run multiple verification techniques in parallel on the same verification
task. This can happen without information exchange between the individual techniques [41–44],
or with exchange (for example to ‘feed’ an invariant checker) [45]. Some approaches [18, 46–50]
parallelize the state-space exploration by dividing the program-state space vertically into inde-
pendent subspaces that are explored separately. Multi-threading is also used by some verification
backends [51, 52]. Coverity [50, 53] includes a parallelized, worker-based static analysis. Unlike
distributed summary synthesis, Coverity does not refine individual sub-tasks on-demand, but runs
five separate, parallelized phases on code blocks to compute pre- and post-conditions.

2 BACKGROUND

For our presentation we only consider intraprocedural, imperative programs with two types of
operations: variable assignments and control-flow assumptions. The programs only use arithmetics
over bit-vector arithmetics. Our technique can also be used for interprocedural analysis, thanks to
its modular nature.

Program Representation. A variable assignment G := 4G? assigns program variable G the value of
expression 4G? . A control-flow assumption [?] allows the control-flow to pass only if boolean
expression ? is true. The (infinite) set Ops represents all possible program operations. The special
program variable pc is the program counter. It represents the current location in the program. We
represent programs as control-flow automata (CFA). A CFA P = (L, l1,G) is a directed graph with
program locations L (nodes), program entry l1 ∈ L (entry node) and control-flow edgesG : L×Ops×L.
A control-flow edge (l, >?, l′) represents that the control flows from l to l′ by setting pc = l′ and
evaluating >? . Initially, pc = l1.
A program path p = ⟨(;1, >?1, ;2), (;2, >?2, ;3) . . . (;=−1, >?=−1, ;=)⟩ is a sequence of connected

control-flow edges in the CFA. The set Paths consists of all supposable program paths.
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Block-Adjustment Operator. The operator blk : � → B (inspired by the block-adjustment opera-

tor [16]) maps each control-flow edge (l, >?, l′) of a CFA P to true or false. If blk((l, >?, l′)) = true,
then (l, >?, l′) is the end of the current block and each outgoing edge (l′, ·, ·) ∈ P is the beginning of
a new block. If blk((l, >?, l′)) = false, then (l, >?, l′) is part of the current block, only. The concrete
definition of blk is not restricted; two trivial definitions are blkB14 and blkfalse. Operator blkB14

always returns true; i.e., every block consists of a single program operation. Operator blkfalse always
returns false; i.e., there is only a single block, and it represents the full program. Block-adjustment
operator blk;8=40A produces blocks of linear, non-branching control-flow edges. It returns true for
CFA edge (l, >?, l′) in two cases: First, if the target node l′ has two or more incoming edges. This
creates a new block if control flows join. Second, if the target node l′ has two or more outgoing
edges. This creates new blocks if the control flow splits. Formally,
blk;8=40A ((l, >?, l′)) =

��{(·, ·, l′) ∈ �}
��
> 1 ∨

��{(l′, ·, ·) ∈ �}
��
> 1.

Program Properties. Our approach aims at reachability properties. A reachability property i =

□?2 ≠ l4 represents the property that the program never reaches target location l4 . Each program
state with ?2 = l4 is a target state.1

Configurable Program Analysis. An abstract domain � = (C, E, J·K) consists of the set C of all
possible concrete program states, the semi-lattice E = (E, ⊑,⊔,⊤), and a concretization function
J·K : E → 2

C . The lattice elements E of E are used as abstract program states. The relation ⊑ is a
partial order over E. The join 4 ⊔ 4′ of two abstract states is the least upper bound of 4 and 4′ in E.
The symbol ⊤ denotes the join over E. Each abstract program state represents a set of concrete
program states. The concretization function J·K maps each abstract state to the set of concrete
program states that it represents. We extend J·K to sets of abstract states: J(K =

⋃
4∈(J4K for ( ⊆ E.

A configurable program analysis (CPA) [54]D = (�,Π,⇝, merge, stop, prec) consists of abstract
domain� with set E of abstract states, the set of precisions Π, transfer relation⇝ ⊆ E×G× (E×Π),
merge operator merge : E × E × Π → E, stop operator stop : E × 2

E × Π → B, and precision
adjustment operator prec : E × Π × 2

(E×Π) → E × Π.
The abstract domain� defines the possible abstract states E, their relation to each other, and their

relation to the concrete program states. The set of precisions Π defines the level of abstraction. The
transfer relation⇝ ⊆ E×G×(E×Π) relates an abstract state 4 ∈ E to possible successor states 4′ ∈ E

with precision c ∈ Π when evaluating CFA edge 6 ∈ G, which we denote short as 4
6
⇝(4′, c). We

write 4
61
⇝41

62
⇝ . . . 4= to abbreviate 4

61
⇝(41, c), . . . , 4=−1

6=
⇝(4=, c). The merge operator merge(4, 4′, c)

combines the information of abstract states 4 and 4′, and produces an abstract state that is equal to
or more abstract than 4′. The stop operator stop(4, R, c) returns true if abstract state 4 is already
covered by the set R ⊆ E of known abstract states. It returns false otherwise. The precision
adjustment operator prec(4, c, R) abstracts 4 to a new abstract state using precision c and the set R
of known abstract states.

Reachability Analysis. A reachability analysis A(D, R0,W0,) ) = (reached, waitlist) is an al-
gorithm that receives a CPA D, an initial reached set R0 ⊆ (E × Π), a waitlist W0 ⊆ R0, and a
set ) ⊆ E of target states. It uses CPA D to compute the set reached ⊆ (E × Π) of reachable states
(accompanied by the used analysis precision). It assumes that all states in R0 are reachable and
starts computation with the abstract states inW0. If a target state is computed as reachable, A may
stop the analysis early. In this case, the returned set waitlist contains the frontier states that were
already computed as reachable, but not considered for further computations yet. If all reachable
states are computed, the returned waitlist is empty.

1For the sake of simplicity, we only consider reachability of a single target location in our presentation. Any reachability
property can be reduced to this through program transformation or monitors. In our evaluation, we use benchmark tasks
with multiple potential target locations.
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Algorithm 1 �%�(D, R0,W0,) ) [55], adapted

Input: CPA D = (�,Π,⇝, merge, stop, prec),
set R0 ⊆ (E × Π) of abstract states with precision,
setW0 ⊆ R0 of frontier abstract states with precision,
set ) ⊆ E of target states,
where E denotes the set of elements of the semi-lattice of � .

Output: set reached of reachable and set waitlist of frontier abstract states with precision
1: reached := R0
2: waitlist := W0

3: while waitlist ≠ ∅ do

4: pop (4, c) from waitlist
5: for each 4′ with 4⇝(4′, c) do

6: (4̂, ĉ) = prec(4′, c, reached)

7: if J 4̂ K ∩ J) K ≠ ∅ then

8: return reached ∪ {(4̂, ĉ)}, waitlist

9: for each (4′′, c ′′) ∈ reached do

10: 4=4F := merge(4′, 4′′, ĉ)

11: if 4=4F ≠ 4′′ then

12: waitlist := waitlist ∪ {(4=4F, ĉ)} \ {(4
′′, c ′′)}

13: reached := reached ∪ {4=4F} \ {(4
′′, c ′′)}

14: if ¬stop(4′, {4 | (4, ·) ∈ reached}, ĉ) then

15: waitlist := waitlist ∪ {(4̂, ĉ)}

16: reached := reached ∪ {(4̂, ĉ)}

17: return reached, waitlist

CPA Algorithm. The CPA algorithm [54]�%�(D, R0,W0,) ) (Alg. 1) is a reachability analysis. It first
initializes the set reached of reachable states and the set waitlist of states to consider with the
corresponding input values (lines 1–2). Then, while there are still states to consider (frontier states
waitlist), an abstract state and the precision (4, c) are popped (line 4) from the waitlist. Each
successor 4′ of 4 is considered. The algorithm first applies prec to 4′, c, and reached. It obtains a
new abstract state 4̂ and precision ĉ (line 6). In lines 7 and 8, the algorithm checks whether 4̂ has a
common concrete state with set ) of target states. If so, a target state is found and the algorithm
returns the set reached (with the target state) and the current waitlist. Otherwise, the algorithm
iterates over all pairs of reached states and precisions (4′′, c ′′). It tries to merge the successor
state 4′ with each already-reached state 4′′. If a merge succeeds (line 12), waitlist and reached

are updated accordingly. Afterwards, the algorithm checks with operator stop whether 4′ itself
should be added to waitlist and reached (line 14). If it should, the precision-adjusted elements 4̂
and ĉ are added. The algorithm then continues with the next state in waitlist (line 3). If all states
are explored, it returns the set reached and the then-empty waitlist.

Counterexample. The abstract counterexample cex : � × 2
� → Paths finds, for an abstract state 4

and set ' ⊆ � of reached abstract states (with 4 ∈ '), a program path ⟨61, . . . , 6=⟩ ∈ Paths so
that 40

61
⇝ . . .

6=
⇝4 with 40, . . . , 4=−1 ∈ '. The function l : Paths × � → 2

� finds, for a finite program
path ⟨61, . . . , 6=⟩ and an abstract state 4 , all possible abstract states 4′ so that 4′

61
⇝ . . .

6=
⇝4 is feasible.

Counterexample-guided Abstraction Refinement. Algorithm 2 shows counterexample-guided ab-
straction refinement (CEGAR) [11–13]. This is a reachability analysis that iteratively refines the
precision of the analysis based on found counterexamples. Algorithm 2 starts with the abstract
states and precision of the initial reached set '8= and waitlist,8= (lines 1–2). It then uses the
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Algorithm 2 ����'(D, R0,W0,) ) [55], adapted

Input: CPA D = (�,Π,⇝, merge, stop, prec),
set R0 ⊆ (E × Π) of abstract states with precision,
setW0 ⊆ R0 of frontier abstract states with precision,
set ) ⊆ E of target states,
where E denotes the set of abstract states.

Output: set reached of reachable and set waitlist of frontier abstract states, with precision
1: '8= := R0
2: ,8= := W0

3: while true do

4: reached, waitlist := CPA(D, '8=,,8=,) )

5: if waitlist = ∅ then

6: return reached, waitlist

7: f = extractErrorPath(reached)

8: if isFeasible(f) then

9: return reached, waitlist

10: c ′
:= refine(f)

11: '8= := {(4, c ∪ c ′) | (4, c) ∈ '8=}

12: ,8= := {(4, c ∪ c ′) | (4, c) ∈,8=}

CPA algorithm to compute the set reached of reachable states and the set waitlist of frontier
states (line 4). If waitlist is empty, CPA did not compute any target state; the algorithm returns
reached and the empty waitlist (line 6). If waitlist is not empty, a target state was computed;
Alg. 2 then extracts a counterexample f from reached and checks whether it is actually feasible.
If f is feasible, the algorithm found a reachable target state and returns reached and waitlist.
If f is not feasible, the precision of the analysis was too coarse. The algorithm refines the precision
based on the infeasible counterexample (line 10) and adds that new precision to the initial reached
set and waitlist. It then restarts by running the CPA algorithm with the updated precision (line 4).
Function extractErrorPath : 2

(�×Π) → Paths extracts the error path from the reached set.
Function isFeasible : Paths → B checks whether the error path is actually feasible. Function
refine : Paths → Π takes an infeasible error path and computes a precision that excludes it.

Predicate Abstraction. The predicate analysis CPA [35, 54] P = (�P,ΠP,⇝P, merge, stop, precP) can
use boolean predicate abstraction [17, 35, 56] over a precision c ∈ ΠP [55], which is a finite set of
predicates (that defines the level of abstraction). The abstract domain �P is defined using formulas
as abstract states. Roughly speaking, the transfer relation⇝P contains the transfer q

6
⇝P (q

′, c) if
q ′ is the (satisfiable) strongest postcondition (% (q, >?), for edge 6 = (;, >?, ; ′). At certain program
locations (function entries, exits, loop heads), the precision-adjustment operator prec abstracts q ′

to its boolean predicate abstraction over predicates from c . The merge operator does not combine
elements, i.e., merge(4, 4′, c) = 4′. The stop(4, R, c) considers for each state 4′ ∈ ' separately
whether it covers 4 . For more details, we refer to the literature [35]. To derive the precision c on
demand, we use CEGAR [11–13] with lazy abstraction [34, 57], adjustable-block encoding [16, 35],
and Craig interpolation [23, 24]. The initial precision c0 is normally the empty set.

Actor Model. The actor model [58] is a model for distributed computation. Each worker in a
distributed system is an actor that communicates only through broadcasting messages to all actors
in the system, including itself. Actors decide whether and how to handle a received message. An
example with four actors is shown in Fig. 4. The boxes represent the actors, the arrows indicate
their communication channels.
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Actor 1 Actor 2

Actor 3Actor 4

l1

l2

l3

x := 0

y := 0

l3

l4

l5

l3

[!(n() == 0)]

x := x + 1

y := y + 1

l3

l6

[n() == 0]

l6

l7

l5

[x == y]

l6

l4

l5

[!(x == y)]

!�1

!�2 !�3

!�4 !�5

MB1

MB2

Fig. 4. Actor model with four actors; each

actor broadcasts new messages to all ac-

tors, including itself

Fig. 5. Decomposition of Fig. 2 with blk;8=40A (blocks LB8 ), with

a succinct horizontal block merge (block MB1) and vertical block

merge (block MB2), which results in Fig. 3

3 DISTRIBUTED SUMMARY SYNTHESIS

Decomposition. Given a CFA P = (L, l1,G), a block b is a weakly connected subgraph b =

(Lb, l4=CA~, l4G8C ,Gb) with nodes Lb ⊆ L, edges Gb ⊆ G, entry node l4=CA~ (no predecessor of l4=CA~
in Lb), and exit node l4G8C (no successor of l4G8C in Lb). There is one exemption to this rule: if a block
covers a full loop iteration, then l4G8C and l4=CA~ are both the node at the loop head (see !�2 in Fig. 5).
For each node l in a block, there is a path from l4=CA~ to l4G8C that goes through l.
We decompose P into a block graph B = (B,GB) with a set B of blocks and the directed

edges GB ⊆ B × B between the blocks. Cycles in the graph are possible.
A valid decomposition of P = (L, l1,G) is a block graph such that for each node l ∈ L one of the

following holds: (a) node l occurs in only one single block or (b) node l connects one block b with
all its successor blocks: it (exclusively) is the exit node of b and the entry node of all successor
blocks of b. We use the block-adjustment operator blk to flexibly decompose P . Our decomposition
traverses the edges of a given CFA and marks the edges for which blk returns true. This divides the
CFA in the desired blocks. For technical reasons, our implementation in CPAchecker adds one virtual
node (small filled circles in Fig. 3) at the beginning and end of each block, with one nop edge that
represents the precondition of the block, and one nop edge that represents the violation condition
of the block. Figure 5 shows the (valid) decomposition of Fig. 2 with blk;8=40A .

Block Merging. To optimize the number of blocks and their size, we add a strategy for merging
blocks both horizontally and vertically until they converge against a given target number of blocks.
We can merge horizontally if two blocks share the same entry and exit location. A horizontal

merge of block b = (Lb, l4=CA~, l4G8C ,Gb) and block b′ = (Lb′ , l4=CA~, l4G8C ,Gb′ ) results in a new
block b′′ = (Lb ∪ Lb′ , l4=CA~, l4G8C ,Gb ∪ Gb′ ) with both blocks’ locations and edges, and the common
entry and common exit location. In Fig. 5, we can merge !�4 and !�5 into"�1.
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We can merge two blocks vertically if the exit location of the first block is the entry location
of the second block. Additionally, the first block must be the only block in the block graph with
this exit location, and the second block must be the only block in the block graph with this entry
location. A vertical merge of block b = (Lb, l4=CA~, l4G8C ,Gb) and block b′ = (Lb′ , l

′
4=CA~, l

′
4G8C ,Gb′ )

with l4G8C = l′4=CA~ results in a new block b′′ = (Lb ∪ Lb′ , l4=CA~, l
′
4G8C ,Gb ∪ Gb′ ) with both blocks’

locations and edges, the entry location of b, and the exit location of b′.
In Fig. 5 it is not possible to merge blocks !�3 and !�4 because !�4 shares entry location l6

with !�5. However, we can merge !�3 = (L!�3
, l3, l6,G!�3

) and"�1 = (L"�1
, l6, l5 ,G"�1

) vertically
to"�2 = (L!�3

∪ L"�1
, l3, l5 ,G!�3

∪ G"�1
). Our merge strategy alternates between the horizontal

and vertical merge until we cannot merge any more blocks or we reach the target number of blocks.
The final result of merging the blocks in Fig. 5 horizontally into"�1 and then vertically into"�2

is the block graph shown in Fig. 3. In the worst-case, the block-merging operation requires O(=2)

steps, where = is the number of blocks in the block graph. We need to check the conditions for
horizontal and vertical merge for every pair of blocks and restart = − 1 times if all blocks can be
merged into one final block.

Messages. Messages" ⊆ ) × � ×� are three-tuples that consist of a type, a block identifier, and
a condition. The type g ∈ ) = {gpost, gvcond} indicates what kind of condition a message contains.
Messages with type gpost transport the postcondition of a block (as a set of abstract states). Messages
with type gvcond transport violation conditions (as a set of target-reaching states). We indicate
packed objects by adding the subscript" . For example, {4}" is the set {4} packed in a message.

Distributed CPA. We introduce a distributed CPA D = (D, packPost, packVcond, unpackPost,

unpackVcond) that defines how to pack and unpack the abstract states � of a CPA D into and from
messages. Operator packPost : 2

E × B → 2
" packs a set of abstract states (for a block 1 ∈ B)

into a set of postcondition messages; unpackPost : 2
" × B → 2

E unpacks a set of postcondition
messages into abstract states; packVcond : 2

E × 2
E × B → 2

" packs found target states into
violation-condition messages; and unpackVcond : 2

" × B → 2
E unpacks target-reaching states

from a set of violation-condition messages.

Distributed Summary Synthesis Algorithm. Algorithm 3 shows the DSS algorithm. It receives
the block 1 to run on, the set �1

0
of initial states, the specification i , a reachability analysis A, and

a distributed CPA D. Algorithm 3 first initializes the program specification’s target states )i and
message lists for received postconditions (post) and violation conditions (vcond) (line 1–line 3).
For each block 1′ ∈ �, the lists post and vcond hold the most recently received postcondition and
violation condition from block1′, respectively. Initially, the postconditions of all predecessors are set
to the initial states �1

0
and all violation conditions are set to the empty set. The algorithm then enters

a loop (line 4) and waits for a message to arrive (nextMessage()). Once a message< = (g, 1′<, ·)

arrives, it is integrated into the corresponding list: If g = gpost , line 7 removes the previous message
of 1′< from post and appends<. Analogously, if g = gvcond , line 9 updates vcond.

Line 10 unpacks the postconditions to their set of abstract states, and adds the initial precision c0
to each state. Line 11 unpacks the violation conditions to the set ) of target states for this block
(including the original target states )i ). Then, the algorithm runs the reachability analysis A on
block 1 with the CPAD, the set RBC0AC of initial states and states in the waitlist, and the set) of target
states. This computes the set ' of states that are reachable in block 1 from RBC0AC . Because ' includes
both abstract states and the used precision, line 13 extracts the set �' of abstract states. From this,
line 14 extracts the set + of reached target states. If + is not empty, the algorithm broadcasts the
violation conditions for the block’s predecessors (line 16). If + is empty, the algorithm uses �' to
construct and broadcast a stronger postcondition for the block’s successors.
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Algorithm 3 DSS(1, �1
0
, i,A,D)

Input: Block 1, initial states �1
0
⊆ �, specification i , reachability analysis A,

and distributed CPA D = (D, packPost, packVcond, unpackPost, unpackVcond),
where E denotes the set of abstract states and c0 = ∅ is an initial precision for D.

1: )i := {4 ∈ � | 4 ̸ |= i}

2: post := [(gpost, 1
′, �1

0"
) | 1′ ∈ �]

3: vcond := [(gvcond, 1
′, ∅" ) | 1′ ∈ �]

4: while true do

5: < := nextMessage()

6: if < = (gpost, 1
′
<, ·) then

7: post := [(gpost, 1
′, ·) ∈ post | 1′ ≠ 1′<] ◦ [<]

8: if < = (gvcond, 1
′
<, ·) then

9: vcond := [(gvcond, 1
′, ·) ∈ vcond | 1′ ≠ 1′<] ◦ [<]

10: RBC0AC := {(4, c0) | 4 ∈ unpackPost(post, b)}

11: ) := unpackVcond(vcond, b) ∪)i
12: ', · := A1 (D, RBC0AC , RBC0AC ,) )

13: �' := {4 | (4, ·) ∈ '}

14: + := {4 ∈ �' | J4K ∩ J) K ≠ ∅}

15: if + ≠ ∅ then

16: broadcast packVcond(+ , �', 1)

17: else

18: broadcast packPost({4 ∈ �' | 4 located at l4G8C }, b)

Soundness Criteria. The operators packPost and unpackPost are sound, if for each pair10, 11 ∈ B

of blocks, where 10 is a predecessor of 11, the unpacked abstract states represent all concrete states
that were included in the originally packed set � of abstract states (i.e., no concrete states are lost):

∀� ⊆ E : J�K ⊆ JunpackPost(packPost(�,10), 11)K

The operators packVcond and unpackVcond are sound if, for each pair 10, 11 ∈ B of blocks, where
10 is a predecessor of 11, for a set of computed reachable states �' , and for a set + ⊆ �' of target
states reached from the block entry of b1, a block analysis that starts with the target-reaching
states '+ = {(4, c0) | 4 ∈ unpackVcond(packVcond(+ , �', 11), 10)}, with c0 = ∅, finds all of the
previously found (concrete) target states (we use (G,~) |1 = G to project a pair to the first component):

J+ K ⊆ JA11 (D, '+ , '+ ,) ) |
1K.

Precision Criteria. The operators packPost and unpackPost are precise, if for each pair 10, 11 ∈ B

of blocks, where10 is a predecessor of11, the unpack only includes concrete states that were included
in the originally packed set � of abstract states (i.e., no additional states are hallucinated):

∀� ⊆ E : J�K ⊇ JunpackPost(packPost(�,10), 11)K

The operators packVcond and unpackVcond are precise, if, for each pair b0, b1 ∈ B of blocks, where
10 is a predecessor of 11, for a set of computed reachable states �' , for a set ) of potential target
states, and for a set+ ⊆ �' of target states reached from the block entry of b1, a block analysis that
starts with the target-reaching states '+ = {(4, c0) | 4 ∈ unpackVcond(packVcond(+ , �', 11), 10)},
with c0 = ∅, only reaches those target states that were reached before (and no additional ones):

J+ K ⊇ JA11 (D, '+ , '+ ,) ) |
1K ∩ J) K.
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Algorithm 4 packPost� (�in, b)

Input: Set �in of abstract states, block b

Output: A single message representing
the least upper bound of �in

1: return {(gpost, b, {⊔�in}" )}

Algorithm 5 packVcond� (+ , �', 1)

Input: Set + of reached target states,
reached states �' , block b

Output: A single message representing the
violation condition for +

1: , :=
⋃

E∈+ l (cex(E, �'), E)

2: return {(gvcond, b,," )}

Algorithm 6 unpackPost� ("post, b)

Input: List"post of messages, block b

Output: Least upper bound of abstract states
1: states := {}

2: for (gpost, 1
′, �" ) ∈ "post do

3: if 1′ ∈ predecessors(1) then

4: states := states ∪�

5: if states := {} then

6: return {⊤}

7: return {
⊔

states}

Algorithm 7 unpackVcond� ("E2>=3 , b)

Input: List"vcond of messages, block b

Output: Set of target states for block 1
1: ) := {}

2: for (gvcond, 1
′,," ) ∈ "vcond do

3: if 1′ ∈ successors(1) then

4: ) := ) ∪,

5: return )

Termination Conditions. For each block node in the block graph, we run one separate instance
of the DSS algorithm. The instances are organized in an actor model and communicate messages to
all actors. We reach a fixed point in one of the following two cases: (1) If all instances’ last broadcast
contains no more violation conditions and all violation conditions have been processed, no more
refinements are necessary. In this case, we stop all DSS instances and report that program % is safe.
(2) If a block with no predecessor broadcasts a message of type gvcond . Because the broadcasting
block has no predecessor, future refinements will never be able to exclude this violation. In this
case, we terminate all DSS instances and report that program % is unsafe.

Context-Aware Instantiation.We formulate a distributed CPA D that is aware of its predecessor
and successor blocks in the block graph: Operator packPost� (Alg. 4) joins all abstract states into
a single abstract state that is then packed into a postcondition message, and unpackPost� (Alg. 6)
unpacks abstract states from given messages "post for block b. It only considers messages that
describe postconditions sent from a predecessor block of b. If no such message exists, set states
stays empty and unpackPost� returns the top element ⊤. If at least one relevant message existed,
unpackPost� returns the join of the unpacked states.
Operator packVcond� (Alg. 5) collects, for the given set + of target states, those abstract states

at the block entry of b from which at least one target state 4 ∈ + is reachable; this is computed
with l (cex(E, �'), E) and collected in set, . The states, are the target-reaching states for + and
packed into a single violation-condition message. Operator unpackVcond� (Alg. 7) restores the
abstract states from violation-condition messages "vcond by collecting, from successors of b, all
sets, of target-reaching states.

Soundness of Context-Aware Instantiation. Operators packPost� and unpackPost� are sound:

unpackPost� (packPost� (�in, 10), 11)

= unpackPost� ({(gpost, 10, {
⊔

�in}" )}, 11)

=

⊔
{
⊔

�in} =

⊔
�in
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with 10, 11 ∈ B and 10 is a predecessor of 11. By the definition of the join operator follows the sound-
ness, since ∀4 ∈ �in : 4 ⊑

⊔
�in and J�inK ⊆ J

⊔
�inK. Operators packVcond� and unpackVcond�

are sound. Let
)10 = unpackVcond� (packVcond� (+ , �', 11), 10)

= unpackVcond� ({(gvcond, 11,," )}, 10)

=

⋃

E∈+

l (cex(E, �'), E)

with 10, 11 ∈ B and 10 is a predecessor of 11. We set '+ = {(4, c0) | 4 ∈ )10 }. By construc-
tion of the counterexamples, we find for every E ∈ + a path from an 4E ∈ '+ to E . Therefore,
+ ⊆ A11 (D, '+ , '+ ,) ) |

1 as the analysis explores all reachable states from '+ through the respec-
tive counterexample. This implies the soundness criterion J+ K ⊆ JA11 (D, '+ , '+ ,) ) |

1K.

Precision of Context-Aware Instantiation. The operators packPost� and unpackPost� are
not precise, but overapproximate the state-space, as the joins in packPost� and unpackPost�
produce the least-upper-bound of the communicated abstract states. The operators packVcond�
and unpackVcond� with '+ = {(4, c0) ∈ unpackVcond� (packVcond� (+ , �', 11), 10)}, 10, 11 ∈ B,
and 10 predecessor of 11, are precise: J+ K ⊇ JA11 (D, '+ , '+ ,) ) |

1K ∩ J) K.
It is sufficient to show that every concrete state 2E ∈ JA11 (D, '+ , '+ ,) ) |

1K ∩ J) K is contained
in J+ K. Let us assume that 2E ∈ JA11 (D, '+ , '+ ,) ) |

1K and 2E ∈ J) K. Then, A11 detected a violation
described in) starting from the unpacked states. Since cex computes exactly the states that lead to
the violation, the violation must have been uncovered before. Therefore, 2E ∈ J+ K.

Postconditions in Cyclic Block Graphs. We identify strongly connected components (SCC) in
the block graph with Tarjan’s algorithm [14]. Since initially post equals �1

0
for all predecessors,

and the postconditions of the predecessors in the same SCC depend on the postconditions of
blocks in the same SCC, the analysis always considers at least the abstract states in �1

0
. Thus, the

postcondition of a block in an SCC cannot get stronger. To avoid this, we apply the following
strategy to all blocks in SSCs: Whenever a block is part of an SSC, we prevent all postconditions
from predecessors that are also part of the same component from being joined unless they are
unequal to �1

0
. This ensures that we unroll loops at least once and the postcondition of predecessors

in the same strongly connected component eventually gets stronger. We can only find valid proofs
if all postconditions in the strongly connected component reached a fixed point. We reach a fixed
point if no block in the SSC computes a new postcondition containing unseen concrete states.

Context-Free Instantiation. DSS is flexible and can also use a context-free instantiation, where
the distributed CPA D implements the four operators as follows (with block 1, abstract states �,
� ⊆ �, + ⊆ �):

packPost� (�, b) = {(gpost, b, �" )}

unpackPost� (", ·) =
⋃

{� | (gpost, ·, �" ) ∈ "}

packVcond� (+ , �', b) = {(gvcond, b,+" )}

unpackVcond� (", ·) =
⋃

{+ | (gvcond, ·,+" ) ∈ "}

The unpack operators unpack all received abstract states and violation conditions without any
modification. This DSS instantiation leads to a modular analysis similar to Infer [3], where each
code block (in Infer: function) is analyzed separately. The block graph for Infer consists of one
block node for each function in the input program with no edges. Nested function calls need to be
over-approximated accordingly by setting affected global and local variables to ⊤. If all functions
are safe, the approach finds a proof. A violation condition from one function suffices to prove the
program unsafe. The behavior is sound, but this approach likely report many false alarms.
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4 EVALUATION

4.1 Research �estions

We evaluate our approach along the following research questions:

RQ 1: Distribution of Work Load to Processing Units. Is the approach of distributed summary

synthesis effective in distributing the verification work to different threads?
Evaluation Plan:We compare the CPU-time consumption of DSS with its response time, using
1, 2, 4, and 8 processing units.

RQ 2: Reduction of Response Time. Does using more processing units lead to a significant
reduction of the response time when using distributed summary synthesis?
Evaluation Plan: We compare the response time of DSS using 1, 2, 4, and 8 processing units.

RQ 3: Outperform Predicate Abstraction on Some Programs. Is the new approach able to
outperform a 15-years highly-tuned approach on appropriate verification tasks?
Evaluation Plan: We compare DSS with 8 processing units to a standard single-threaded
predicate abstraction. We select a few verification tasks which employ a sufficient number of
workers and block size to see whether we can outperform this state-of-the-art algorithm.

RQ 4: Complement State-of-the-Art Tools. Is the new approach already able to complement
state-of-the-art approaches?
Evaluation Plan: We compare DSS to the state-of-the-art approaches IMC [24, 59] and k-
Induction, both implemented in CPAchecker [45].

RQ 5: Parallel Portfolio. How does the new approach perform in a parallel-portfolio approach
that aims to optimize response time?
Evaluation Plan:We compare the performance of the parallel-portfolio of predicate abstraction
and DSS to standalone predicate abstraction in CPAchecker [16].

4.2 Experiment Setup

We executed our experiments with version 3.16 2 of BenchExec [60] on 167 machines each having
a GNU/Linux operating system (x86_64-linux, Ubuntu 22.04 with Linux kernel 5.15), an Intel
Xeon E3-1230 v5 CPU with 3.40GHz and 8 processing units, and 15GB of RAM. We evaluate our
approach on the reach-safety tasks of the sv-benchmark set 3, which is a large collection of diverse
verification tasks in the C programming language. This benchmark set is regularly maintained and
used by several tool competitions (e.g., [61, 62]).

In our evaluation, we focus on the safe verification tasks of category SoftwareSystems. For finding
bugs, the performance largely depends on the traversal order, while for proving correctness, all
paths have to be considered. It is important to mention that we do not aim at improving an individual
program analysis with our approach, but to distribute the workload over many threads. If the
underlying analysis, for example, unrolls a loop several times and does not terminate, our approach
will still face the same problem. Since our approach only has limited support for arrays and pointers,
we exclude 64 tasks where disabled pointer aliasing causes wrong results for predicate abstraction.
A list of the tasks can be found in our artifact [63]. The SoftwareSystems category contains tasks
from real-world programs and is therefore suitable for our evaluation. This selection defines a
benchmark set of 2 485 tasks.

We implemented distributed summary synthesis in revision 46372 of the open-source software-
verification framework CPAchecker

4 [15]. CPAchecker is implemented in Java with many components
readily available. For decomposition of the CFA, we use blk;8=40A with block merging. In all

2https://github.com/sosy-lab/benchexec/releases/tag/3.16
3https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/commit/3d65c76d
4https://svn.sosy-lab.org/software/cpachecker/branches/dss-fse@46372
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Fig. 6. CPU time (x-axis) and response time (y-axis)

for DSS with 1, 2, 4, and 8 cores

Fig. 7. Speed-up of DSS with 1, 2, 4, and 8 cores; the

speed-up is the ratio of the CPU to response time

experiments, we instantiate distributed summary synthesis (DSS, Alg. 3) with CEGAR (Alg. 2)
as reachability analysis and the context-aware distributed CPA for predicate abstraction. The
experimental results are available as reproduction package on Zenodo [63].

4.3 Experimental Results

RQ 1: Distribution of Work Load to Processing Units. The scatter plot in Fig. 6 shows, for
each task, the required CPU time (in seconds) of DSS on the x-axis and the actual response time (in
seconds) on the y-axis. For a fixed value on the x-axis, a lower value on the y-axis shows that more
work is done effectively in parallel. A data point at 450 s and 225 s indicates that the verification
requires 450 s of work (CPU time), but already responds after 225 s due to effective parallelization.
For our baseline we run DSS on 1 core (+) and observe that the response time equals the required
CPU time. With 2 (×), 4 (▽), and 8 (◦) cores, DSS is able to deliver the same verdict two, three, and
four times faster than the baseline, respectively.

The parallelization possible with DSS becomes even more visible when considering the box plot
in Fig. 7. The use of 2 cores speeds up the analysis response time by the factor 2. The use of 8 cores
speeds up the analysis response time by the factor 4, on average. This shows that the approach
benefits from more processing units. Amdahl’s Law [64] states that = cores allow a maximum
speed-up of only below factor =. Currently, the average, measurable speed-up of DSS with eight
cores is 4, so half of the theoretical upper bound.

Yes, the new approach effectively distributes the workload to different processing units.

RQ 2: Reduction of Response Time. To show the reduction of the response time, we measure the
response time for different numbers of processing units. The box plot in Fig. 8 shows the speed-up
of the response time (in seconds) of DSS with 2, 4, and 8 cores compared to the response time with
1 core. All tasks benefit from the parallelization as the speed-up compared to DSS with 1 core is
greater than one. Figure 8 shows that the use of 2 cores already speeds up the response time by
about 1.26 for 75 % of the tasks (lower border of the box). For 50 % of the tasks, the response time is
sped up by a factor of 1.34 or more. For 5 % of the tasks (upper whisker of the box), the response time
is sped up by a factor of 1.70. The theoretical speed-up that is not achievable (Amdahl’s Law) is 2.
This is excelled by some tasks because the parallelization changes the behavior of the analysis. SMT
queries may change due to the parallel computation of conditions, which can lead to a different,
more efficient behavior in the SMT solver.
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Fig. 9. Comparison of consumed
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straction compared to standalone

predicate abstraction

Table 2. Five tasks where distributed summary synthesis (DSS) proves tasks significantly faster than predicate

abstraction (P), on 8 cores, with regards to response time; the columns list CPU time (CPU), response time (RT),

number of threads spawned byDSS, and average number of CFA edges in the blocks of theDSS decomposition

Task CPUP (B) CPUDSS (B) RTP (B) RTDSS (B) # threads ∅ block size

leds–leds-regulator... 44.8 33.2 30.8 7.18 92 12.40

rtc–rtc-ds1553.ko-l... 49.0 64.6 30.3 14.0 164 14.98

rtc–rtc-stk17ta8.ko... 46.7 67.9 28.9 15.1 162 15.70

watchdog–it8712f_w... 86.8 50.3 69.0 15.9 216 7.91

ldv-commit-tester/m0... 50.1 103 28.8 21.0 230 7.00

The response-time speed up compared to 1 core further improves for 4 cores and 8 cores: For
4 cores, the median speed-up is 1.91. For 8 cores, the median speed-up is 2.57. In both cases, the
speed-up for the upper quartile increases further.

Yes, the new approach significantly reduces the response time, and increasing resources to
2, 4, or 8 processing units leads to a significant reduction of the response time.

RQ 3: Comparison to Predicate Abstraction. Figure 9 compares the response time of predicate
analysis (x-axis) and the response time of distributed summary synthesis (y-axis) on tasks solved
correctly by both approaches. Every data point below the line indicates that this verification task
benefits from the distribution provided by DSS. The award-winning predicate abstraction is well-
known and was highly-tuned since 15 years. We compare with predicate abstraction using two
processing units instead of one, because CPAchecker gets some parallelization for free from the
garbage collector although the actual analysis algorithm is single-threaded, which makes it more
challenging for DSS to beat it. Generally, the highly-tuned predicate abstraction is still faster, as
we experience an overhead for the (un)packing and processing of irrelevant messages. Predicate
analysis outperforms DSS for the vast majority of tasks below the 10 s mark. However, there is a
considerable number of tasks that already profit from the distribution. Harder tasks are generally
solved faster with DSS, if DSS finds a proof. As mentioned before, our goal here is to develop a
strategy allowing a scalable approach to software model checking. We believe that the potential of
the approach is high as we have many opportunities for improvement as discussed later.
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Table 3. Verification results of IMC, k-Induction, predicate analysis, and distributed summary synthesis (DSS)

Technique Correctly solved Timeout Out of memory Error

k-Induction 985 450 28 1 022

Predicate 860 696 14 915

IMC 707 24 15 1 739

DSS 592 264 1 117 512

Table 2 lists five hand-picked tasks from the benchmark set where distributed summary synthesis
outperformes single-threaded predicate analysis. Subscript P shows the data for predicate analysis,
subscript DSS shows data for distributed summary synthesis.

In these cases, distributed summary synthesis decreases the response time (RT) significantly. We
observe that the number of workers (# threads) and the number of control-flow edges in the blocks
(∅ block size) can vary. Many blocks with less edges seem to work as well as fewer blocks with more
edges. One of the biggest challenges in the future will be the fine-tuning of the decompositions.
Currently, we focused on inexpensive decompositions because the decomposition also produces
overhead. However, more expensive strategies might be beneficial in the long run. Some tasks are
decomposed into up to 751 blocks, but the solved task with the highest number of blocks is only
decomposed into 476 blocks. Hence, equally many threads are spawned.
‘Unstructured’ control-flow edges such as goto, continue, and break hinder us from merging

blocks, potentially resulting in many small blocks.

Yes, there are some verification tasks for which the new approach even outperforms single-
threaded predicate analysis.

RQ 4: Complement State-of-the-Art Tools. The focus of this work is to use existing components.
DSS tries to complement existing techniques to make them scalable by re-using and not re-inventing
them. An encoding of the specification in the violation condition is sufficient to make other existing
techniques applicable to DSS.
The comparison in Table 3 of our approach (last row) shows that established techniques like

IMC or k-Induction are also capable of solving the tasks that DSS solves. DSS solves 7 tasks that are
not solved by k-Induction, 14 not solved by predicate analysis, and 61 not solved by IMC. Taking
a deeper look into the 14 tasks that DSS solves but predicate abstraction does not, we see that in
9 cases, predicate abstraction runs into the time limit, while DSS is faster and finishes within the
time limit. The remaining 5 cases are due to tool crashes that DSS can avoid due to the different
analysis order. However, in general, the ‘classic’ approaches solve significantly more tasks overall.
Occasionally, we encounter exceptions that are not occurring for the plain predicate analyses.

Here, we face unsupported features, e.g., memcopy, which the standard predicate abstraction does
not traverse because the path can already be excluded with the refined precision after the first
iterations of CEGAR. Also, some assertions about valid block graphs might be violated, in which
case we exit the verification with an exception. We also encounter significantly more out-of-memory

exceptions due to the concurrent work done: Since we perform multiple analyses in parallel, we also
require more memory. Even for small programs, ARGs might grow significantly, and our approach
has to (un)pack thousands of abstract states. In the future, we envision a compressed message
format and a different communication model to tackle this problem.

For a fair comparison, we disable pointer aliasing for the plain predicate analysis. Given that the
verification verdicts always equal the verification verdicts of the predicate analysis, we assume that
our implementation works properly.
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No, the new approach is not yet good enough to complement the state-of-the-art verification
tools with regards to effectiveness.

RQ 5: Parallel Portfolio. To examine the potential of DSS to reduce the response time of verifica-
tion, we create a parallel portfolio of predicate abstraction and DSS. In the parallel portfolio, we
run both predicate abstraction and DSS in parallel. As soon as one of the techniques produces a
verification result, the analysis ends and this result is used. This portfolio combines the strengths of
both techniques and mitigates their weaknesses. Figure 10 shows the speed-up of the response time
of parallel portfolio, compared to standalone predicate abstraction. Because the parallel portfolio
always uses the fastest produced result, it is never slower than predicate abstraction. In 25 % of the
cases, the parallel portfolio is at least 27 % faster. In the best case, the portfolio is 16 times faster.

A parallel portfolio with DSS improves the response time in our experiments up to factor 16.

Decomposition. Our experiments show that DSS benefits from a block graph where program loops
are not contained within a single block, but represented by a cycle in the block graph. This ensures
that DSS generates a block summary for the loop body. We also observe that it is helpful to create
blocks that cover one or more full linear sequences of statements; for example a full loop body, a
complete if-branch, or both a full if- and else-branch up to their join. This reduces the complexity
of block summaries because they do not need to talk about variables with a scope that is fully
contained within the block. Our horizontal and vertical merge strategies try to achieve the above.
Figure 3 shows how our decomposition represents loops in the block graph (block B).

Threats to Validity. Our benchmark set is limited to 2 485 safe tasks and might be biased towards
a selection of features of the C programming language. However, sv-benchmarks is the largest and
most diverse benchmark set for verification of C programs to date. The software-systems category
includes excerpts of real-world software systems as well as specialized algorithms.
We showcase distributed summary synthesis on the example of predicate abstraction. The

approach is generic and independent of the abstract domain, but our experimental findings may
not generalize to all other abstract domains. Our implementation may contain bugs, but we did not
observe any wrong results in our experiments.
We serialize messages for information exchange and broadcast messages to all actors. Experi-

mental results may change if a different communication model is used, but we expect results to
only improve with more sophisticated communication models.
A different scheduling of messages might lead to different results and, in the worst-case, cause

more unrollings of loops and therefore more messages.

Limitations. Distributed summary synthesis currently has the following limitations:

Context Sensitivity. We set operator packPost� to run the analysis with a join of all postconditions.
This is an overapproximation that loses precision. Due to this, the presented version of distributed
summary synthesis is context-insensitive. To still handle cycles in the block graph (due to recursion
or loops) successfully, we deploy an optimization based on Tarjan’s algorithm (see Sect. 3). Future
work could define a more precise operator packPost that handles postconditions separately.

Resource Consumption.We spend resources on synthesizing summaries for unreachable program
states. In sequential analysis, unreachable program states are usually not computed because the
analysis reasons about unreachability sequentially (or iteratively sequentially in the case of CEGAR).
However, distributed summary synthesis analyzes blocks in parallel andmay unnecessarily compute
a program state space that is only proven unreachable later.
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1 int main() {

2 int a = 0;

3 int b = 0;

4 if (a) hard1(a);

5 if (b) hard2(b);

6 }

a := 0

b := 0

[!(a == 0)]

hard1(a)
[a == 0]

[!(b == 0)]

hard2(b)
[b == 0]

Fig. 11. Program with two unreach-

able, hard-to-verify function calls

Fig. 12. Poor decomposition of Fig. 11

1 int main() {

2 int a = n();

3 if (a) hard1(a);

4 else hard2(a);

5 }

a := n()

[a == 0]

hard2(a)

[!(a == 0)]

hard1(a)

Fig. 13. Program with two reachable,

hard-to-verify function calls

Fig. 14. Good decomposition of Fig. 13

Choice of Decomposition. The issue of unnecessary computations worsens with an unfitting decom-
position and can be mitigated with a good decomposition. Figure 11 shows a program with multiple
calls to hard-to-verify functions (hard1, hard2). Because of the initial variable assignment, none of
these calls are reachable. A sequential analysis may realize this and will never try to analyze the
unreachable functions. But an unfitting decomposition of the verification problem (for example as
in Fig. 12) may lead to individual workers for functions hard1 and hard2, so that these are analyzed
eagerly. This causes expensive, unnecessary computations. Contrary, if hard blocks are computed
in parallel as seen for the program in Fig. 13 in the decomposed version in Fig. 14, the benefits of
DSS become visible. DSS simultaneously works on the proof of both hard-to-verify functions hard1
and hard2. In the case that both are safe, DSS can immediately conclude that the whole program is
safe. If a block reports a violation, DSS only has to check whether the value of 0 can be different
from or equal to 0, respectively. DSS is perfect for independent blocks like this. In general, DSS
performs better on tasks with multiple potential target locations, as it can prove their (in)feasibility
in parallel. In our experiments, the decomposition produces a negligible overhead. It takes, on
average, less than 0.2 % of the total CPU time of DSS.

Communication Model. We choose the actor model [58] to have a simple method of communication
between blocks. New conditions are sent to every other actor. In case a condition is not meant
for its block, i.e., it is not a successor or predecessor, the message is discarded. But for this, every
message has to be unpacked first. This causes overhead. In our experiments, packing messages
produces a negligible overhead. It takes, on average, less than 1.2 % of the total CPU time of DSS.
But in contrast, unpacking messages takes, on average, 60 % of the total CPU time of DSS. We expect
that this overhead significantly reduces through a more sophisticated communication model. The
discrepancy of consumed time for (un)packing arises from the fact that all blocks need to unpack a
message that was only packed once by the sender.

Scheduling Model. Currently, all blocks are analyzed concurrently and the scheduling of the different
blocks is done by the operating system. Therefore, the needed CPU- and response-time of a
verification run may differ between runs. The presented experimental data supports the claim that
the impact is not observable, but orchestrated scheduling techniques may avoid unnecessary work
and reduce the number of sent messages.
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Verification Witnesses. Our approach can not yet write verification witnesses [65]. For violation
witnesses, we would need to restore the path to the violation. For correctness witnesses, we can
use the loop summaries as invariants.

Opportunities. The relevance of DSS can be underlined with the possibilities for future research:

Incremental Verification. We envision the incremental verification of larger programs that are
actively under development (for example in a continuous-integration pipeline). For this we can
exploit the full potential of our approach as we can store the current states of all blocks until the
program is patched. Now, we only need to re-analyze the blocks that are affected by the changes.
In large software projects this might save a significant bit of work while preserving previously
computed information. With the help of the (de)serialization, we can even restore the state of our
approach at any time by replaying the logged messages.

Contract Synthesis. DSS constructs block contracts. If the blocks are configured to coincide with
functions, then the negated violation condition of a function can serve as its precondition, and the
postconditions of each block can be used as such without further changes. Currently, state of the
art in interactive verification is to manually derive pre- and postconditions of functions, which
might become partially automated using DSS.

Verification Techniques.While we evaluated our approach with the abstract domain of predicate
abstraction, it is not limited to a particular abstract domain, and other approaches for software
model checking can be applied as well. Further, the block contracts can be synthesized by different
analysis techniques and verified in isolation, as well as exported for further processing by external
tools or the user. This creates the opportunity to integrate theorem provers for contracts.

Strategy Selection. In distributed summary synthesis, the used abstract domains can change per
block. This can be exploited by performing strategy selection [66, 67] to use the best-suiting abstract
domain for each block.

Decompositions. Other program-decomposition strategies may be explored in the future. Similar
to AI-based strategy selection for verification techniques [67], we could use AI for finding suiting
decompositions of the program.

5 CONCLUSION

This work presents distributed summary synthesis (DSS), an approach for the automatic construc-
tion of program contracts and a flexible framework to scale verification through decomposition and
distribution. This is achieved by extending configurable program analysis to a distributed setting.
DSS decomposes a single, large software-verification task into multiple smaller tasks. The parallel
and continuously refined synthesis of block summaries (postconditions and violation conditions)
reduces the dependencies between blocks. This increases the potential parallelism and allows to
distribute the verification work to many processing units. Through this, distributed summary
synthesis achieves short response times and enables verification technology for incremental verifi-
cation and continuous integration [6]. Furthermore, DSS can be used to synthesize code contracts.
Our experimental results are promising and show that distributed summary synthesis significantly
reduces the response time if multiple processing units are available.

Data-Availability Statement. The data from our experiments are available at Zenodo [63] and on
our supplementary webpage: https://www.sosy-lab.org/research/distributed-summary-synthesis/
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