
Decomposing Software Verification using
Distributed Summary Synthesis
DIRK BEYER, LMU Munich, Germany
MATTHIAS KETTL, LMU Munich, Germany
THOMAS LEMBERGER, LMU Munich, Germany

There are many approaches for automated software verification, but they are either imprecise, do not scale
well to large systems, or do not sufficiently leverage parallelization. This hinders the integration of software
model checking into the development process (continuous integration). We propose an approach to decompose
one large verification task into multiple smaller, connected verification tasks, based on blocks in the program
control flow. For each block, summaries are computed — based on independent, distributed, continuous
refinement by communication between the blocks. The approach iteratively synthesizes preconditions to
assume at the block entry (which program states reach this block) and verification conditions to check at
the block exit (which program states lead to a specification violation). This separation of concerns leads
to an architecture in which all blocks can be analyzed in parallel, as independent verification problems.
Whenever new information (as a precondition or verification condition) is available from other blocks, the
verification can decide to restart with this new information. We realize our approach as an extension of the
configurable-program-analysis algorithm and implement it for the verification of C programs in the widely
used verifier CPAchecker. A large experimental evaluation shows the potential of our new approach: The
distribution of the workload to several processing units works well and there is a significant reduction of the
response time when using multiple processing units. There are even cases in which the new approach beats
the highly-tuned, existing single-threaded predicate abstraction.

CCS Concepts: • Software and its engineering → Formal software verification; • Computing method-
ologies → Parallel algorithms; • General and reference→ Evaluation.

Additional Key Words and Phrases: Program Analysis, Software Model Checking, Block Summaries, Decom-
position Strategies, Parallelization

ACM Reference Format:
Dirk Beyer, Matthias Kettl, and Thomas Lemberger. 2024. Decomposing Software Verification using Distributed
Summary Synthesis. Proc. ACM Softw. Eng. 1, FSE, Article 59 (July 2024), 23 pages. https://doi.org/10.1145/
3660766

1 INTRODUCTION
Despite recent advances [1] in automated software verification, and integration into industrial
development processes [2–5], the response time of tools for formal software verification does
not scale. Comparing the CPU time with the wall time of the results from the International
Competition on Software Verification (SV-COMP [1]), it is visible that none of the 52 verification
tools uses significant parallelization of the workload onto the available hardware. This makes
formal verification unsuitable for continuous integration [5]. Compositional verification [6] tries

Authors’ addresses: Dirk Beyer, LMU Munich, Munich, Germany, dirk.beyer@sosy.ifi.lmu.de; Matthias Kettl, LMU Munich,
Munich, Germany, matthias.kettl@sosy.ifi.lmu.de; Thomas Lemberger, LMUMunich, Munich, Germany, thomas.lemberger@
sosy.ifi.lmu.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART59
https://doi.org/10.1145/3660766

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-4832-7662
HTTPS://ORCID.ORG/0000-0001-7365-5030
HTTPS://ORCID.ORG/0000-0003-0291-815X
https://doi.org/10.1145/3660766
https://doi.org/10.1145/3660766
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7365-5030
https://orcid.org/0000-0003-0291-815X
https://doi.org/10.1145/3660766

59:2 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

1 int main() {

2 int x = 0;

3 int y = 0;

4 while (n()) {

5 x++;

6 y++;

7 }

8 assert(x == y);

9 }

Fig. 1. Program

l1

l2

l3

l4 l6

l5

l7 l𝑒

l𝑓

x := 0

y := 0

[!(n() == 0)]

x := x + 1

y := y + 1

[n() == 0]

[x == y] [!(x == y)]

Fig. 2. Control-flow automaton of Fig. 1

l1

l2

l3

⊤

x = 0

y = 0

vcond𝐴

𝑙3

𝑙4

𝑙5

𝑙3

pre𝐵

[!(n() == 0)]

x = x + 1

y = y + 1

vcond𝐵

𝑙3

𝑙6

𝑙7 𝑙𝑒

𝑙𝑓

pre𝐶

[n() == 0]

[x == y] [!(x == y)]

⊥

A

B C

Fig. 3. A valid decomposition of Fig. 2

to mitigate this: the verification task is divided into multiple, dependent parts. Program parts are
analyzed separately, which allows to distribute the verification task onto multiple workers; this,
in theory, allows to scale the response time required for verification according to the number of
program parts and workers. But there are two issues with this approach: First, program parts are
so far mostly divided using procedure boundaries. This restricts the possible number of parallel
workers to the number of procedures in the program under analysis; scaling to a large number
of workers is not possible. Second, program parts depend on each other: There is only a single
program specification that the program under analysis is verified against, and if one program part
relies on another program part (e.g., one function calls another function), analysis can only continue
when the dependent program part is fully analyzed. This makes workers wait on each other, and
restricts the amount of actual concurrent work.
Our new approach, distributed summary synthesis, solves both issues: Distributed summary

synthesis divides the program under analysis into separate blocks. Each block is considered its own
verification task, with a given precondition to assume, a block summary, and a violation condition
to check in addition to the original program specification. All preconditions, block summaries,
and violation conditions are continuously refined through program analysis and information
from predecessor- and successor-blocks. Preconditions are refined top-down: If a block’s analysis
generates a proof with regards to its violation condition and original program specification, the
corresponding block summary at the block exit is propagated as new preconditions to all successor
blocks. The violation conditions are refined bottom-up: If an analysis reaches a program state that
violates its violation condition or the original program specification, it abducts a condition for the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

Decomposing Software Verification using Distributed Summary Synthesis 59:3

Table 1. Distributed summary synthesis on Fig. 3

A B C

𝑅𝑠𝑡𝑎𝑟𝑡0 {𝑝𝑐 = 𝑙1} {𝑝𝑐 = 𝑙3} {𝑝𝑐 = 𝑙3}
𝑇0 {𝑝𝑐 = 𝑙𝑒 } {𝑝𝑐 = 𝑙𝑒 } {𝑝𝑐 = 𝑙𝑒 }

𝐼1

proof
⇒ broadcast
(𝜏pre,A, {𝑝𝑐 = 𝑙3}𝑀)

proof
⇒ broadcast
(𝜏pre, B, {𝑝𝑐 = 𝑙3}𝑀)

violation
⇒ broadcast
(𝜏vcond,C, {𝑝𝑐 = 𝑙3 ∧ 𝑥 ≠ 𝑦}𝑀)

𝑅𝑠𝑡𝑎𝑟𝑡1 {𝑝𝑐 = 𝑙1} {𝑝𝑐 = 𝑙3} {𝑝𝑐 = 𝑙3}
𝑇1 𝑇0 ∪ {𝑝𝑐 = 𝑙3 ∧ 𝑥 ≠ 𝑦} 𝑇0 ∪ {𝑝𝑐 = 𝑙3 ∧ 𝑥 ≠ 𝑦} 𝑇0

𝐼2

proof
⇒ broadcast
(𝜏pre,A, {𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦}𝑀)

violation
⇒ broadcast (𝜏vcond, B,
{𝑝𝑐 = 𝑙3 ∧ 𝑥 + 1 = 𝑥 ′

∧ 𝑦 + 1 = 𝑦′ ∧ 𝑥 ′ ≠ 𝑦′}𝑀)

idle because no change

𝑅𝑠𝑡𝑎𝑟𝑡2 {𝑝𝑐 = 𝑙1} {𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦} {𝑝𝑐 = 𝑙3}

𝑇2
𝑇1 ∪ {𝑝𝑐 = 𝑙3 ∧ 𝑥 + 1 = 𝑥 ′

∧ 𝑦 + 1 = 𝑦′ ∧ 𝑥 ′ ≠ 𝑦′}
𝑇1 ∪ {𝑝𝑐 = 𝑙3 ∧ 𝑥 + 1 = 𝑥 ′

∧ 𝑦 + 1 = 𝑦′ ∧ 𝑥 ′ ≠ 𝑦′} 𝑇1

𝐼3

proof
⇒ broadcast
(𝜏pre,A, {𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦}𝑀)

proof
⇒ broadcast
(𝜏pre, B, {𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦}𝑀)

idle because no change

𝑅𝑠𝑡𝑎𝑟𝑡3 {𝑝𝑐 = 𝑙1} {𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦} {𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦}
𝑇3 𝑇2 𝑇2 𝑇2

𝐼4 idle because no change idle because no change
proof
⇒ broadcast (𝜏pre,C, {𝑝𝑐 = 𝑙𝑓 })

Fixpoint reached, program safe.

violation in this block, and propagates it to all predecessor blocks as new violation condition. When
a violation condition is propagated from the program entry, a violation is found that cannot be
refuted anymore, and the program is considered unsafe. When all blocks produce a proof, no more
violations will be found and the program is considered safe.

We define distributed summary synthesis as an extension of the configurable-program-analysis
algorithm [7] to a distributed setting, called DCPA. Configurable program analysis is a configurable
framework for program analysis that allows to combine different analyses and abstract domains. In
the scope of this work, we focus on predicate abstraction [8].
Example. The program in Fig. 1 is safe since variables x and y have the same initial value and are
incremented synchronously in the body of the while loop. Therefore, it is impossible for x and y to
have different values at the assert in line 8.
Decomposition.We represent programs as control-flow automata (CFA) (Fig. 2). First, distributed
summary synthesis decomposes the CFA into blocks: coherent subgraphs with exactly one entry-
and one exit-location. Based on their entry- and exit-locations, blocks are connected with each
other in a block graph. Fig. 3 shows a possible decomposition of Fig. 2.
Analysis Setup. Table 1 shows one possible run of distributed summary synthesis on Fig. 3. For
simplicity, we assume in our example that all workers’ analysis iterations are synchronized. The
columns A, B, and C refer to analyses on the respective blocks in Fig. 3. All local analyses start
with initial states 𝑅𝑠𝑡𝑎𝑟𝑡0 . The concrete value of 𝑅𝑠𝑡𝑎𝑟𝑡0 depends on the abstract domain that is used

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:4 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

for the analysis and the current block. We use predicate abstraction [8] and start at the block
entries, with no initial information about the program states (e.g., initial state {𝑝𝑐 = 𝑙1} for block A).
Initially, the violation conditions are empty, and the target states 𝑇0 for analysis are the states at
the error location 𝑙𝑒 .

Iteration 1. In the first iteration, the analyses on blocks A and B reach no target states and compute the
trivial summary 𝑝𝑐 = 𝑙3 at their block exits. The analysis on block C reaches the target state 𝑝𝑐 = 𝑙𝑒 .
From that, analysis computes the violation condition: If, at block entry 𝑙3, condition 𝑥 ≠ 𝑦 holds,
then the program violates the specification. This violation condition is broadcast to all blocks.
Because blocks A and B are predecessors of block C, they update their target states (𝑇1) with the
information of the violation condition.

Iteration 2. Because block C did not receive new information, it is idle. The next analysis (𝐼2) on
block A does not reach any state in 𝑇1 and computes the summary 𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦 at its block
exit. Because blocks B and C are successors of A, they update their initial reached sets 𝑅𝑠𝑡𝑎𝑟𝑡2
with this new precondition from 𝐴. Block B has two successors: block A and itself. Distributed
summary synthesis uses Tarjan’s algorithm [9] to identify cyclic dependencies like block B has on
itself, and sets 𝑅𝑠𝑡𝑎𝑟𝑡2 for B with the precondition communicated by A. Block C has two non-cyclic
dependencies: block A and block B. The precondition 𝑝𝑐 = 𝑙3 that is communicated by block B is
joined with the precondition 𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦 that is communicated by block A. The result is the
least upper bound 𝑝𝑐 = 𝑙3. The target states 𝑇2 of blocks A and B are updated with the violation
condition communicated by B.

Iteration 3. Block A does not reach any target state in 𝑇2 and computes the same summary as
before. With its updated initial reached set 𝑅𝑠𝑡𝑎𝑟𝑡2 , the analysis on block B reaches no target state
anymore and computes the summary 𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦. Block C is still idle because of no change in
its precondition or violation condition. This updated summary of block B makes C update its initial
reached set 𝑅𝑠𝑡𝑎𝑟𝑡3 to 𝑝𝑐 = 𝑙3 ∧ 𝑥 = 𝑦.

Iteration 4. In the last iteration, blocks A and B have no new information and are idle, and the
analysis on block C reaches no target state anymore (produces a proof). Now the last broadcast of
each block is a proof and a fixpoint is reached. Therefore, the overall verification verdict is that the
program is safe.

Contribution. We provide the following contributions:
• We define a generic extension of configurable program analysis to a distributed setting,
called DCPA. Based on this we define distributed summary synthesis, a stateless, concurrent
approach to scale automated software verification.

• We implement distributed summary synthesis for C programs in the formal-verification tool
CPAchecker [10].

• We show the benefits of distributed summary synthesis compared to the existing state of the art
in a thorough empirical study. For this, we use the largest available benchmark set for the
verification of C programs, sv-benchmarks.

• All our implementation and data are available open source.

Related Work. Distributed summary synthesis is inspired by adjustable-block encoding (ABE) [11,
12], block-abstraction memoization (BAM) [13, 14], and the SMT-based function summaries of
HiFrog [15]. Adjustable-block encoding (ABE) [11, 12] splits a program into variable-sized blocks
that have a predecessor-successor relationship, as well as a nesting hierarchy. Block-abstraction
memoization [13, 16] introduces a cache for block summaries and generalizes the concept of
function and loop summaries. Blocks with a (transitive) predecessor- or successor-relationship

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

Decomposing Software Verification using Distributed Summary Synthesis 59:5

are analyzed sequentially in a forward program analysis, but blocks that are in no predecessor-
or successor-relationship can be analyzed concurrently [14]. The blocks of distributed summary
synthesis also have a predecessor-successor relationship, but we decide for a simpler, flat structure.
In addition, we do not wait for predecessor blocks to be analyzed, but immediately start computing
a summary for each block (that may later be refined). This leads to weaker dependencies between
blocks and enables a stronger parallelization.

HiFrog [15, 17] splits a program into its individual functions and analyzes each function indepen-
dently. The summary computed per function is computed with BMC, Craig interpolation [18], and
different SMT theories: summaries are first computed with less-precise, but cheaper integer theories.
On demand, the summaries are recomputed with more-precise bitvector theories. Similar to HiFrog,
distributed summary synthesis refines whenever new violation conditions arise. In contrast to
HiFrog, distributed summary synthesis can encode summaries more fine-grained than function
summaries: A program ca be divided into blocks of arbitrary sizes and can be analyzed with different
verification techniques.

Bi-abduction [3, 19] allows compositional program analysis by inferring necessary precondi-
tions for each statement handled (including function calls). Multiple techniques [3, 13, 15, 20–26]
use function summaries for interprocedural program analysis. Within our analysis, we use pred-
icate abstraction [8] with counterexample-guided abstraction refinement [27] and Craig inter-
polation [28]. Other SMT-based approaches to model checking [29–32] are also possible. Many
techniques [15, 21, 22, 33] use Craig-interpolation [28] to construct summaries; but they first build
a full Boolean program of the function to summarize, and then apply Craig interpolation to the full
Boolean representation. Our approach differs from them: it allows to use any SMT-based approach
to compute summaries, and Craig interpolation is not used to compute the block summaries, but to
derive predicates for predicate abstraction.
Portfolio approaches run multiple verification techniques in parallel on the same verification

task. This can happen without information exchange between the individual techniques [15, 34, 35],
or with exchange (for example to ‘feed’ an invariant checker) [36]. Some approaches [13, 37–
41] parallelize the state-space exploration by dividing the program-state space vertically into
independent subspaces that are explored separately. Multi-threading is also used by the backends [42,
43]. Coverity [41, 44] includes a parallelized, worker-based static analysis. Unlike distributed
summary synthesis, Coverity does not refine individual sub-tasks on-demand, but runs five separate,
parallelized phases on code blocks to compute pre- and post-conditions.

2 BACKGROUND
For presentation, we consider programs written in a simple programming language: we consider
intraprocedural, imperative programs with two types of operations: variable assignments and
control-flow assumptions. Later we show that our technique can be used for interprocedural
analysis without adjustments, thanks to its modular nature.

Program Representation. A variable assignment 𝑥 := 𝑒𝑥𝑝 assigns program variable 𝑥 the value of
expression 𝑒𝑥𝑝 . We only consider arithmetic expressions over unbound integers. A control-flow
assumption [𝑝] only allows the control-flow to pass if boolean expression 𝑝 is true. The (infinite)
set Ops represents all possible program operations. The special program variable pc is the program
counter. It represents the current location in the program. We represent programs as control-flow
automata (CFA). A CFA P = (L, l1,G) is a directed graph with program locations L (nodes), program
entry l1 ∈ L (entry node) and control-flow edges G : L × Ops × L. A control-flow edge (l, 𝑜𝑝, l′)
represents that the control flows from l to l′ by setting pc = l′ and evaluating 𝑜𝑝 . Initially, pc = l1.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:6 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Algorithm 1 𝐶𝑃𝐴(D, R0,W0) [45], adapted
Input: CPA D = (𝐷,⇝,merge, stop),

set R0 ⊆ E of abstract states,
setW0 ⊆ R0 of frontier abstract states,
where E denotes the set of elements of the semi-lattice of 𝐷 .

Output: set reached of reachable abstract states
1: reached := R0
2: waitlist := W0
3: while waitlist ≠ ∅ do
4: pop 𝑒 from waitlist
5: for each 𝑒′ with 𝑒⇝𝑒′ do
6: for each 𝑒′′ ∈ reached do
7: 𝑒𝑛𝑒𝑤 := merge(𝑒′, 𝑒′′)
8: if 𝑒𝑛𝑒𝑤 ≠ 𝑒′′ then
9: waitlist := waitlist ∪ {𝑒𝑛𝑒𝑤} \ {𝑒′′}
10: reached := reached ∪ {𝑒𝑛𝑒𝑤} \ {𝑒′′}
11: if ¬stop(𝑒′, reached) then
12: waitlist := waitlist ∪ {𝑒′}
13: reached := reached ∪ {𝑒′}
14: return reached

A program path p = ⟨(𝑙, 𝑜𝑝, 𝑙 ′), (𝑙 ′, 𝑜𝑝′, 𝑙 ′′) . . . (𝑙 ′′′, 𝑜𝑝′′, 𝑙 ′′′′)⟩ is a sequence of connected control-
flow edges in the CFA. Every program path is element of the set Paths.

Block-Adjustment Operator. The block-adjustment operator [11] blk(l, 𝑜𝑝, l′) maps each control-
flow edge (l, 𝑜𝑝, l′) of a CFA P to 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒 . If blk(l, 𝑜𝑝, l′) = 𝑡𝑟𝑢𝑒 , then (l, 𝑜𝑝, l′) is the end
of the current block and each outgoing edge (l′, ·, ·) ∈ P is the beginning of a new block. If
blk(l, 𝑜𝑝, l′) = 𝑓 𝑎𝑙𝑠𝑒 , then (l, 𝑜𝑝, l′) is part of the current block, only. The concrete definition of
blk is arbitrary; two trivial definitions are blk𝑠𝑏𝑒 and blk𝑓 𝑎𝑙𝑠𝑒 . Operator blk𝑠𝑏𝑒 always returns true;
i.e., every block consists of a single program operation. Operator blk𝑓 𝑎𝑙𝑠𝑒 always returns false; i.e.,
there is only a single block, and it represents the full program. Block-adjustment operator blk𝑙𝑖𝑛𝑒𝑎𝑟
produces blocks of linear, non-branching control-flow edges. It returns true for CFA edge (l, 𝑜𝑝, l′)
in two cases: First, when the target node l′ has two or more incoming edges. This creates a new
block when control flows join. Second, when the target node l′ has two or more outgoing edges.
This creates new blocks when the control flow splits. Formally, blk𝑙𝑖𝑛𝑒𝑎𝑟 (l, 𝑜𝑝, l′) =

��{(·, ·, l𝑖𝑛) ∈ 𝐺 |
l𝑖𝑛 = l′}

�� > 1 ∨
��{(l𝑜𝑢𝑡 , ·, ·) ∈ 𝐺 | l𝑜𝑢𝑡 = l′}

�� > 1.

Program Properties. Our approach aims at reachability properties. A reachability property 𝜑 =

□𝑝𝑐 ≠ l𝑒 represents the property that the program never reaches target location l𝑒 . Each program
state with 𝑝𝑐 = l𝑒 is a target state.1

Configurable Program Analysis. An abstract domain 𝐷 = (C, E, J·K) consists of the set C of possible,
concrete program states, the semi-lattice E = (E, ⊑,⊔,⊤), and a concretization function J·K : E → 2C .
The elements E of E are used as abstract program states. Relation ⊑ is a partial order over E, with
∀𝑒 ∈ E : 𝑒 ⊑ ⊤. The join 𝑒 ⊔ 𝑒′ of two abstract states is the least upper bound of 𝑒 and 𝑒′ in

1For the sake of simplicity, we only consider reachability of a single target location in our presentation. Any reachability
property can be reduced to this through program transformation. In our evaluation, we use benchmark tasks with multiple
potential target locations.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

Decomposing Software Verification using Distributed Summary Synthesis 59:7

E. Each abstract program state represents a set of concrete program states. The concretization
function J·K maps each abstract state to the set of concrete program states it represents. We extend
J·K to sets of abstract states: J𝑆K =

⋃
𝑒∈𝑆J𝑒K for 𝑆 ⊆ E. A configurable program analysis (CPA) [45]

D = (𝐷,⇝,merge, stop) consists of abstract domain 𝐷 with set E of abstract states, transfer
relation⇝ ⊆ E ×G × E, merge operatormerge : (E × E) × E, and stop operator stop : (E × 2E ×B).
The abstract domain 𝐷 defines the possible abstract states E, their relation to each other, and their
relation to the concrete program states. The transfer relation⇝ ⊆ E × G × E relates each abstract
state 𝑒 ∈ E to its successor states 𝑒′ ∈ E when evaluating CFA edge 𝑔 ∈ G. We write 𝑒

𝑔
⇝𝑒′. The

merge merge(𝑒, 𝑒′) combines the information of abstract states 𝑒 and 𝑒′, and produces an abstract
state that is equal to or more abstract than 𝑒′. The stop stop(𝑒, R) returns true if abstract state 𝑒 is
already covered by the set R ⊆ E of known abstract states. It returns false otherwise.

CPA Algorithm. The CPA algorithm [45]𝐶𝑃𝐴(D, R0,W0) (Alg. 1) receives a CPAD, an initial reached
set R0 ⊆ E, and a waitlistW0 ⊆ R0. It uses CPAD to compute the set reached ⊆ E of reachable states.
It assumes that all states in R0 are reachable and starts computation with the abstract states in W0.
In detail, Alg. 1 first initializes the reachable states reached and the set waitlist of states to consider.
with the corresponding input values (lines 1–2). Then, while there are still states to consider
(frontier states waitlist), an abstract state 𝑒 is popped (line 4). Each successor 𝑒′ of 𝑒 is considered.
The algorithm first tries to merge 𝑒′ with each already reached abstract state 𝑒′′ ∈ reached. If a
merge succeeds (line 8), waitlist and reached are updated accordingly. Afterwards, the algorithm
checks with stop whether 𝑒′ itself should be added to waitlist and reached (lines 11–13). It then
continues with the next state in waitlist (line 3). When all states are explored, the algorithm returns
the set reached of reachable states. Variants [46] of the CPA algorithm do not explore the full set of
reachable states, but terminate as soon as a target state is found.

Counterexample. The abstract counterexample cex : 𝐸 × 2𝐸 → Paths finds, for an abstract state
𝑒 and set 𝑅 ⊆ 𝐸 of reached abstract states (with 𝑒 ∈ 𝑅), a program path ⟨𝑔1, . . . , 𝑔𝑛⟩ ∈ Paths so
that 𝑒0

𝑔1
⇝ . . .

𝑔𝑛
⇝𝑒 with 𝑒0, . . . 𝑒𝑛−1 ∈ 𝑅. The function 𝜔 : Paths × 𝐸 → 2𝐸 finds, for a finite program

path ⟨𝑔1, . . . , 𝑔𝑛⟩ and an abstract state 𝑒 , all possible abstract states 𝑒′ so that 𝑒′
𝑔1
⇝ . . .

𝑔𝑛
⇝𝑒 is feasible.

Predicate Abstraction. The predicate analysis CPA [47] P = (𝐷P,⇝P,merge, stop) implements
predicate abstraction [8] with Boolean predicate abstraction [48] over a finite set 𝜋 of predi-
cates. The abstract domain 𝐷P is defined as Boolean formulas over 𝜋 . Formulas use static single-
assignment form. The transfer relation⇝P contains the transfer 𝑟

𝑔
⇝P𝑟

′ if for edge 𝑔 = (𝑙, 𝑜𝑝, 𝑙 ′), the
strongest post condition 𝑆𝑃 (𝑟, 𝑜𝑝) is satisfiable and 𝑟 ′ is the strongest Boolean predicate abstraction
of 𝑆𝑃 (𝑟, 𝑜𝑝) with predicates of 𝜋 . The merge operator does not combine elements,merge(𝑒, 𝑒′) = 𝑒′.
The stop(𝑒, reached) separately considers for each state 𝑒′ ∈ reached whether it covers 𝑒 . To
derive the predicates 𝜋 on-line, we use counterexample-guided abstraction refinement [27] and
Craig interpolation [28]. To reduce the number of Boolean predicate abstractions, we use adjustable
block encoding [11] and only compute abstractions at function entries, exits, and loop heads.

Actor Model. The actor model [49] is a model for distributed computation. Each worker in a
distributed system is an actor that communicates only through broadcasting messages to all actors
in the system, including itself. Actors decide whether and how to handle a received message. An
example with four actors is shown in Fig. 4. The boxes represent the actors, the arrows indicate
their communication channels.

3 DISTRIBUTED SUMMARY SYNTHESIS

Decomposition. Given CFA P = (L, l1,G), a block b is a weakly connected subgraph b =

(Lb, l𝑒𝑛𝑡𝑟𝑦, l𝑒𝑥𝑖𝑡 ,Gb) ⊆ P with nodes Lb ⊆ L, edges Gb ⊆ G, entry node l𝑒𝑛𝑡𝑟𝑦 (no predecessor

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:8 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Actor 1 Actor 2

Actor 3Actor 4

Fig. 4. Actor model with four actors; each actor broadcasts new messages to all actors, including itself

l1

l2

l3

x = 0

y = 0

l3

l4

l5

l3

[!(n() == 0)]

x = x + 1

y = y + 1

l3

l6

[n() == 0]

l6

l7

l𝑓

x = 0

y = 0

l6

l𝑒

l𝑓

x = 0

y = 0

𝐿𝐵1

𝐿𝐵2 𝐿𝐵3

𝐿𝐵4 𝐿𝐵5
MB1

MB2

Fig. 5. Decomposition of Fig. 2 with blk𝑙𝑖𝑛𝑒𝑎𝑟 (blocks LB𝑖). With a succinct horizontal block merge (block
MB1) and vertical block merge (block MB2). This results in Fig. 3.

of l𝑒𝑛𝑡𝑟𝑦 in Lb), and exit node l𝑒𝑥𝑖𝑡 (no successor of l𝑒𝑥𝑖𝑡 in Lb). There is one exemption from this
rule: if a block covers a full loop iteration, then l𝑒𝑥𝑖𝑡 and l𝑒𝑛𝑡𝑟𝑦 are at the loop head (see block B in
Fig. 3). For each node l in the block, there is a path from l𝑒𝑛𝑡𝑟𝑦 to l𝑒𝑥𝑖𝑡 that goes through l.
We decompose P into a block graph B = (B,GB) with a set B of blocks and the directed

edges GB ⊆ B × B between the blocks. Cycles in the graph are possible.
A valid decomposition of P is a block graph so that for each node l ∈ L in the CFA one of the

following holds: (a) Node l only occurs in a single block, or (b) node l connects one block b with
all its successor blocks: it (exclusively) is the exit node of b and the entry node of all successor

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

Decomposing Software Verification using Distributed Summary Synthesis 59:9

blocks of b. We use the block-adjustment operator blk to flexibly decompose P . Our decomposition
traverses the edges of a given CFA and marks the edges for which blk returns true. This divides the
CFA in the desired blocks. This decomposition can be efficiently implemented as depth-first search
with a runtime complexity of O(|𝐿 | + |𝐺 |), where |𝐿 | is the number of locations in the CFA and |𝐺 |
is the number of CFA edges. For technical reasons with CPAchecker, we add one virtual node at the
beginning and end of each block, with one nop edge that represents the precondition of the block,
and one nop edge that represents the violation condition of the block. Figure 5 shows the (valid)
decomposition of Fig. 2 with blk𝑙𝑖𝑛𝑒𝑎𝑟 .

Block Merging. To keep the number of blocks manageable, we add a strategy for merging blocks
both horizontally and vertically, until they converge against a given target number of blocks.
We can merge horizontally if two blocks share the same entry and exit location. A horizontal

merge of block b = (Lb, l𝑒𝑛𝑡𝑟𝑦, l𝑒𝑥𝑖𝑡 ,Gb) and block b′ = (Lb′ , l𝑒𝑛𝑡𝑟𝑦, l𝑒𝑥𝑖𝑡 ,Gb′) results in a new
block b′′ = (Lb ∪ Lb′ , l𝑒𝑛𝑡𝑟𝑦, l𝑒𝑥𝑖𝑡 ,Gb ∪ Gb′) with both blocks’ locations and edges, and the common
entry and common exit location. In Fig. 5, we can merge 𝐿𝐵4 and 𝐿𝐵5 into𝑀𝐵1.
We can merge two blocks vertically if the exit location of the first block is the entry location

of the second block. Additionally, the first block must be the only block in the block graph with
this exit location, and the second block must be the only block in the block graph with this entry
location. A vertical merge of block b = (Lb, l𝑒𝑛𝑡𝑟𝑦, l𝑒𝑥𝑖𝑡 ,Gb) and block b′ = (Lb′ , l′𝑒𝑛𝑡𝑟𝑦, l′𝑒𝑥𝑖𝑡 ,Gb′)
results in a new block b′′ = (Lb ∪ Lb′ , l𝑒𝑛𝑡𝑟𝑦, l′𝑒𝑥𝑖𝑡 ,Gb ∪ Gb′) with both blocks’ locations and edges,
the entry location of b, and the exit location of b′.
In Fig. 5 it is not possible to merge blocks 𝐿𝐵3 and 𝐿𝐵4 because 𝐿𝐵4 shares entry location l6

with 𝐿𝐵5. However, we can merge 𝐿𝐵3 = (L𝐿𝐵3 , l3, l6,G𝐿𝐵3) and𝑀𝐵1 = (L𝑀𝐵1 , l6, l𝑓 ,G𝑀𝐵1) vertically
to𝑀𝐵2 = (L𝐿𝐵3 ∪ L𝑀𝐵1 , l3, l𝑓 ,G𝐿𝐵3 ∪ G𝑀𝐵1). Our merge strategy alters between the horizontal and
vertical merge until we cannot merge any more blocks or we reach the target number of blocks.
The final result of merging the blocks in Fig. 5 horizontally into𝑀𝐵1 and then vertically into𝑀𝐵2
is the block graph shown in Fig. 3.
In the worst-case, all blocks of a block graph can be merged in O(𝑛(𝑛 − 1)), where 𝑛 is the

number of blocks in the block graph. We need to check the conditions for horizontal and vertical
merge for every pair of blocks and restart 𝑛 − 1 times if all blocks can be merged into one final
block.

Messages.Messages𝑀 are three-tuples 𝑇 × 𝐵 ×𝐶 . The type 𝜏 ∈ 𝑇 = {𝜏pre, 𝜏vcond} indicates what
kind of content Z ∈ 𝐶 block b ∈ 𝐵 sent. Messages with type 𝜏pre transport a set of abstract states.
Messages with type 𝜏vcond transport violation conditions. We indicate packed objects by adding the
subscript𝑀 . For example, Z = {𝑒}𝑀 is the packed set {𝑒}.

Distributed CPAAlgorithm.We extend the CPA algorithm to a distributed CPA (DCPA) algorithm.
The DCPA algorithm receives a CPA D, the block 𝑏 to run on, the set 𝑅𝑏0 of initial states, the
specification 𝜑 , and four additional operators: packPre, packVcond, unpackPre, and unpackVcond.
Operator packPre : 2E × B → 2𝑀 packs a set of abstract states E at block 𝑏 into a set of messages,
operator unpackPre : 2𝑀 × B → 2E unpacks a set of messages for block 𝑏 into abstract states,
operator packVcond : 2E×B → 2𝑀 packs violation conditions at block𝑏 into messages, and operator
unpackVcond : 2𝑀 × B → 2E unpacks from a set of messages for block 𝑏 violation conditions.
Algorithm 2 first initializes the program specification’s target states 𝑇𝜑 and message lists for

received preconditions (pre) and violation conditions (vcond) (line 1–line 3). List pre holds, for
each block 𝛽 , the most recent received precondition of 𝛽 . List vcond holds, for each block 𝛽 , the
most recent received violation condition of 𝛽 . Initially, all preconditions are set to the initial states
𝑅𝑏0 and all violation conditions are set to the empty set. The algorithm then enters a loop (line 4)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:10 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Algorithm 2 DCPA(D, 𝑏, 𝑅𝑏0 , 𝜑, packPre, packVcond, unpackPre, unpackVcond)
Input: CPA D with abstract elements 𝐸,

block 𝑏, initial states 𝑅𝑏0 ⊆ 𝐸, specification 𝜑 ,
operators packPre, packVcond, unpackPre, and unpackVcond.

1: 𝑇𝜑 := {𝑒 | 𝑒 ∈ 𝐸 ∧ 𝑒 ⊭ 𝜑} wrt. a specification 𝜑

2: pre := [(𝜏pre, 𝛽, 𝑅𝑏0𝑀) | 𝛽 ∈ 𝐵]
3: vcond := [(𝜏vcond, 𝛽, ∅𝑀) | 𝛽 ∈ 𝐵]
4: while true do
5: 𝑚 := waitForNextMessage()
6: if 𝑚 = (𝜏pre, 𝛽𝑚, ·) then
7: pre := [(𝜏pre, 𝛽, ·) ∈ pre | 𝛽 ≠ 𝛽𝑚] ◦ [𝑚]
8: if 𝑚 = (𝜏vcond, 𝛽𝑚, ·) then
9: vcond := [(𝜏vcond, 𝛽, ·) ∈ vcond | 𝛽 ≠ 𝛽𝑚] ◦ [𝑚]

10: 𝑅𝑠𝑡𝑎𝑟𝑡 := unpackPre(pre)
11: 𝑇 := unpackVcond(vcond) ∪𝑇𝜑
12: 𝑅 := CPA𝑏 (D, 𝑅start, 𝑅start) // CPA treats b as its CFA
13: 𝑉 := {𝑒 ∈ 𝑅 | J𝑒K ∩ J𝑇 K ≠ ∅}

14: 𝑀pre := packPre
(
{𝑒 | 𝑒 ∈ 𝑅 ∧ 𝑒 located at l𝑒𝑥𝑖𝑡 }

)
15: 𝑀vcond := packVcond(𝑉)
16: broadcast(𝑀pre ∪𝑀vcond)

and waits for the first message (waitForNextMessage). Once a message𝑚 = (𝜏, 𝛽𝑚, ·) arrives, it is
updated in the corresponding list: If 𝜏 = 𝜏pre , line 7 removes the previous message of 𝛽𝑚 from pre
and concatenates𝑚. Analogous, if 𝜏 = 𝜏vcond , line 9 updates vcond.

Line 10 unpacks the preconditions to the set 𝑅𝑠𝑡𝑎𝑟𝑡 of abstract states at the block entry, and line 11
unpacks the violation conditions. The target states 𝑇 for the current iteration are the unpacked
violation conditions and the program specification’s original target states 𝑇𝜑 . Then, the algorithm
runs CPA𝑏 (D, 𝑅start, 𝑅start) with CPA D on block 𝑏. The CPA algorithm starts its analysis with the
states in 𝑅start by settings them as both the initial reached set and as the initial states in the waitlist.
From the computed reached abstract states 𝑅, we extract the set 𝑉 of reached target states (line 13).
Then, all reached states at the block exit are packed into𝑀pre (line 14), and all reached target states
are packed into𝑀vcond (line 15). The resulting messages are broadcast to all actors (line 16).

Soundness Criteria. The operators packPre and unpackPre are sound, iff for each pair 𝑏0, 𝑏1 ∈ B
of blocks, where 𝑏0 is a predecessor of 𝑏1, the unpack includes all concrete states that were included
in the originally packed set 𝐴 of abstract states (i.e., no states are lost):

∀𝐴 ⊆ E :
⋃
𝑎∈𝐴

J𝑎K ⊆
⋃

𝛼∈unpackPre(packPre(𝐴,𝑏0),𝑏1)
J𝛼K

The operators packVcond and unpackVcond are sound, iff, for each pair 𝑏0, 𝑏1 ∈ B of blocks, where
𝑏0 is a predecessor of 𝑏1, and for a set of reached target states 𝑉 , a block analysis that starts with
the communicated violation conditions 𝑅𝑉 = unpackVcond(packVcond(𝑉 ,𝑏1), 𝑏0) finds all of the
previously found (concrete) target states J𝑉 K:

J𝑉 K ⊆ J𝐶𝑃𝐴b1 (D, 𝑅𝑉 , 𝑅𝑉)K

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

Decomposing Software Verification using Distributed Summary Synthesis 59:11

Precision Criteria. The operators packPre and unpackPre are precise, iff for each pair 𝑏0, 𝑏1 ∈ B of
blocks, where 𝑏0 is a predecessor of 𝑏1, the unpack only includes concrete states that were included
in the originally packed set 𝐴 of abstract states (i.e., no additional states are hallucinated):

∀𝐴 ⊆ E :
⋃
𝑎∈𝐴

J𝑎K ⊇
⋃

𝛼∈unpackPre(packPre(𝐴,𝑏0),𝑏1)
J𝛼K

The operators packVcond and unpackVcond are precise, iff, for each pair 𝑏0, 𝑏1 ∈ B of blocks,
where 𝑏0 is a predecessor of 𝑏1, for a set 𝑇 of potential target states, and for a set 𝑉 of previously
found target states, a block analysis that starts with 𝑅𝑉 = unpackVcond(packVcond(𝑉 ,𝑏1), 𝑏0) only
reaches target states that were reached before (and no additional ones):

J𝑉 K ⊇ J𝐶𝑃𝐴b1 (D, 𝑅𝑉 , 𝑅𝑉)K ∩ J𝑇 K

Termination Conditions. For each block node in the block graph, we run one separate instance
of the DCPA algorithm. The instances are organized in an actor model and communicate messages
to all actors. We reach a fix point in one of two cases: (1) When all instances’ last broadcast contains
no more violation conditions, no more refinements are necessary. In this case, we stop all DCPA
instances and claim that program 𝑃 is safe. (2) When a block with no predecessor broadcasts a
message of 𝜏vcond . Because the broadcasting block has no predecessor, future refinements will never
be able to exclude this violation. In this case, we terminate all DCPA instances and claim that
program 𝑃 is unsafe.

Context-Free Instantiation. A context-free instantiation of the DCPA algorithm implements the
four operators as follows (with block 𝑏, abstract states 𝐸, 𝐴 ⊆ 𝐸, 𝑉 ⊆ 𝐸):

packPre(𝐴, b) = {(𝜏pre, b, 𝐴𝑀)}

unpackPre(𝑀, ·) =
⋃

{𝐴 | (𝜏pre, ·, 𝐴𝑀) ∈ 𝑀}
packVcond(𝑉 , b) = {(𝜏vcond, b,𝑉𝑀)}

unpackVcond(𝑀, ·) =
⋃

{𝑉 | (𝜏vcond, ·,𝑉𝑀) ∈ 𝑀}
The unpack-operators unpack all received abstract states and violation conditions without any
modification. This DCPA instantiation leads to a modular analysis similar to Infer [3], where each
code block (in Infer: function) is analyzed separately. The block graph for Infer consists of one
block node for each function in the input program with no edges. Nested function calls need to be
over-approximated accordingly by setting affected global and local variables to ⊤. If all functions
are safe, we find a proof. A violation condition from one function suffices to prove the program
unsafe. The behavior is sound but we likely report many false alarms.

Distributed Summary Synthesis.We formulate distributed summary synthesis as an instantiation
of the DCPA algorithm. Operator packPre𝐷 (Alg. 3) joins all abstract states into a single abstract
state, and unpackPre𝐷 (Alg. 5) unpacks abstract states and stores them in the set states (line 1).
Packed states in messages𝑀pre where 𝛽 is one of the predecessors of b are added to states (lines 2
and 3). If states is empty, we return 𝑅𝑏0 . Otherwise, we return a set containing only the least upper
bound of all elements in states.
Operator packVcond𝐷 (Alg. 4) collects all abstract states that violate the specification after

traversing the counterexample from the block entry to the violating state 𝑒 ∈ 𝑉 and adds all these
states to the known violating states𝑊 (line 1). These are sent as violation conditions. Opera-
tor unpackVcond𝐷 (Alg. 6) restores the set of known violating states from a set of messages𝑀vcond
by collecting all violation conditions 𝑉 from successors of b. As violations from non-successors are
not reached from this block, their violation conditions are skipped.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:12 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Algorithm 3 packPre𝐷 (𝐸in, b)
Input: Set 𝐸in of abstract states, block b
Output: A single message representing

the least upper bound of 𝐸in
1: return {(𝜏pre, b, {⊔𝐸in}𝑀)}

Algorithm 4 packVcond𝐷 (𝑉 ,𝑏)
Input: Set 𝑉 of reached target states, block b
Output: A single message representing all viola-

tion conditions for 𝑉
1: 𝑊 :=

⋃
𝑒∈𝑉 𝜔 (cex(𝑒), 𝑒)

2: return {(𝜏vcond, b,𝑊𝑀)}

Algorithm 5 unpackPre𝐷 (𝑀pre, b)
Input: List𝑀pre of messages, block b
Output: Least upper bound {join}
1: states := {}
2: for (𝜏pre, 𝛽, 𝐴𝑀) ∈ 𝑀pre do
3: if 𝛽 ∈ predecessors(𝑏) then
4: states := states ∪𝐴

5: if states := {} then
6: return 𝑅𝑏0
7: join :=

⊔
states

8: return {join}

Algorithm 6 unpackVcond𝐷 (𝑀𝑣𝑐𝑜𝑛𝑑 , b)
Input: List𝑀vcond of messages, block b
Output: Set 𝑉𝑐 of violation conditions
1: 𝑉𝑐 := ∅
2: for (𝜏vcond, 𝛽,𝑉𝑀) ∈ 𝑀vcond do
3: if 𝛽 ∈ successors(𝑏) then
4: 𝑉𝑐 := 𝑉𝑐 ∪𝑉

5: return 𝑉𝑐

Soundness of Distributed Summary Synthesis.Operators packPre𝐷 and unpackPre𝐷 are sound:

unpackPre𝐷 (packPre𝐷 (𝐸in, 𝑏0), 𝑏1)

= unpackPre𝐷 ({(𝜏pre, 𝑏0, {
⊔

𝐸in}𝑀)}, 𝑏1)

=
⊔

{
⊔

𝐸in}

=
⊔

𝐸in

with 𝑏0, 𝑏1 ∈ B and 𝑏0 is a predecessor of 𝑏1. By the definition of the join operator follows the
soundness, since ∀𝑒 ∈ 𝐸in : 𝑒 ⊑ ⊔

𝐸in:

J
⊔

𝐸inK ⊇
⋃
𝑒∈𝐸in

J𝑒K.

Operators packVcond𝐷 and unpackVcond𝐷 are sound. Let

𝑅𝑉 = unpackVcond𝐷 (packVcond(𝑉 ,𝑏1), 𝑏0)
= unpackVcond𝐷 ({(𝜏vcond, 𝑏1,𝑊𝑀)}, 𝑏0)

=
⋃
𝑒∈𝑉

𝜔 (cex(𝑒), 𝑒)

with 𝑏0, 𝑏1 ∈ B and 𝑏0 is a predecessor of 𝑏1. By construction of the counterexamples, we can find a
path from every 𝑒𝑣 ∈ 𝑅𝑉 to all 𝑒 ∈ 𝑉 . Therefore, CPAb1 (D, 𝑅𝑉 , 𝑅𝑉) as the CPA explores all reachable
states from 𝑅𝑉 through the respective counterexample and𝑉 ⊆ CPAb1 (D, 𝑅𝑉 , 𝑅𝑉). This implies the
soundness criterion J𝑉 K ⊆ JCPAb1 (D, 𝑅𝑉 , 𝑅𝑉)K.
Precision of Distributed Summary Synthesis. Operators packPre𝐷 and unpackPre𝐷 are not
precise, but overapproximate the state-space, as the joins in packPre𝐷 and unpackPre𝐷 produce
the least-upper-bound of all abstract states/preconditions.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

Decomposing Software Verification using Distributed Summary Synthesis 59:13

Operators packVcond𝐷 and unpackVcond𝐷 are precise:

J𝑉 K ⊇ J𝐶𝑃𝐴b1 (D, 𝑅𝑉 , 𝑅𝑉)K ∩ J𝑇 K.

with 𝑅𝑉 = unpackVcond𝐷 (packVcond(𝑉 ,𝑏1), 𝑏0), with 𝑏0, 𝑏1 ∈ B and 𝑏0 is a predecessor of 𝑏1. It is
sufficient to show that every element in CPAb1 (D, 𝑅𝑉 , 𝑅𝑉) ∩𝑇 is contained in𝑉 . Let us assume that
𝑒𝑣 ∈ 𝐶𝑃𝐴b1 (D, 𝑅𝑉 , 𝑅𝑉) ∩𝑇 then, CPAb1 either found a previously known violation𝑉 or a potentially
new violation ∈ 𝑇 . For the first case, this holds trivially (𝑒𝑣 ∈ 𝑉 ⇒ 𝑒𝑣 ∈ 𝑉). If 𝑒𝑣 ∈ 𝑇 , then we find
a subset of restored violation conditions causing 𝑒𝑣 : 𝜔 (cex(𝑒𝑣), 𝑒𝑣) ∩ 𝑅𝑉 ≠ {}. The bug must have
been uncovered before. Thus, 𝜔 (cex(𝑒𝑣), 𝑒𝑣) ⊆ 𝑅𝑉 and 𝑒𝑣 ∈ 𝑉 .

Preconditions in Cyclic Block Graphs. With the help of Tarjan’s algorithm [9], we identify
strongly connected components in the block graph. Since originally all preconditions are set to 𝑅𝑏0 ,
the disjunction of all preconditions in cyclic blocks will repeat the analysis for 𝑅𝑏0 . To avoid this,
we apply the following strategy to all blocks in strongly connected components: Whenever a block
is part of a strongly connected component, we prevent all preconditions from predecessors that
are also part of the same component from being disjuncted unless they are unequal to 𝑅𝑏0 . This
ensures that we unroll loops at least once and the precondition of predecessors in the same strongly
connected component eventually gets stronger. We can only find valid proofs if all preconditions
in the strongly connected component reached a fix point, i.e., JPreK ⊆ JPre′K where Pre is the
precondition of the block and Pre′ is the precondition of the block in the next iteration.

4 EVALUATION
We empirically evaluate our claims using performance experiments. We proposed an approach for
software model checking that is based on a decomposition of the verification task into blocks that
can be analyzed independently by different threads. Our goal is to reduce the response time, in
order to make software model checking feasible for continuous integration.

4.1 ResearchQuestions
We evaluate our approach along the following research questions:
RQ 1: Distribution of Work Load to Processing Units. Is the approach of distributed summary

synthesis effective in distributing the verification work to different threads?
Evaluation Plan: We compare the CPU time with the response time of our approach using 1,
2, 4, and 8 processing units, to be able to see if the CPU workload is effectively distributed to
different processing units.

RQ 2: Reduction of Response Time. Does using more processing units lead to a significant
reduction of the response time when using distributed summary synthesis?
Evaluation Plan:We compare the response time of our approach using 1, 2, 4, and 8 processing
units, to be able to see if the response time is reduced when increasing the number of
processing units.

RQ 3: Outperform Predicate Abstraction on Some Programs. Is the new approach able to
outperform a 15-years highly-tuned approach on appropriate verification tasks?
Evaluation Plan: We compare the new approach with 8 processing units to a standard single-
threaded predicate abstraction, to be able to see the potential of the new approach. We select
a few verification tasks which employ a sufficient number of workers and block size to see if
outperforming award-winning state-of-the-art algorithms is possible.

RQ 4: Complement State-of-the-Art Tools. Is the new approach already able to complement
state-of-the-art approaches?

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:14 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Evaluation Plan:We compare the new approach to the state-of-the-art approaches IMC [18, 50]
and k-Induction of CPAchecker [36].

RQ 5: Parallel Portfolio. How does the new approach perform in a parallel portfolio approach
that aims to optimize response time?
Evaluation Plan:We compare the performance of the parallel portfolio of predicate abstraction
and DSS to standalone predicate abstraction.

4.2 Experiment Setup
We execute our experiments with version 3.162 of BenchExec [51] using an Intel Xeon E3-1230 v5
3.40GHz processor with 8 processing units and 15GB RAM. We evaluate our approach on the
reach-safety tasks of the sv-benchmark set3, which is a large collection of diverse verification tasks
in the C programming language. This benchmark set is regularly maintained and used by several
tool competitions (e.g., [1, 52]).
In our evaluation, we focus on the safe verification tasks of the SoftwareSystems category. For

finding bugs, the performance largely depends on the traversal order, while for proving correctness,
all paths have to be considered. It is important to mention that we do not aim at improving the
individual techniques with our approach, but to distribute the workload over many threads. If the
underlying analysis, for example, unrolls a loop several times and does not terminate, our approach
will still face the same problem. Since our approach only has limited support for arrays and pointers,
we exclude 64 tasks where disabled pointer aliasing causes wrong results for predicate abstraction.
A list of the tasks can be found in our artifact [53]. The SoftwareSystems category contains tasks
from real-world programs and is therefore best suitable for our evaluation. This selection defines a
benchmark set of 2 485 tasks.
We implement distributed summary synthesis in revision 46372 of the open-source software-

verification framework CPAchecker4 [10]. CPAchecker is implemented in Java with many components
readily available. For decomposition of the CFA, we use blk𝑚𝑒𝑟𝑔𝑒 . The experimental results are
available as reproduction package on Zenodo [53].

4.3 Experimental Results

RQ 1: Distribution of Work Load to Processing Units. The scatter plot in Fig. 6 shows, for each
task, the required CPU time (in seconds) of DSS on the x-axis with the actual response time (in
seconds) on the y-axis. For a fixed value on the x-axis, a lower value on the y-axis shows that more
work is done effectively in parallel. A data point at 450 s and 225 s indicates that the verification
requires 450 s of work, but already responds after 225 s due to effective parallelization. For our
baseline we run DSS on 1 core (+) and observe that the response time equals the required CPU time.
With 2 (×), 4 (▽), and 8 (◦) cores, DSS is able to deliver the same verdict two, three, and four times
faster than the baseline, respectively.

The parallelization possible with DSS becomes even more visible when considering the box plot
in Fig. 7. The use of 2 cores speeds up the analysis response time by the factor 2. The use of 8 cores
speeds up the analysis response time by the factor 4, on average. This shows that the approach
benefits from more processing units. Amdahl’s Law [54] states that 𝑛 cores allow only a maximum
speed-up of factor 𝑛. Currently, the average, measurable speed-up of DSS with eight cores is 4, so
half of the theoretical upper bound.

2https://github.com/sosy-lab/benchexec/releases/tag/3.16
3https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/commit/3d65c76d
4https://svn.sosy-lab.org/software/cpachecker/branches/dss-fse@46372

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://github.com/sosy-lab/benchexec/releases/tag/3.16
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/commit/3d65c76d
https://svn.sosy-lab.org/software/cpachecker/branches/dss-fse@46372

Decomposing Software Verification using Distributed Summary Synthesis 59:15

100 450 900
CPU time (s)

100
225

450

900

Re
sp

on
se

 ti
m

e
(s

)

1 core
2 cores
4 cores
8 cores

1 core 2 cores 4 cores 8 cores0
1
2
3
4
5
6
7
8

Sp
ee

d-
up

 to
 C

PU
 ti

m
e

Fig. 6. CPU time (x-axis) and response time (y-axis)
for DSS with 1, 2, 4, and 8 cores.

Fig. 7. Speed-up of DSS with 1, 2, 4, and 8 cores; the
speed-up is the ratio of the CPU time compared to
the response time.

2 cores 4 cores 8 cores0
1
2
3
4
5
6
7
8

Sp
ee

d-
up

 to
 1

 c
or

e

10 100 900
Response time (s) Pred. (2 cores)

10

100

900

Re
sp

on
se

 ti
m

e
(s

) D
SS

 (8
 c

or
es

)

Parallel Portfolio0
2
4
6
8

10

15

20

Sp
ee

d-
up

Fig. 8. Speed-up (y-axis) of re-
sponse time with 2, 4, 8 cores com-
pared to DSS with only 1 core;
the response time decreases signif-
icantly when adding more cores

Fig. 9. Comparison of consumed
response time of single-threaded
predicate abstraction (x-axis) with
2 cores to distributed summary
synthesis with 8 cores (y-axis).

Fig. 10. Speed-up of the parallel
portfolio of DSS and predicate ab-
straction compared to standalone
predicate abstraction

Yes, the new approach effectively distributes the workload to different processing units.

RQ 2: Reduction of Response Time. To show the reduction of the response time, we measure the
response time for different numbers of processing units. The box plot in Fig. 8 shows the speed-up
of the response time (in seconds) of DSS with 2, 4, and 8 cores compared to the response time with
1 core. All tasks benefit from the parallelization as the speed-up compared to DSS with 1 core is
greater than one.

Figure 8 shows that the use of 2 cores already speeds up the response time by about 1.26 for 75 %
of the tasks (lower border of the box). For 50 % of the tasks, the response time is sped up by a factor
of 1.34 or more. For 5 % of the tasks (upper whisker of the box), the response time is sped up by
a factor of 1.70. The theoretical speed-up that is dictated by Amdahl’s Law is 2. This is excelled
by some tasks because the parallelization changes the behavior of the analysis. SMT queries may

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:16 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Table 2. Five tasks where distributed summary synthesis (DSS) proves tasks significantly faster than predicate
abstraction (P), on 8 cores, with regards to response time. The columns list CPU time (CPU), response time (RT),
number of threads spawned byDSS, and average number of CFA edges in the blocks of theDSS decomposition

Task CPUP CPUDSS RTP RTDSS # threads ∅ block size

leds–leds-regulator... 44.76 s 33.23 s 30.83 s 7.18 s 92 12.40
rtc–rtc-ds1553.ko-l... 49.04 s 64.55 s 30.33 s 13.98 s 164 14.98
rtc–rtc-stk17ta8.ko... 46.72 s 67.87 s 28.93 s 15.11 s 162 15.70
watchdog–it8712f_w... 86.78 s 50.26 s 68.99 s 15.89 s 216 7.91
ldv-commit-tester/m0... 50.10 s 102.93 s 28.81 s 20.99 s 230 7.00

change due to the parallel computation of conditions, which can lead to a different, more efficient
behavior in the SMT solver.
The response-time speed up compared to 1 core further improves for 4 cores and 8 cores: For

4 cores, the median speed-up is 1.91. For 8 cores, the median speed-up is 2.57. In both cases, the
upper speed-up for the upper quartile increases further.

Yes, the new approach significantly reduces the response time, and increasing resources to
2, 4, or 8 processing units leads to a significant reduction of the response time.

RQ 3: Comparison to Predicate Abstraction. Figure 9 compares the response time of predicate
analysis (x-axis) and the response time of distributed summary synthesis (y-axis) on tasks solved
correctly by both approaches. Every data point below the line indicates that this verification task
benefits from the distribution provided by DSS. The award-winning predicate abstraction is well-
known and was highly-tuned since 15 years. Generally, the highly-tuned predicate abstraction is
still faster as we experience an overhead for the (un)packing and processing of irrelevant messages.
Predicate analysis outperforms DSS for the vast majority of tasks below the 10 s mark. However,
there is a considerable number of tasks that already profit from the distribution. Harder tasks are
generally solved faster with DSS, if DSS finds a proof. As mentioned before, our goal here is to
develop a strategy allowing a scalable approach to software model checking. We believe that the
potential of the approach is high as we have many opportunities for improvement as discussed
later.

Table 2 lists five hand-picked tasks from the benchmark set where distributed summary synthesis
outperformed single-threaded predicate analysis. Subscript P shows the data for predicate analysis,
subscript DSS shows data for distributed summary synthesis.
In these cases, distributed summaries decreases the response time (RT𝑥) significantly while

consuming comparable or more CPU time (CPU𝑥). We observe that the number of workers (#
threads) and the number of control-flow edges in the blocks (∅ block size) can vary. Many blocks
with less edges seem to work as well as fewer blocks with more edges. One of the biggest challenges
in the future will be the fine-tuning of the decompositions. Currently, we focused on inexpensive
decompositions because the decomposition also produces overhead. However, more expensive
strategies might be beneficial in the long run. Some tasks are decomposed into up to 751 blocks,
but the solved task with the highest number of blocks is only decomposed into 476 blocks.

Hence, equally many threads are spawned. ‘Unusual’ control flow edges as, e.g., goto, continue,
and break hinder us from merging blocks, potentially resulting in many small blocks.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--leds--leds-regulator.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--rtc--rtc-ds1553.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--rtc--rtc-stk17ta8.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--watchdog--it8712f_wdt.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-commit-tester/m0_drivers-staging-comedi-drivers-ni_65xx-ko--107_1a--adbbc36.i

Decomposing Software Verification using Distributed Summary Synthesis 59:17

Table 3. Verification results of IMC, k-Induction, predicate analysis, and distributed summary synthesis (DSS)

Technique Correctly solved Timeout Out of memory Error

k-Induction 985 450 28 1 022
Predicate 860 696 14 915
IMC 707 24 15 1 739
DSS 592 264 1 117 512

Yes, there are some verification tasks for which the new approach even outperforms single-
threaded predicate analysis.

RQ 4: Complement State-of-the-Art Tools. The focus of this work is to use existing components
whose weaknesses are not related to the validity of the approach. DSS does not complement existing
techniques but mainly targets at making them scalable by re-using and not re-inventing them.
An encoding of the specification in the violation condition is sufficient to make other existing
techniques applicable to DSS.
The comparison in Table 3 of our approach (last row) shows that established techniques like

IMC or k-Induction are also capable of solving the tasks that DSS solves. DSS solves 7 tasks that are
not solved by k-Induction, 14 not solved by predicate analysis, and 61 not solved by IMC. Taking
a deeper look into the 14 tasks that DSS solves but predicate abstraction does not, we see that in
9 cases, predicate abstraction runs into the time limit, while DSS is faster and finishes within the
time limit. The remaining 5 cases are due to tool crashes that DSS can avoid due to the different
analysis order. However, in general, they solve significantly more tasks overall.
Occasionally, we encounter exceptions that are not occurring for the plain predicate analyses.

Here, we face unsupported features, e.g., memcopy, which the standard predicate abstraction does
not traverse because the path can already be excluded with the refined precision after the first
iterations of CEGAR. Also, some assertions about valid block graphs might be violated, in which
case we exit the verification with an exception. We also encounter significantly more out-of-memory
exceptions due to the concurrent work done: Since we perform multiple analyses in parallel, we
also require more memory. Even for small programs, ARGs might grow exponentially, and our
approach has to (un)pack thousands of abstract states. In the future, we envision a compressed
message format and a different communication model to tackle this problem.

For a fair comparison, we disable pointer aliasing for the plain predicate analysis. Given that the
verification verdicts always equal the verification verdicts of the predicate analysis, we assume that
our implementation works properly.

No, the new approach is not yet good enough to complement the state-of-the-art verification
tools with regards to effectiveness.

RQ 5: Parallel Portfolio. To examine the potential of DSS to reduce the response time of verifica-
tion, we create a parallel portfolio of predicate abstraction and DSS. In the parallel portfolio, we
run both predicate abstraction and DSS in parallel. As soon as one of the techniques produces a
verification result, the analysis ends and this result is used. This portfolio combines the strengths of
both techniques and mitigates their weaknesses. Figure 10 shows the speed-up of the response time
of parallel portfolio, compared to standalone predicate abstraction. Because the parallel portfolio

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:18 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

always uses the fastest produced result, it is never slower than predicate abstraction. In 25 % of the
cases, the parallel portfolio is at least 27 % faster. In the best case, the parallel portfolio is 16 times
faster.

A parallel portfolio with DSS improves the response time in our experiments up to factor 16.

Decomposition. Experiments show that DSS benefits from a block graph where program loops
are not contained within a single block, but represented by a cycle in the block graph. This ensures
that DSS generates a block summary for the loop body. We also observe that it is helpful to create
blocks that cover one or more full linear sequences of statements; for example a full loop body, a
complete if-branch, or both a full if- and else-branch up to their join. This reduces the complexity
of block summaries because they do not need to talk about variables with a scope that is fully
contained within the block. Our horizontal and vertical merge strategies try to achieve the above.
Figure 3 shows how our decomposition represents loops in the block graph (block B).
Threats to Validity. Our benchmark set is limited to 2 485 safe tasks and might be biased towards
a selection of features of the C programming language. However, sv-benchmarks is the largest and
most diverse benchmark set for verification of C programs to date. The software-systems category
includes excerpts of real-world software systems as well as specialized algorithms.
We showcase distributed summary synthesis on the example of predicate abstraction. The

approach is generic and independent of the abstract domain, but our experimental findings may
not generalize to all other abstract domains. Our implementation may contain bugs, but we did not
observe any wrong results in our experiments.
We serialize messages for information exchange and broadcast messages to all actors. Experi-

mental results may change if a different communication model is used, but we expect results to
only improve with more sophisticated communication models.
A different scheduling of messages might lead to different results and, in the worst-case, cause

more unrollings of loops and therefore more messages.
Limitations. Distributed summary synthesis currently has the following limitations:
Context Sensitivity.We define operator packPre𝐷 to run analysis with a join of all preconditions.
This is an overapproximation that loses precision. Due to this, the presented version of distributed
summary synthesis is context-insensitive. To still handle cycles in the block graph (due to recursion
or loops) successfully, we deploy an optimization based on Tarjan’s algorithm (see Sect. 3). Future
work could also define a more precise operator packPre that handles preconditions separately.
Resource Consumption.We spend unnecessary resources on synthesizing summaries for unreachable
program states. In sequential analysis, unreachable program states are usually not computed
because the analysis reasons about unreachability sequentially (or iteratively sequentially in the
case of CEGAR). But distributed summary synthesis analyzes blocks in parallel. This means that
unnecessary resources are spent on the exploration of a program state space when it is proven
unreachable later.
Choice of Decomposition. The issue of unnecessary computations worsens with an unfitting decom-
position and can be mitigated with a good decomposition.

Figure 11 shows a programwith multiple calls to hard-to-verify functions (hard1, hard2). Because
of the initial variable assignment, none of these calls are reachable. A sequential analysis may realize
this and will never try to analyze the unreachable functions. But an unfitting decomposition of the
verification problem (for example as in Fig. 12) may lead to individual workers for functions hard1
and hard2, so that these are analyzed eagerly. This causes expensive, unnecessary computations.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

Decomposing Software Verification using Distributed Summary Synthesis 59:19

1 int main() {

2 int a = 0;

3 int b = 0;

4 if (a) hard1(a);

5 if (b) hard2(b);

6 }

𝑎 := 0
𝑏 := 0

[𝑎 ≠ 0]
hard1(𝑎)[𝑎 = 0]

[𝑏 ≠ 0]
hard2(𝑏)[𝑏 = 0]

Fig. 11. Program with two unreach-
able, hard-to-verify function calls

Fig. 12. Poor decomposition of Fig. 11

1 int main() {

2 int a = n();

3 if (a) hard1(a);

4 else hard2(a);

5 }

𝑎 := 𝑛()

[𝑎 = 0]
hard2(𝑎)

[𝑎 ≠ 0]
hard1(𝑎)

Fig. 13. Program with two reachable,
hard-to-verify function calls

Fig. 14. Good decomposition of Fig. 13

Contrary, if hard blocks are computed in parallel as seen in the decomposed version of Fig. 13 in
Fig. 14, the benefits of DSS become visible. DSS simultaneously works on the proof of both hard-
to-verify functions hard1 and hard2. In the case that both are safe, DSS can immediately conclude
that the whole program is safe. If a block reports a violation, DSS only has to check whether the
value of 𝑎 can be different from or equal to 0, respectively. DSS is perfect for independent blocks
like this. In general, DSS performs better on tasks with multiple potential error locations, as it can
prove their (in)feasibility in parallel. In our experiments, the decomposition produces a negligible
overhead. It takes, on average, less than 0.2 % of the total CPU time of DSS.

Communication Model. We choose the actor model [49] to have a simple method of communication
between blocks. New conditions are sent to every other actor. In case a condition is not meant
for its block, i.e., it is not a successor or predecessor, the message is discarded. But for this, every
message has to be unpacked first. This causes overhead. In our experiments, packing messages
produces a negligible overhead. It takes, on average, less than 1.2 % of the total CPU time of DSS.
But in contrast, unpacking messages takes, on average, 60 % of the total CPU time of DSS. We expect
that this overhead significantly reduces through a more sophisticated communication model. The
discrepancy of consumed time for (un)packing arises from the fact that all blocks need to unpack a
message that was only packed once by the sender.

Scheduling Model. Currently, all blocks are analyzed concurrently and the scheduling of the different
blocks is done by the operating system. Therefore, the needed CPU- and response-time of a
verification run may differ between runs. The presented experimental data supports the claim that
the impact is not observable, but orchestrated scheduling techniques may avoid unnecessary work
and reduce the number of sent messages.

Verification Witnesses. Our approach can not yet write verification witnesses [55]. For violation
witnesses, we would need to restore the path to the violation. For correctness witnesses, we can
use the loop summaries as invariants.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

59:20 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

Opportunities. The relevance of this work can be underlined with the possibilities it provides for
future research.

Incremental Verification. We envision the incremental verification of larger programs that are
actively under development (for example in a continuous-integration pipeline). For this we can
exploit the full potential of our approach as we can store the current states of all blocks until the
program is patched. Now, we only need to re-analyze the blocks that are affected by the changes.
In large software projects this might save a significant bit of work while preserving previously
computed information. With the help of the (de)serialization, we can even restore the state of our
approach at any time by replaying the logged messages. Currently, industry often works with
generated or handwritten pre- and postconditions of functions. This might become obsolete when
using distributed summary synthesis.

Verification Techniques.While we evaluated our approach with the abstract domain of predicate
abstraction, it is not limited to a particular abstract domain, and other approaches for software
model checking can be applied as well, in principle. Further, the block contracts can be synthesized
by different analysis techniques and verified in isolation, as well as exported for further processing
by external tools or the user. This creates the opportunity to integrate theorem provers for contracts.

Strategy Selection. In distributed summary synthesis, the used abstract domains can change per
block. This can be exploited by performing strategy selection [56, 57] to use the best-suiting abstract
domain for each block.

Multi-Processing. Since distributed summary synthesis is stateless and communicates only through
messages, it allows an easy adaption from multi-threading to multi-processing.

Decompositions. Other program-decomposition strategies may be explored in the future. Similar
to AI-based strategy selection for verification techniques [57], we could use AI for finding suiting
decompositions of the program.

5 CONCLUSION
This work extends configurable program analysis to a distributed setting (DCPA) and introduces
distributed summary synthesis. Distributed summary synthesis is a flexible framework to scale veri-
fication through decomposition and distribution. It decomposes a single, large software-verification
task into multiple smaller tasks. The parallel and continuously refined synthesis of block summaries
reduces the dependencies between blocks. This increases the potential parallelism and allows to
distribute the verification work to many processing units. Through this, distributed summary
synthesis achieves short response times and enables verification technology for incremental ver-
ification and continuous integration [5]. Our experimental results are promising and show that
distributed summary synthesis significantly reduces the response time when multiple processing
units are available.

Data-Availability Statement. The data from our experiments are available at Zenodo [53] and on
our supplementary webpage5.

Funding Statement. This project was funded in part by the Deutsche Forschungsgemeinschaft
(DFG) – 378803395 (ConVeY) and 418257054 (Coop).

5https://www.sosy-lab.org/research/distributed-summary-synthesis/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://www.sosy-lab.org/research/distributed-summary-synthesis/
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/418257054
https://www.sosy-lab.org/research/distributed-summary-synthesis/

Decomposing Software Verification using Distributed Summary Synthesis 59:21

REFERENCES
[1] D. Beyer. 2023. Competition on Software Verification and Witness Validation: SV-COMP 2023. In Proc. TACAS (2)

(LNCS 13994). Springer.
[2] T. Ball, V. Levin, and S. K. Rajamani. 2011. A Decade of Software Model Checking with Slam. Commun. ACM 54, 7

(2011), 68–76. https://doi.org/10.1145/1965724.1965743
[3] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W. O’Hearn, I. Papakonstantinou, J. Purbrick,

and D. Rodriguez. 2015. Moving Fast with Software Verification. In Proc. NFM (LNCS 9058). Springer, 3–11. https:
//doi.org/10.1007/978-3-319-17524-9_1

[4] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. 2009. Establishing Linux Driver Verification Process.
In Proc. Ershov Memorial Conference (LNCS 5947). Springer, 165–176. https://doi.org/10.1007/978-3-642-11486-1_14

[5] N. Chong, B. Cook, J. Eidelman, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-Narbonne, S. Tasiran, M. Tautschnig,
and M. R. Tuttle. 2021. Code-level model checking in the software development workflow at Amazon Web Services.
Softw. Pract. Exp. 51, 4 (2021), 772–797. https://doi.org/10.1002/spe.2949

[6] K. Laster and O. Grumberg. 1998. Modular Model Checking of Software. In Proc. TACAS (LNCS 1384). Springer, 20–35.
https://doi.org/10.1007/BFb0054162

[7] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software Verification: Concretizing the Convergence
of Model Checking and Program Analysis. In Proc. CAV (LNCS 4590). Springer, 504–518. https://doi.org/10.1007/978-3-
540-73368-3_51

[8] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. 2004. Abstractions from proofs. In Proc. POPL. ACM,
232–244. https://doi.org/10.1145/964001.964021

[9] R. E. Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 2 (1972), 146–160. https:
//doi.org/10.1137/0201010

[10] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable Software Verification. In Proc. CAV
(LNCS 6806). Springer, 184–190. https://doi.org/10.1007/978-3-642-22110-1_16

[11] D. Beyer, M. E. Keremoglu, and P.Wendler. 2010. Predicate Abstractionwith Adjustable-Block Encoding. In Proc. FMCAD.
FMCAD, 189–197. https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-
Block_Encoding.pdf.

[12] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. 2009. Software Model Checking via Large-Block
Encoding. In Proc. FMCAD. IEEE, 25–32. https://doi.org/10.1109/FMCAD.2009.5351147

[13] D. Wonisch and H. Wehrheim. 2012. Predicate Analysis with Block-Abstraction Memoization. In Proc. ICFEM
(LNCS 7635). Springer, 332–347. https://doi.org/10.1007/978-3-642-34281-3_24

[14] D. Beyer and K. Friedberger. 2018. Domain-Independent Multi-threaded Software Model Checking. In Proc. ASE. ACM,
634–644. https://doi.org/10.1145/3238147.3238195

[15] L. Alt, S. Asadi, H. Chockler, K. Even-Mendoza, G. Fedyukovich, A. E. J. Hyvärinen, and N. Sharygina. 2017. HiFrog:
SMT-Based Function Summarization for Software Verification. In Proc. TACAS (LNCS 10206). 207–213. https://doi.org/
10.1007/978-3-662-54580-5_12

[16] D. Beyer and K. Friedberger. 2020. Domain-Independent Interprocedural Program Analysis using Block-Abstraction
Memoization. In Proc. ESEC/FSE. ACM, 50–62. https://doi.org/10.1145/3368089.3409718

[17] S. Asadi, M. Blicha, G. Fedyukovich, A. E. J. Hyvärinen, K. Even-Mendoza, N. Sharygina, and H. Chockler. 2018. Function
Summarization Modulo Theories. In Proc. LPAR (EPiC, Vol. 57). EasyChair, 56–75. https://doi.org/10.29007/d3bt

[18] K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc. CAV (LNCS 2725). Springer, 1–13.
https://doi.org/10.1007/978-3-540-45069-6_1

[19] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. 2011. Compositional Shape Analysis by Means of Bi-Abduction.
J. ACM 58, 6 (2011), 26:1–26:66. https://doi.org/10.1145/2049697.2049700

[20] D. Babic and A. J. Hu. 2008. Calysto: Scalable and precise extended static checking. In Proc. ICSE. ACM, 211–220.
https://doi.org/10.1145/1368088.1368118

[21] T. Ball and S. K. Rajamani. 2000. Bebop: A Symbolic Model Checker for Boolean Programs. In Proc. SPIN (LNCS 1885).
Springer, 113–130. https://doi.org/10.1007/10722468_7

[22] A. Albarghouthi, A. Gurfinkel, and M. Chechik. 2012. Whale: An Interpolation-Based Algorithm for Inter-procedural
Verification. In Proc. VMCAI (LNCS 7148). Springer, 39–55. https://doi.org/10.1007/978-3-642-27940-9_4

[23] T. W. Reps, S. Horwitz, and M. Sagiv. 1995. Precise Interprocedural Data-Flow Analysis via Graph Reachability. In Proc.
POPL. ACM, 49–61. https://doi.org/10.1145/199448.199462

[24] Thomas W. Reps. 1997. Program Analysis via Graph Reachability. In Proc. ILPS. MIT, 5–19.
[25] T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. Race checking by context inference. In Proc. PLDI. ACM, 1–13.

https://doi.org/10.1145/996841.996844
[26] B. Stein, B.-Y. E. Chang, and M. Sridharan. 2021. Demanded Abstract Interpretation. In Proc. PLDI. ACM, 282–295.

https://doi.org/10.1145/3453483.3454044

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/BFb0054162
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1145/964001.964021
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.29007/d3bt
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/978-3-642-27940-9_4
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/996841.996844
https://doi.org/10.1145/3453483.3454044

59:22 Dirk Beyer, Matthias Kettl, and Thomas Lemberger

[27] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM 50, 5 (2003), 752–794. https://doi.org/10.1145/876638.876643

[28] W. Craig. 1957. Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem. J. Symb. Log. 22, 3 (1957), 250–268.
https://doi.org/10.2307/2963593

[29] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. 1999. Symbolic Model Checking without BDDs. In Proc. TACAS
(LNCS 1579). Springer, 193–207. https://doi.org/10.1007/3-540-49059-0_14

[30] D. Beyer and M. Dangl. 2020. Software Verification with PDR: An Implementation of the State of the Art. In Proc.
TACAS (1) (LNCS 12078). Springer, 3–21. https://doi.org/10.1007/978-3-030-45190-5_1

[31] A. F. Donaldson, L. Haller, D. Kröning, and P. Rümmer. 2011. Software Verification Using k-Induction. In Proc. SAS
(LNCS 6887). Springer, 351–368. https://doi.org/10.1007/978-3-642-23702-7_26

[32] K. L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. CAV (LNCS 4144). Springer, 123–136. https:
//doi.org/10.1007/11817963_14

[33] M. Heizmann, J. Hoenicke, and A. Podelski. 2010. Nested interpolants. In Proc. POPL. ACM, 471–482. https://doi.org/
10.1145/1706299.1706353

[34] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. 2011. Certifying Algorithms. Computer Science Review 5, 2
(2011), 119–161. https://doi.org/10.1016/j.cosrev.2010.09.009

[35] M. Chalupa, M. Vitovská, M. Jonáš, J. Slaby, and J. Strejček. 2017. Symbiotic 4: Beyond Reachability (Competition
Contribution). In Proc. TACAS (LNCS 10206). Springer, 385–389. https://doi.org/10.1007/978-3-662-54580-5_28

[36] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-Induction with Continuously-Refined Invariants. In Proc. CAV
(LNCS 9206). Springer, 622–640. https://doi.org/10.1007/978-3-319-21690-4_42

[37] G. J. Holzmann. 1997. The Spin Model Checker. IEEE Trans. Softw. Eng. 23, 5 (1997), 279–295. https://doi.org/10.1109/
32.588521

[38] J. Barnat, P. Rockai, V. Still, and J. Weiser. 2015. Fast, Dynamically-Sized Concurrent Hash Table. In Proc. SPIN
(LNCS 9232). Springer, 49–65. https://doi.org/10.1007/978-3-319-23404-5_5

[39] G. Yang, R. Qiu, S. Khurshid, C. S. Pasareanu, and J. Wen. 2019. A synergistic approach to improving symbolic execution
using test ranges. Innov. Syst. Softw. Eng. 15, 3-4 (2019), 325–342. https://doi.org/10.1007/s11334-019-00331-9

[40] Y. Xie and A. Aiken. 2007. Saturn: A scalable framework for error detection using Boolean satisfiability. TOPLAS 29, 3
(2007), 16. https://doi.org/10.1145/1232420.1232423

[41] S. McPeak, C -H. Gros, and M. K. Ramanathan. 2013. Scalable and incremental software bug detection. In Proc. ESEC/FSE.
ACM, 554–564. https://doi.org/10.1145/2491411.2501854

[42] S. Blom, J. van de Pol, and M. Weber. 2010. LTSmin: Distributed and Symbolic Reachability. In Proc. CAV (LNCS 6174).
Springer, 354–359. https://doi.org/10.1007/978-3-642-14295-6_31

[43] T. van Dijk. 2016. Sylvan: Multi-core decision diagrams. Ph. D. Dissertation. University of Twente, Enschede, Netherlands.
http://purl.utwente.nl/publications/100676

[44] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.-Henri Gros, A. Kamsky, S. McPeak, and D. R. Engler.
2010. A few billion lines of code later: Using static analysis to find bugs in the real world. Commun. ACM 53, 2 (2010),
66–75. https://doi.org/10.1145/1646353.1646374

[45] D. Beyer, S. Gulwani, and D. Schmidt. 2018. Combining Model Checking and Data-Flow Analysis. In Handbook of
Model Checking. Springer, 493–540. https://doi.org/10.1007/978-3-319-10575-8_16

[46] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking Based on CEGAR and Interpolation. In Proc. FASE
(LNCS 7793). Springer, 146–162. https://doi.org/10.1007/978-3-642-37057-1_11

[47] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. 2018. Handbook of Model Checking. Springer. https://doi.org/10.
1007/978-3-319-10575-8

[48] T. Ball, A. Podelski, and S. K. Rajamani. 2001. Boolean and Cartesian Abstraction for Model Checking C Programs. In
Proc. TACAS (LNCS 2031). Springer, 268–283. https://doi.org/10.1007/3-540-45319-9_19

[49] Carl Hewitt. 2015. Actor Model of Computation: Scalable Robust Information Systems. arXiv/CoRR 1008, 1459 (2015).
https://doi.org/10.48550/arXiv.1008.1459

[50] D. Beyer, N.-Z. Lee, and P. Wendler. 2022. Interpolation and SAT-Based Model Checking Revisited: Adoption to
Software Verification. arXiv/CoRR 2208, 05046 (July 2022). https://doi.org/10.48550/arXiv.2208.05046

[51] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable Benchmarking: Requirements and Solutions. Int. J. Softw. Tools
Technol. Transfer 21, 1 (2019), 1–29. https://doi.org/10.1007/s10009-017-0469-y

[52] D. Beyer. 2023. Software Testing: 5th Comparative Evaluation: Test-Comp 2023. In Proc. FASE (LNCS 13991). Springer.
[53] D. Beyer, M. Kettl, and T. Lemberger. 2024. Experimental Results for ‘Decomposing Software Verification Using

Distributed Summary Synthesis’. Zenodo. https://doi.org/10.5281/zenodo.11095864
[54] G. M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In

Proc. AFIPS. ACM, 483–485. https://doi.org/10.1145/1465482.1465560

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://doi.org/10.1145/876638.876643
https://doi.org/10.2307/2963593
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-319-23404-5_5
https://doi.org/10.1007/s11334-019-00331-9
https://doi.org/10.1145/1232420.1232423
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1007/978-3-642-14295-6_31
http://purl.utwente.nl/publications/100676
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.48550/arXiv.1008.1459
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.5281/zenodo.11095864
https://doi.org/10.1145/1465482.1465560

Decomposing Software Verification using Distributed Summary Synthesis 59:23

[55] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig. 2022. Verification Witnesses. ACM
Trans. Softw. Eng. Methodol. 31, 4 (2022), 57:1–57:69. https://doi.org/10.1145/3477579

[56] D. Beyer and M. Dangl. 2018. Strategy Selection for Software Verification Based on Boolean Features: A Simple but
Effective Approach. In Proc. ISoLA (LNCS 11245). Springer, 144–159. https://doi.org/10.1007/978-3-030-03421-4_11

[57] C. Richter, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. 2020. Algorithm selection for software validation based on
graph kernels. Autom. Softw. Eng. 27, 1 (2020), 153–186. https://doi.org/10.1007/s10515-020-00270-x

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 59. Publication date: July 2024.

https://doi.org/10.1145/3477579
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/s10515-020-00270-x

	Abstract
	1 Introduction
	2 Background
	3 Distributed Summary Synthesis
	4 Evaluation
	4.1 Research Questions
	4.2 Experiment Setup
	4.3 Experimental Results

	5 Conclusion
	References

