
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Six Years Later: Testing vs. Model Checking

Dirk Beyer and Thomas Lemberger

LMU Munich, Germany

The date of receipt and acceptance will be inserted by the editor

Abstract. Six years ago, we performed the first large-
scale comparison of automated test generators and soft-
ware model checkers with respect to bug-finding capabil-
ities on a benchmark set with 5 693 C programs. Since
then, the International Competition on Software Test-
ing (Test-Comp) has established standardized formats
and community-agreed rules for the experimental com-
parison of test generators. With this new context, it is
time to revisit our initial question: Model checkers or
test generators—which tools are more effective in finding
bugs in software? To answer this, we perform a compar-
ative analysis on the tools and existing data published
by two competitions, the International Competition on
Software Verification (SV-COMP) and Test-Comp. The
results provide two insights: (1) Almost all test genera-
tors that participate in Test-Comp use hybrid approaches
that include formal methods, and (2) while the consid-
ered model checkers are still highly competitive, they are
now outperformed by the bug-finding capabilities of the
considered test generators.

Key words: Software verification, Model checking, Pro-
gram analysis, Test generation, Testing, Fuzzing

1 Introduction

In previous research [44] we compare the bug-finding
capabilities of automated test generators and software
model checkers on C programs. At the time of that work,
no standardized formats existed for the experimental
comparison of test generators. So we selected formats
for the expected inputs and outputs of test generation,
implemented matching adapters for existing test genera-
tors, and our own coverage measurement. Nowadays, this
is unnecessary. The International Competition on Soft-
ware Testing (Test-Comp) [31] provides a community-set

framework for the evaluation of test generators for the
C language, including an exchange format for test suites,
a large and well-defined benchmark task set, and agreed-
upon resource limitations for benchmarking. So far, the
benchmark test tasks of Test-Comp target two goals of
test generation: “create a test suite that covers a known
bug in a given program”, and “create a test suite that
covers all branches of a given program”.

Thanks to the improvements Test-Comp brought, and
six years after our original research [44], it is time to re-
visit the comparison: Model checkers vs. test generators—
which tools are better at finding bugs in software?

We improve on the original comparison in multiple
ways: (1) For the original work, we selected an array of
test generators manually, and configured them to the best
of our knowledge. In this work, we base our comparison
only on participants of the International Competition
on Software Verification (SV-COMP) [28] and Test-Comp.
All tool configuration is provided by the participating
tool developers, and during the competition, developers
got early access to pre-run results to fix any shortcomings
of their tools evident through the benchmark set.

(2) Originally, we executed our own, novel experi-
ments. We do have high confidence in these results, but
in our new work, we reuse the freely available competi-
tion data of SV-COMP 2023 and Test-Comp 2023. Using
these results has the advantage that the data were peer-
reviewed by the tool developers before publication.

Through these two adjustments we ensure that the
used experimental data represents expert tool usage. It
also guarantees that we configured everything correctly,
and that we select tools that support all of the major
required language features.

(3) Originally, we counted that a model checker found
a bug when the reported bug was confirmed by at least
one witness validator [38]—which may solely rely on
static analysis. In this work, we pay higher tribute to
the actual execution of an error, and separately consider

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-0291-815X


2 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

whether a model checker’s bug report can be confirmed
through program execution [39].

(4) Originally, we considered the bug-finding capabili-
ties of model checkers and test generators, but did not ex-
plicitly tune test generators towards finding a bug in the
program. Our expectation is that many test generators
are originally designed for traditional coverage measures
like branch coverage or condition coverage, and are not
optimized to create a single test for an error location of
interest. But since Test-Comp asks participants to cre-
ate a test suite that covers a known bug, the Test-Comp
test generators may be tuned towards bug finding. To
check the effect of this, we compare the test suites gen-
erated by Test-Comp test generators for error coverage
and the test suites generated for branch coverage with
regards to their bug-finding capabilities.

(5) Furthermore, in the original work we compared
tools that market themselves as software model checkers
with tools that market themselves as test generators,
and gave only a coarse overview on the techniques they
used. Nowadays, many tools employ hybrid approaches
with multiple different techniques. Many formal meth-
ods that are used in model checking can also be used
for test generation [35, 112], and techniques originally
designed for testing can be used as a part of model check-
ing (for example input fuzzing [62]). This means that a
model checker and a test generator may use the same
underlying analysis techniques. To account for that, we
give more details about the techniques the tools use.

We evaluate the following research questions:

RQ 1 Are test generators more effective in finding bugs
than software model checkers?

RQ 2 Can the bug reports of software model checkers
be validated through execution?

RQ 3 Are test generators that target errors more effec-
tive in finding bugs than test generators that target
branch coverage?

To answer these questions, we use Test-Comp test gen-
erators and SV-COMP model checkers as representatives
of their respective domains, with the original competition
data. To the best of our knowledge, this is the first meta-
analysis of the two international competitions SV-COMP
and Test-Comp, and the largest evaluation that compares
the bug-finding capabilities of software model checkers
with those of test generators.

Related Work. The only large-scale comparisons of the
tools considered in this work are the annual competitions
SV-COMP [28] and Test-Comp [31], which we combine
and inspect in detail in this work.

Next to these experimental evaluations, there are lit-
erature surveys on test generation for JavaScript [14],
search-based testing [99], fuzzing [98], and symbolic exe-
cution [17, 55, 105]. There are also surveys on software-
model-checking techniques [72, 88] and formal methods
in a more general sense [20, 77], as well as the handbook
on model checking [63].

Program

Coverage
Criterion

Test-generation task

Test
Generator Test Suite

Fig. 1: Workflow of a Test-Comp test generator; a test gen-
erator produces a test suite for a program under test and
a coverage criterion

Program

Coverage
Criterion

Test Suite

Validation task

Test
Executor

Criterion fulfilled

or

%

Fig. 2: Workflow of a test executor; a test executor com-
putes whether (or to what percentage) a test suite fulfills
a coverage criterion for a program

This work focuses on reachability bugs in a sequen-
tial, self-contained program, similar to a failing assert
statement, and on tools and techniques aimed at finding
such errors. Other applications of model checking and
automated testing are, among many others, mutation test-
ing [104] and the verification of concurrent programs [80],
security properties [19], and hyperproperties [65].

2 Background

2.1 Testing

An input function in a program is any function that
retrieves a value from the program’s environment, for ex-
ample a system call. In our work, we use special functions
__VERIFIER_nondet_X that can return any input value of
type X. For example, function __VERIFIER_nondet_int()

returns an integer input value. A test vector ⟨v0, . . . , vn⟩
is a sequence of n values. When ⟨v0, . . . , vn⟩ is executed,
the i-th call to an input function is defined to return
value vi. A test suite is a set of test vectors. A test vec-
tor t covers a program operation op if the execution of t
goes through op. A test suite covers a program opera-
tion op if any of its contained test vectors covers op.

A Test-Comp test generator (Fig. 1) [31] takes as input
the program-under-test and a coverage-criterion (e.g.,
cover a call to function reach_error()), and generates as
output a test suite. The test executor (Fig. 2) then takes
as input the program-under-test, the coverage criterion,
and the generated test suite. It produces as output either
that the coverage criterion is fulfilled, or a percentage of
how many coverage goals that are defined by the criterion
are covered by the tests in the test suite.



Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 3

Program

Spec
Model Checker

Verification task

Correctness
Witness

or

Violation
Witness

Fig. 3: Workflow of a model checker; a model checker
produces a correctness witness if it claims that the pro-
gram under verification fulfills the specification, or a
violation witness if it claims that the program violates
the specification

Program

Spec

Violation
Witness

Validation task

Witness Validator

Result confirmed

or

unconfirmed

Fig. 4: Workflow of a witness validator (for result valida-
tion of a violation witness); a witness validator confirms
the model checker’s verification result if it can reproduce
the result with the help of the witness

1 unsigned char __VERIFIER_nondet_uchar();
2 void reach_error();
3

4 int main() {
5 unsigned char a =
6 __VERIFIER_nondet_uchar();
7 unsigned char b =
8 __VERIFIER_nondet_uchar();
9 unsigned char sum = a + b;

10 unsigned char mean = sum / 2;
11 if (mean < a / 2) {
12 reach_error();
13 }
14 }

q0

q1

q2

q⊥ qE

5: a == 62

o/w

7: b == 224

o/w

11,else:
o/w

11,then:

Fig. 5: Example program and violation-witness automa-
ton (adapted from prior work [39])

2.2 Model Checking

An SV-COMP model checker (Fig. 3) [28] takes as input
a program and a specification and produces one of two
outputs: If the program fulfills the specification, a correct-
ness witness [37, 38] is generated. If the program violates
the specification, a violation witness [36, 37] is generated.

2.3 Witness Validation

Witness validation [37] aims to increase the trust
in results of model checking. The idea is the following:

A model checker (Fig. 3) analyzes a program with re-
gards to a specification. As output, it not only produces
a verification verdict “property fulfilled” or “property not
fulfilled”, but also a correctness witness or violation wit-
ness that helps to recreate the verification result. This
witness is then given to a witness validator (Fig. 4).
A witness validator takes the program-under-verification,
the original specification, and the previously produced
witness as input. It tries to reproduce the verification re-
sult with the help of the witness. If the witness validator
is successful, the result is confirmed and confidence in
the verification result increases.

In this work, we focus on bug-finding capabilities, so
we only consider violation witnesses.

We describe violation witnesses as violation-witness
automata (in version 1.0 [38], not yet version 2.0 [16]).
A violation-witness automaton is a finite-state automa-
ton. It contains at its transitions source-code guards e
and state-space guards ψ to describe a subset of the pro-
gram paths that contain the reported property violation.
A source-code guard e is a program statement identi-
fied by its source-code line number. A source-code guard
can also restrict the direction of program branchings,
for example at if statements. It only allows the tran-
sition from one witness-automaton state to another if
the currently considered program expression matches e
and the specified program branch is entered (if specified).
A state-space guard ψ is a predicate on the program
state. It restricts the possible program states to those
that fulfill ψ. Figure 5 shows an example program and
a violation-witness automaton for the violated property
unreach-call. Automaton label o/w describes a tran-
sition that is taken in all cases not covered by other
transitions. This violation-witness automaton describes
only the program state space that assigns a = 62 and
b = 224, which leads to an unsigned integer overflow and
makes the program enter the if branch: The automa-
ton stays in state q0 until the assignment in line 5 is
considered. It then transitions to q1 and restricts the con-
sidered program states to those that fulfill a == 62 (after
transitioning). When line 7 is reached, it restricts the
considered program states to those that fulfill b == 224.
When the if statement in line 11 is reached and the
if branch is entered, the violation location is reached.

SV-COMP requires participants to output violation wit-
nesses since SV-COMP 2015 [27]. It uses the XML-based
GraphML exchange format [2]. Figure 6 shows an excerpt
that represents the automaton displayed in Fig. 5.

Witness to Test. Execution-based witness validation [39]
takes a violation witness and tries to transform it into
an executable test. If it succeeds, the test is executed. If
this test execution triggers the property violation, the
verification result is confirmed.

To generate the executable test, execution-based
witness validation uses the source-code guards of the
violation-witness automaton to map the corresponding

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp23/c/properties/unreach-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses


4 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

1 <graph edgedefault="directed">
2 <node id="q0">
3 <data key="entry">true</data>
4 </node>
5 <node id="q1"/>
6 <edge source="q0" target="q1">
7 <data key="startline">5</data>
8 <data key="assumption">a == (62U);</data>
9 <data key="assumption.scope">main</data>

10 </edge>
11 <node id="q2"/>
12 <edge source="q2" target="qE">
13 <data key="startline">7</data>
14 <data key="assumption">b == (224U);</data>
15 <data key="assumption.scope">main</data>
16 </edge>
17 <node id="qE">
18 <data key="violation">true</data>
19 </node>
20 <edge source="q2" target="qE">
21 <data key="startline">11</data>
22 <data key="control">condition−true</data>
23 </edge>
24 <node id="qBot">
25 <data key="sink">true</data>
26 </node>
27 <edge source="q2" target="qBot">
28 <data key="startline">11</data>
29 <data key="control">condition−false</data>
30 </edge>
31 </graph>

Fig. 6: Excerpt of the GraphML representation of the
violation-witness automaton of Fig. 5

state-space guards to the program code. If every call to
an input function (__VERIFIER_nondet_X) is constrained
to a unique assignment through a state-space guard
(e.g., a == 62), these unique assignments represent
the test inputs—for example ⟨62, 224⟩. These inputs are
then written to a test harness that allows the execu-
tion of the test.

Because the result is confirmed by actual program
execution, execution-based witness validation provides
the same degree of confidence in the verification result
as testing.

2.4 The Benchmark Collection SV-Benchmarks

SV-Benchmarks [3] is the largest available collection of
benchmark tasks for the evaluation of automated veri-
fication techniques for the language C. SV-Benchmarks
contains verification tasks and test-generation tasks.

Verification task. A verification task of SV-Benchmarks
consists of a program (C code) to verify and a pro-
gram property to check. Program specifications are ex-
pressed in linear temporal logic and different proper-
ties exist: both safety properties (e.g., error never reach-
able) and liveness properties (e.g., program always termi-
nates). In this work, we only consider the safety property
unreach-call, which specifies that no program execu-
tion may ever call function reach_error.

Test-generation task. A test-generation task of SV-Bench-
marks consists of a program (C code) to generate a
test suite for and the coverage criterion which the test suite
should fulfill. Coverage criteria are expressed as FQL [84]
and, to date, two criteria exist: coverage-error-call
asks for a test suite that covers at least one call to func-
tion reach_error (signals a bug) and coverage-bran-
ches asks for a test suite that covers all branches of
the program.

Categories. SV-Benchmarks groups benchmark tasks into
categories. A detailed description of the categories is avail-
able online [7]. Table 1 gives an overview of the bench-
mark tasks with coverage criterion coverage-error-
call, grouped by their categories. The table shows the
category name, a description of the category, the number
of benchmark tasks in that category, and a plot that
illustrates the lines of program code per task in that
category. Each plot shows on the x-axis the number of
lines of code, and on the y-axis the number of tasks in
that category with the respective lines of code. In this
work, we only consider these benchmark tasks.

3 Evaluation

3.1 Experiment Setup

For all comparisons, we use the results obtained in SV-
COMP and Test-Comp using the following setup: Experi-
ments ran on machines with Intel Xeon E3-1230 v5 CPUs
with 3.40GHz, 8 cores, turbo boost disabled, and 33GB
of memory. For both competitions, each run of a verifica-
tion task or test-generation task was limited to 900 s of
CPU time, 15GB of memory (RAM), and 8 CPU cores.
Each violation-witness validation was limited to 90 s of
CPU time, 7GB of memory, and 2 CPU cores. Each
test-suite validation was limited to 300 s of CPU time,
7GB of memory, and 2 CPU cores. Resource limitation
and measurement was performed by benchexec [1, 47].

Note. On its web page [21], SV-COMP reports not only
the score but also the run times of its participants. We
refrain from reporting run time in this work because in
Test-Comp there is nothing wrong with fully using the
available run time; the tools may continue generating
tests until the time limit is hit—and they do.

3.2 Benchmark Tasks

We consider all benchmark tasks from the SV-Benchmarks
repository with coverage criterion coverage-error-call.

3.3 Considered Tools

We consider all 13 test generators that participated in
Test-Comp 2023 and the 31 software model checkers that

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-branches.prp
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://github.com/sosy-lab/benchexec
https://sv-comp.sosy-lab.org/2023/results/results-verified/


Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 5

Table 1: Subcategories (14) of Test-Comp with coverage criterion coverage-error-call; each plot in the column
‘Lines of Code‘ illustrates the lines of program code per task in that category; each plot shows on the x-axis the
number of lines of code, and on the y-axis the number of tasks in that category with the respective lines of code

Subcategory Description #Tasks Lines of Code

Arrays Require treatment of arrays 90

36 53 70
1

21

BitVectors Require treatment of bit-
operations

9

26 334 642
1

21

ControlFlow Program correctness depends
mostly on the control-flow struc-
ture and integer variables

5

3672 7335 10999
1

21

ECA Derived from event-condition-
action systems

18

1054 747111 1493168
1

21

Floats Require treatment of floating-point
arithmetics

32

17 525 1033
1

21

Hardware Created from word-level hardware-
model-checking benchmarks

494

60 86002 171944
1

21

Heap Require treatment of data struc-
tures on the heap, pointer aliases,
and function pointers

47

31 557 1083
1

21

Loops Require treatment of (potentially
indeterminate) loops

130

21 435 849
1

21

ProductLines Represent ‘products’ and ‘product
simulators’ that are derived using
different configurations of product
lines

169

2858 3328 3799
1

21

Recursive Require treatment of recursive
functions

20

17 60 103
1

21

Sequentialized Sequentialized concurrent pro-
grams that were derived from
SystemC programs; the programs
were transformed to pure C pro-
grams by incorporating the sched-
uler into the C code

98

286 1621 2957
1

21

XCSP Derived from constraint-
programming benchmark tasks
of combinatorial constrained
problems

54

216 1131 2047
1

21

BusyBox Tasks from the software system
BusyBox

5

3445 4486 5528
1

21

DeviceDriversLinux64 Tasks from the Linux Driver Veri-
fication project

2

16669 16722 16776
1

21

http://linuxtesting.org/project/ldv
http://linuxtesting.org/project/ldv


6 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

participated in a subcategory of SV-COMP 2023 with
checked property unreach-call (excluding category Con-
currencySafety). Table 2 gives an overview on a selection
of verification techniques used by each tool, based on
data provided by the SV-COMP [28] and Test-Comp [31]
competition reports. The reports do not list the identical
set of techniques: if a report does not provide informa-
tion on a technique, this column is marked with ⊘ for
the respective tools. The table groups the features on
the x-axis in static techniques, dynamic techniques, and
strategies in verification that can be used with both
static and dynamic techniques. The tools are grouped
on the y-axis by SV-COMP and Test-Comp participation.
Within each group, the entries are sorted by the number
of found bugs over all benchmark tasks. We omit tools
that did not find a single confirmed bug in the consid-
ered verification tasks: CPA-BAM-BnB [15, 114], CPA-
BAM-SMG, Frama-C-SV [48, 66], Goblint [109, 113],
Infer-SV [56, 90], and Mopsa [89, 102].

The table shows that most test generators that par-
ticipated in Test-Comp 2023 use hybrid approaches: they
employ both static and dynamic analysis techniques.

Table 3 shows the external data from the competitions
that we used for our study.

3.4 Expanding the Study

To add new tools to the tool comparison, developers can
submit their tool to the next iterations of SV-COMP [26]
and Test-Comp [25]. For private experiments, the bench-
marking configuration is available online and described
on the competition websites of SV-COMP [22] and Test-
Comp [24]. Competition results can be analyzed with
scripts from our reproduction artifact [46].

3.5 Experimental Results

RQ 1. Are test generators more effective in finding bugs
than software model checkers? We use the original results
data of SV-COMP 2023 [29] and Test-Comp 2023 [30]. To
make the two data sets comparable, we map all results
for test-generation tasks in the Test-Comp data to results
for a verification task with property unreach-call: Each
successful test generation for coverage criterion cover-
age-error-call also produces a valid counterexample
for unreach-call. This means, if a test generator success-
fully generates a test suite that fulfills criterion coverage-
error-call, it also shows that unreach-call is violated.
For both SV-COMP and Test-Comp data, we only consider
a bug ‘found’ if it is confirmed by the competition through
successful violation-witness validation or test execution.

We report the highest bug-finding capability each tool
exhibits in its respective competition. The tool TracerX
only produces test suites for coverage-branches, and for
Legion/SymCC, the test suites generated for coverage-
branches cover more bugs than the test suites gener-
ated for coverage-error-call (cf. RQ 3). For these

tools, we always consider the test suites they generated
for coverage-branches.

Table 2 (right column) shows the overall number of
tasks for which a bug was found by the resp. tool. In
contrast to our original study [44], the two test generators
VeriFuzz [101] (964/1 173 bugs found) and FuSeBMC [13]
(939/1 173 bugs found) perform significantly better than
the best model checker, PeSCo [106, 107] (667/1 173 bugs
found). Both VeriFuzz and FuSeBMC use a combina-
tion of bounded model checking [49] (a static technique)
and fuzzing [78] (a dynamic technique).

Two notes: (1) Some of the model checkers listed
in Table 2 are specialized tools that (a) participate only
in selected categories of SV-COMP, or (b) focus on pro-
gram proofs, not bug hunting. For these reasons, a low
number of found bugs gives no indication about the
tool’s quality. For example, GDart-LLVM has the lowest
overall number of found bugs, but it only participates
in category BitVectors. The best three model checkers,
PeSCo, CPAchecker, and Esbmc-kind, participate in
all relevant categories. (2) The reported numbers do
not match the Test-Comp overall scores reported on the
official results page [23] because Test-Comp performs nor-
malization over each category’s number of tasks. We
do not perform normalization but report the sum of all
found bugs over all categories.

The tools Esbmc-kind, Symbiotic, and VeriFuzz par-
ticipated in both SV-COMP and Test-Comp. If not clear
from the context, we superscript their names with the
competition in which the result was received (for exam-
ple VeriFuzzSV-COMP or SymbioticTest-Comp). If results are
equal for both configurations, we write VeriFuzzBoth.

Table 4 displays the results of the selected tools per
category. For each category, the table lists data for the
three best test generators and three best model checkers
that found at least one bug in that category (four tools
each for category Overall). If there is a draw, all tools
with the same number of found bugs and with the same
number of bugs confirmed through execution (cf. RQ 2)
are displayed. To ease the differentiation between the two
groups, we prefix each test generator with T and each
model checker with M. The table lists the total tasks in
the respective category, the number of confirmed bugs
that the respective tool found, as well as the number
of bugs that the respective tool found and that were
confirmed by actual program execution. We omit the cat-
egory DeviceDriversLinux64 because no tool was able
to find a bug in it.

The table shows that, for bug finding, individual
test generators perform either better or as good as individ-
ual model checkers in all categories but Heap and XCSP.
A clear divide between test generators and model checkers
exists in four categories: In Arrays, the best test genera-
tor of that category, FuSeBMC, finds a bug in 90 tasks,
while the best model checker of that category, VeriAbsL,
finds a bug in only 81 tasks. In Hardware, VeriFuzz
finds a bug in 319 tasks, while Graves-CPA finds a bug

https://sv-comp.sosy-lab.org/
https://test-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/results/results-verified/
https://test-comp.sosy-lab.org/2023/results/results-verified/


Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 7

Table 2: Features used by Test-Comp and SV-COMP participants and their overall results in bug finding; if a competition
report does not provide information on a technique, this column is marked with ⊘ for the respective tools

Static Dyn. Strategies

Participant B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

C
E
G

A
R

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

k-
In

d
u
ct

io
n

N
u
m

er
ic

In
te

rv
al

A
n
al

ys
is

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
h
ap

e
A

n
al

ys
is

S
ym

b
ol

ic
E
xe

cu
ti

on

R
an

d
om

E
xe

cu
ti

on

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

A
R

G
-B

as
ed

A
n
al

ys
is

B
it

-P
re

ci
se

A
n
al

ys
is

F
lo

at
in

g-
P
oi

nt
A

ri
th

m
et

ic
s

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

A
u
to

m
at

a-
B

as
ed

A
n
al

ys
is

G
u
id

an
ce

by
P

ro
p
er

ty

T
ar

ge
te

d
In

p
u
t

G
en

er
at

io
n

A
lg

or
it

h
m

S
el

ec
ti

on

P
or

tf
ol

io

#Bugs
Found

VeriFuzz [100, 101] ✓ ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 964
FuSeBMC [12, 13] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ ✓ 939
FuSeBMC_IA [11] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ ✓ 931
CoVeriTest [40, 87] ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 564
Klee [53, 54] ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 541
Symbiotic [58, 59] ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ ✓ 510
TracerX [85, 86] ✓ ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 420
HybridTiger [52, 108] ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ 397
WASP-C [8] ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ 393
Esbmc-kind [75, 76] ✓ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ✓ 352
PRTest [44, 94] ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ 293
Legion/SymCC [6] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ 281

T
es

t-
C

om
p

Legion [95, 96] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ 108

PeSCo [106, 107] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ ✓ 667
CPAchecker [43, 67] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ ✓ 665
Esbmc-kind [75, 76] ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 660
VeriAbsL [69] ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ ✓ 645
Graves-CPA [93] ⊘ ⊘ ⊘ 643
VeriAbs [10, 68] ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ ✓ 639
Bubaak [57] ✓ ⊘ ✓ ⊘ ✓ ⊘ 635
Cbmc [64, 91] ✓ ⊘ ✓ ⊘ ✓ ⊘ 626
VeriFuzz [62, 100] ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 615
CVT-ParPort [41, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ ✓ 591
Symbiotic [59, 60] ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ 559
CVT-AlgoSel [41, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ 468
UAutomizer [82, 83] ✓ ✓ ⊘ ✓ ⊘ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ 311
Divine [18, 92] ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ ✓ 299
UTaipan [70, 79] ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ 294
Pinaka [61] ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 272
gazer-theta [9, 81] ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ 255
2ls [50, 97] ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 213
UKojak [73, 103] ✓ ✓ ⊘ ✓ ⊘ ✓ ✓ ✓ ⊘ 189
Crux [71, 110] ✓ ⊘ ⊘ ✓ ⊘ 176
Korn [74] ✓ ✓ ✓ ⊘ ⊘ ✓ ⊘ ✓ 121
Theta [111, 115] ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ 116
Brick [51] ✓ ✓ ✓ ✓ ⊘ ⊘ ✓ ⊘ 99
Graves-Par [5] ⊘ ⊘ ⊘ 93

SV
-C

O
M

P

GDart-LLVM [4] ✓ ⊘ ✓ ⊘ ⊘ 1



8 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

Table 3: Data that we use from the competitions

Artifact DOI

Benchmark collection 10.5281/zenodo.7627783
SV-COMP results 10.5281/zenodo.7627787
Test-Comp results 10.5281/zenodo.7701122
Test-Comp test suites 10.5281/zenodo.7701126
Test-suite validator 10.5281/zenodo.7701118

in only 147 tasks. In Loops, FuSeBMC finds a bug in
128 tasks while VeriAbs finds a bug in only 112 tasks. In
Sequentialized, VeriFuzz finds a bug in 95 tasks while
PeSCo finds a bugs in only 86 tasks.

The presented data answers our first research ques-
tion with ‘yes’: At the current state-of-the-art for C,
test generators perform significantly better in bug hunt-
ing than model checkers.

In our previous research study [44], the different tools
complemented each other well, so that the combination
of multiple tools yielded significant improvements in the
number of bugs found. This is not true for the current
results: Table 5 shows for each benchmark category the
number of bugs found by the best tool in that category,
the union of distinct bugs found by all test generators
together (All T), the union of distinct bugs found by all
model checkers together (All M), and the union of all
considered tools (All Tools). The table shows that the
unions only yield an improvement in 5 of the 13 categories,
and that these improvements are also small. We explain
this with the fact that, in contrast to the previous study,
almost all currently considered tools already combine
multiple approaches internally (cf. Table 2), rendering
further external combinations effectless.

RQ 2. Can the bug reports of software model checkers be
validated through execution? Since a failing program ex-
ecution provides the highest level of confidence in a ver-
ification result, we separately check how many of the
confirmed verification results were confirmed not only by
a third-party tool, but by actual program execution.

For this, we use the SV-COMP validation results of the
two execution-based witness validators CPA-witness2test
and FShell-witness2test. Table 4 shows in its last columns
the number of found bugs that are confirmed through
program execution. It is visible that the confirmation rate
can be very high, for example for Brick in category
Floats (29 of 30), for Cbmc in categories Heap (43 of 47),
Recursive (19 of 19) and XCSP (50 of 50), or for PeSCo
in category Sequentialized (86 of 86). On the other hand,
the confirmation rate can also be very low, even for model
checkers that perform well otherwise and in categories
that other model checkers perform well in: Cbmc gets only
29 of 85 results confirmed through execution in category
Sequentialized, and PeSCo gets only 61 of 109 results

confirmed in category Hardware. This hints to bug reports
(in the form of violation witnesses) that miss input values.

Thus, our answer to the second research question: The
data shows that the execution-based validation of verifica-
tion results is feasible and works well to provide a similar
level of confidence in the result of model checkers as in
test generators. But at the current state-of-the-art, model
checkers have to produce more precise violation witnesses
to offer the same level of confidence as test generators.

RQ 3. Are test generators that target errors more ef-
fective in finding bugs than test generators that target
branch coverage? To answer our last research question,
we consider the test suites [34] that each test generator
generated for coverage criterion coverage-branches in
Test-Comp 2023. We check how well these test suites per-
form for finding bugs, compared to the test suites that
testers specifically generated for bug-finding: We give
each test suite generated for coverage-branches to the
test executor of Test-Comp 2023, TestCov [45], but with
target measure coverage-error-call. The results over
all common categories are presented in Table 6.1

It is visible that 6 testers produce significantly better
test-suites for criterion coverage-error-call when told
to do so: FuSeBMC, VeriFuzz, FuSeBMC_IA, Symbi-
otic, and, with the most notable difference, Klee. This
shows that they adjust their behavior based on the cover-
age criterion provided to them. The other tools only show
very little difference between the two generated test suites
or did not provide test suites for both coverage criteria. It
is notable that the five best-performing testers all adjust
their behavior based on the coverage criterion.

This answers our third research question with ‘yes’:
Testers that actively target errors are more effective in
creating test suites for error coverage.

3.6 Threats to Validity

Internal Validity. We are confident in our analysis’s in-
ternal validity. We use the official SV-COMP 2023 and
Test-Comp 2023 data. Both competitions pay highest pri-
ority to precise measurements and reproducibility. For
validating test suites with coverage-error-call which
were generated for coverage-branches, we had to per-
form own experiments. For these, we used the official
competitions’ infrastructure to ensure correctness of re-
sults. Both our setup and the produced data are publicly
available [46] for inspection.

External Validity. We use the largest available bench-
mark set with well-defined C programs for testing. Still,
this benchmark set may not represent the full diversity of
real-world C programs. Similarly, because tools know the
SV-COMP and Test-Comp benchmark tasks before the

1 This excludes category Hardware, which only exists in the track
for coverage-error-call.

https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.5281/zenodo.7701126
https://doi.org/10.5281/zenodo.7701118


Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 9

Table 4: Results of the tools listed in Table 2 for each category; only the best test generators (T) and model
checkers (M) of each category are listed

Total #Bugs #Bugs
Tasks Found Confirmed

by Execution

Arrays
T FuSeBMC 90 90 90
T FuSeBMC_IA 90 88 88
T VeriFuzzTest-Comp 90 88 88
M VeriAbsL 90 81 76
M VeriAbs 90 80 66
M Bubaak 90 74 74
BitVectors
T FuSeBMC 9 9 9
T FuSeBMC_IA 9 9 9

T|MVeriFuzzBoth 9 9 9
M SymbioticSV-COMP 9 8 8
M Esbmc-kindSV-COMP 9 8 6
M Graves-CPA 9 8 6
ControlFlow
T FuSeBMC 5 5 5
T FuSeBMC_IA 5 5 5

T|MSymbioticBoth 5 5 5
M Bubaak 5 4 4
T|MVeriFuzzBoth 5 4 4
T Klee 5 4 4

ECA
T VeriFuzzSV-COMP 18 15 13
T Klee 18 14 14
M Bubaak 18 14 12
M SymbioticTest-Comp 18 13 13
M PeSCo 18 13 12
T FuSeBMC 18 12 12

Floats
T FuSeBMC 32 32 32
T FuSeBMC_IA 32 31 31
T VeriFuzzTest-Comp 32 31 31
M Brick 32 30 29
M CVT-ParPort 32 30 24
M CPAchecker 32 30 21
Hardware
T VeriFuzzTest-Comp 494 319 319
T FuSeBMC 494 288 288
T FuSeBMC_IA 494 288 288
M Graves-CPA 494 147 102
M CPAchecker 494 127 70
M PeSCo 494 109 61
Heap
M Cbmc 47 47 43
M VeriAbs 47 47 33
M Bubaak 47 46 44
T FuSeBMC 47 45 45
T FuSeBMC_IA 47 45 45
T Klee 47 45 45

T|MVeriFuzzBoth 47 45 45

Total #Bugs #Bugs
Tasks Found Confirmed

by Execution

Loops
T FuSeBMC 130 128 128
T FuSeBMC_IA 130 127 127
T VeriFuzzTest-Comp 130 123 123
M VeriAbs 130 112 103
M VeriAbsL 130 100 86
M Korn 130 98 97
ProductLines
T FuSeBMC 169 169 169
T FuSeBMC_IA 169 169 169
T Klee 169 169 169

T|MVeriFuzzBoth 169 169 169
M Bubaak 169 169 169
M VeriAbsL 169 169 169
Recursive
T FuSeBMC 20 19 19
T FuSeBMC_IA 20 19 19
M Cbmc 20 19 19
M CVT-ParPort 20 19 19
M Graves-CPA 20 19 17
T VeriFuzzTest-Comp 20 18 18

Sequentialized
T VeriFuzzTest-Comp 98 95 95
T FuSeBMC 98 94 94
T FuSeBMC_IA 98 92 92
M PeSCo 98 86 86
M CVT-ParPort 98 86 32
M Cbmc 98 85 29
XCSP
M Cbmc 54 50 50
M CVT-AlgoSel 54 49 49
T|MVeriFuzzBoth 54 49 49
T WASP-C 54 49 49

T|MEsbmc-kindBoth 54 48 48
T FuSeBMC 54 47 47

BusyBox
T FuSeBMC 5 1 1
T Klee 5 1 1
M PeSCo 5 1 0

Overall
T VeriFuzzTest-Comp 1 173 964 964
T FuSeBMC 1 173 939 939
T FuSeBMC_IA 1 173 931 931
M PeSCo 1 173 667 475
M CPAchecker 1 173 665 458
M Esbmc-kindSV-COMP 1 173 660 529
M VeriAbsL 1 173 645 543
T CoVeriTest 1 173 564 564



10 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

Table 5: Number of bugs found by the best tool of each
category, the union of all test generators (T), the union
of all model checkers (M), and all tools

Category Best Tool All T All M All Tools

Arrays 90 87 90 90
BitVectors 9 9 9 9
ControlFlow 5 5 5 5
ECA 15 15 14 17
Floats 32 32 32 32
Hardware 319 340 175 342
Heap 47 45 47 47
Loops 128 128 127 128
ProductLines 169 169 169 169
Recursive 19 19 20 20
Sequentialized 95 95 90 95
XCSP 50 51 50 51
BusyBox 1 1 1 2

Table 6: Bug-finding capabilities of generated test suites
that are targeted at either coverage-error-call or co-
verage-branches; the results exclude category Hardware
because it is not part of the Test-Comp 2023 track on
branch coverage

Total #Bugs Found #Bugs Found
Tools Tasks error-call branches

FuSeBMC 679 651 594
VeriFuzz 679 645 611
FuSeBMC_IA 679 643 594
Klee 679 541 285
CoVeriTest 679 479 476
Symbiotic 679 476 456
TracerX 679 - 420
HybridTiger 679 362 281
WASP-C 679 354 355
Legion/SymCC 679 279 281
Esbmc-kind 679 352 -
PRTest 679 236 236
Legion 679 108 107

competition runs, tools that participate in SV-COMP and
Test-Comp may be tuned to the competitions’ benchmark
set, and perform worse on real-world projects.

The application domain that we can consider is lim-
ited: We consider testing of sequential, self-sufficient
C programs with a simple reachability specification, sim-
ilar to assert statements (cf. Table 1). This means that
the presented results may ignore program features and
some applications of testing, like string handling, object-
oriented programming, concurrency, or database queries.

Similarly, specific applications of verification, for ex-
ample the verification of network protocols or static
application-security testing, are not considered.

We only consider programs with at least one exist-
ing bug. We do not measure how good the generated

test suites are for detecting bugs that are newly intro-
duced in the future.

We also do not differentiate between a single found
bug and multiple found bugs. But a test suite that detects
multiple bugs in a program may be considered better than
a test suite that only detects a single bug. We consider
both options orthogonal research questions.

We only consider tools that participate in either SV-
COMP 2023 or Test-Comp 2023. This covers the latest
state-of-the-art for verification of C programs. There
may still be model checkers or test generators that did
not participate in the last iterations of SV-COMP or Test-
Comp, and which perform significantly better. In addition,
the comparison of test generators and model checkers may
differ in areas of application other than the considered.

Construct Validity. We designed our experiments to as-
sess whether test generators or model checkers find more
bugs in given programs. To quantify the quality of the
tools, we use the number of bugs found, which is the main
ingredient of the community-agreed scoring schemas that
the competitions use (considering the category Falsifi-
cationOverall in SV-COMP and category Cover-Error
in Test-Comp). Instead of normalization as used in the
competitions, we explicitly report the results per cat-
egory in Table 4.

4 Conclusion

We performed a thorough comparison of the bug-finding
capabilities for C programs of all SV-COMP 2023 and Test-
Comp 2023 participants. This comparison shows that—
while state-of-the-art test generators and model checkers
are highly competitive—the best considered test gener-
ators outperform the best considered model checkers in
bug finding. Notably, the best test generators do not limit
themselves to dynamic techniques, but also use static-
analysis techniques and formal methods. FuSeBMC [13]
and VeriFuzz [101] use a combination of bounded model
checking [49] and fuzzing [78].

Data-Availability Statement. The analysis and all
experimental data are archived and available at Zen-
odo [46]. We used the following existing data for our
study: the benchmark collection that was used by both
competitions [32], the SV-COMP results [29], the Test-
Comp results [30] and test suites [34], and the test-suite
validator TestCov [33] from Test-Comp. See Table 3
for a table view.

Funding Statement. This work was funded by the
Deutsche Forschungsgesellschaft (DFG) — 418257054
(Coop), the LMU PostDoc support fund, and the Free
State of Bavaria.

http://gepris.dfg.de/gepris/projekt/418257054


Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 11

References

1. BenchExec: A framework for reliable benchmark-
ing and resource measurement. https://github.com/
sosy-lab/benchexec, accessed: 2024-10-31

2. Collection of verification tasks. https://gitlab.
com/sosy-lab/benchmarking/sv-witnesses, accessed:
2024-10-31

3. Collection of verification tasks. https://gitlab.com/
sosy-lab/benchmarking/sv-benchmarks, accessed:
2024-10-31

4. GDart-LLVM. https://github.com/tudo-aqua/
gdart-llvm, accessed: 2024-10-31

5. Graves-Parallel. https://github.com/mgerrard/
graves-par, accessed: 2024-10-31

6. Legion/SymCC. https://github.com/gernst/
legion-symcc, accessed: 2024-10-31

7. Test-comp 2023 benchmarks test tasks. https://
test-comp.sosy-lab.org/2023/benchmarks.php, ac-
cessed: 2024-10-31

8. wasp. https://github.com/wasp-platform/wasp, ac-
cessed: 2024-10-31

9. Ádám, Zs., Sallai, Gy., Hajdu, Á.: Gazer-Theta:
LLVM-based verifier portfolio with BMC/CEGAR (com-
petition contribution). In: Proc. TACAS (2). pp. 433–
437. LNCS 12652, Springer (2021). https://doi.org/
10.1007/978-3-030-72013-1_27

10. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B.,
Darke, P., Datar, A., Kumar, S., Venkatesh, R.: Ve-
riAbs: Verification by abstraction and test generation.
In: Proc. ASE. pp. 1138–1141. IEEE (2019). https:
//doi.org/10.1109/ASE.2019.00121

11. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R.,
de Freitas, R., Cordeiro, L.C.: FuSeBMC_IA: In-
terval analysis and methods for test-case generation
(competition contribution). In: Proc. FASE. pp. 324–
329. LNCS 13991, Springer (2023). https://doi.org/
10.1007/978-3-031-30826-0_18

12. Alshmrany, K., Aldughaim, M., Cordeiro, L., Bhayat,
A.: FuSeBMC v.4: Smart seed generation for hybrid
fuzzing (competition contribution). In: Proc. FASE. pp.
336–340. LNCS 13241, Springer (2022). https://doi.
org/10.1007/978-3-030-99429-7_19

13. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro,
L.C.: FuSeBMC: An energy-efficient test generator for
finding security vulnerabilities in C programs. In: Proc.
TAP. pp. 85–105. Springer (2021). https://doi.org/
10.1007/978-3-030-79379-1_6

14. Andreasen, E., Gong, L., Møller, A., Pradel, M., Se-
lakovic, M., Sen, K., Staicu, C.: A survey of dynamic
analysis and test generation for JavaScript. ACM Com-
put. Surv. 50(5), 66:1–66:36 (2017). https://doi.org/
10.1145/3106739

15. Andrianov, P., Friedberger, K., Mandrykin, M.U.,
Mutilin, V.S., Volkov, A.: CPA-BAM-BnB: Block-
abstraction memoization and region-based mem-
ory models for predicate abstractions (competi-
tion contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.
1007/978-3-662-54580-5_22

16. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl,
M., Strejček, J.: Software verification witnesses 2.0. In:

Proc. SPIN. LNCS 14624, Springer (2024). https://
doi.org/10.1007/978-3-031-66149-5_11

17. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C.,
Finocchi, I.: A survey of symbolic-execution techniques.
ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https:
//doi.org/10.1145/3182657

18. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T.,
Lauko, H., Mrázek, J., Ročkai, P., Štill, V.: Model
checking of C and C++ with Divine 4. In: Proc.
ATVA. pp. 201–207. LNCS 10482, Springer (2017).
https://doi.org/10.1007/978-3-319-68167-2_14

19. Basin, D.A., Cremers, C., Meadows, C.A.: Model check-
ing security protocols. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Check-
ing, pp. 727–762. Springer (2018). https://doi.org/10.
1007/978-3-319-10575-8_22

20. Beckert, B., Hähnle, R.: Reasoning and verification:
State of the art and current trends. IEEE Intelligent Sys-
tems 29(1), 20–29 (2014). https://doi.org/10.1109/
MIS.2014.3

21. Beyer, D.: 12th Intl. Competition on Software Ver-
ification (SV-COMP 2023): Results of the Competi-
tion. https://sv-comp.sosy-lab.org/2023/results/
results-verified/, accessed: 2024-10-31

22. Beyer, D.: 12th Intl. Competition on Software Verifica-
tion (SV-COMP 2023): Submission. https://sv-comp.
sosy-lab.org/2023/submission.php, accessed: 2024-
10-31

23. Beyer, D.: 5th Intl. Competition on Software Test-
ing (Test-Comp 2023): Results of the Competition.
https://test-comp.sosy-lab.org/2023/results/
results-verified/, accessed: 2024-10-31

24. Beyer, D.: 5th Intl. Competition on Software Test-
ing (Test-Comp 2023): Submission. https://test-comp.
sosy-lab.org/2023/submission.php, accessed: 2024-
10-31

25. Beyer, D.: Intl. Competition on Software Testing (Test-
Comp). https://test-comp.sosy-lab.org/, accessed:
2024-10-31

26. Beyer, D.: Intl. Competition on Software Verifica-
tion (SV-COMP). https://sv-comp.sosy-lab.org/,
accessed: 2024-10-31

27. Beyer, D.: Software verification and verifiable witnesses
(Report on SV-COMP 2015). In: Proc. TACAS. pp. 401–
416. LNCS 9035, Springer (2015). https://doi.org/10.
1007/978-3-662-46681-0_31

28. Beyer, D.: Competition on software verification and wit-
ness validation: SV-COMP 2023. In: Proc. TACAS (2).
pp. 495–522. LNCS 13994, Springer (2023). https:
//doi.org/10.1007/978-3-031-30820-8_29

29. Beyer, D.: Results of the 12th Intl. Competition on
Software Verification (SV-COMP 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7627787

30. Beyer, D.: Results of the 5th Intl. Competition on
Software Testing (Test-Comp 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7701122

31. Beyer, D.: Software testing: 5th comparative evalua-
tion: Test-Comp 2023. In: Proc. FASE. pp. 309–323.
LNCS 13991, Springer (2023). https://doi.org/10.
1007/978-3-031-30826-0_17

32. Beyer, D.: SV-Benchmarks: Benchmark set for soft-
ware verification and testing (SV-COMP 2023 and

https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/tudo-aqua/gdart-llvm
https://github.com/tudo-aqua/gdart-llvm
https://github.com/mgerrard/graves-par
https://github.com/mgerrard/graves-par
https://github.com/gernst/legion-symcc
https://github.com/gernst/legion-symcc
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://github.com/wasp-platform/wasp
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1145/3106739
https://doi.org/10.1145/3106739
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1109/MIS.2014.3
https://sv-comp.sosy-lab.org/2023/results/results-verified/
https://sv-comp.sosy-lab.org/2023/results/results-verified/
https://sv-comp.sosy-lab.org/2023/submission.php
https://sv-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/results/results-verified/
https://test-comp.sosy-lab.org/2023/results/results-verified/
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17


12 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

Test-Comp 2023). Zenodo (2023). https://doi.org/
10.5281/zenodo.7627783

33. Beyer, D.: Test-suite generators and validator of the
5th Intl. Competition on Software Testing (Test-
Comp 2023). Zenodo (2023). https://doi.org/10.
5281/zenodo.7701118

34. Beyer, D.: Test suites from test-generation tools (Test-
Comp 2023). Zenodo (2023). https://doi.org/10.
5281/zenodo.7701126

35. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R.,
Majumdar, R.: Generating tests from counterexamples.
In: Proc. ICSE. pp. 326–335. IEEE (2004). https://
doi.org/10.1109/ICSE.2004.1317455

36. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Cor-
rectness witnesses: Exchanging verification results be-
tween verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

37. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lem-
berger, T., Tautschnig, M.: Verification witnesses. ACM
Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

38. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.,
Stahlbauer, A.: Witness validation and stepwise testifi-
cation across software verifiers. In: Proc. FSE. pp. 721–
733. ACM (2015). https://doi.org/10.1145/2786805.
2786867

39. Beyer, D., Dangl, M., Lemberger, T., Tautschnig,
M.: Tests from witnesses: Execution-based valida-
tion of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.
1007/978-3-319-92994-1_1

40. Beyer, D., Jakobs, M.C.: Cooperative verifier-based test-
ing with CoVeriTest. Int. J. Softw. Tools Technol.
Transfer 23(3), 313–333 (2021). https://doi.org/10.
1007/s10009-020-00587-8

41. Beyer, D., Kanav, S.: CoVeriTeam: On-demand com-
position of cooperative verification systems. In: Proc.
TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

42. Beyer, D., Kanav, S., Richter, C.: Construction of verifier
combinations based on off-the-shelf verifiers. In: Proc.
FASE. pp. 49–70. Springer (2022). https://doi.org/
10.1007/978-3-030-99429-7_3

43. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool
for configurable software verification. In: Proc. CAV.
pp. 184–190. LNCS 6806, Springer (2011). https://doi.
org/10.1007/978-3-642-22110-1_16

44. Beyer, D., Lemberger, T.: Software verification: Test-
ing vs. model checking. In: Proc. HVC. pp. 99–114.
LNCS 10629, Springer (2017). https://doi.org/10.
1007/978-3-319-70389-3_7

45. Beyer, D., Lemberger, T.: TestCov: Robust test-suite
execution and coverage measurement. In: Proc. ASE. pp.
1074–1077. IEEE (2019). https://doi.org/10.1109/
ASE.2019.00105

46. Beyer, D., Lemberger, T.: Reproduction Package for
STTT Article ‘Six Years Later: Testing vs. Model
Checking’. Zenodo (2023). https://doi.org/10.5281/
zenodo.10232648

47. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking:
Requirements and solutions. Int. J. Softw. Tools Tech-
nol. Transfer 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

48. Beyer, D., Spiessl, M.: The static analyzer Frama-
C in SV-COMP (competition contribution). In: Proc.
TACAS (2). pp. 429–434. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_26

49. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Sym-
bolic model checking without BDDs. In: Proc. TACAS.
pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

50. Brain, M., Joshi, S., Kröning, D., Schrammel, P.:
Safety verification and refutation by k-invariants
and k-induction. In: Proc. SAS. pp. 145–161.
LNCS 9291, Springer (2015). https://doi.org/10.
1007/978-3-662-48288-9_9

51. Bu, L., Xie, Z., Lyu, L., Li, Y., Guo, X., Zhao,
J., Li, X.: Brick: Path enumeration-based bounded
reachability checking of C programs (competition
contribution). In: Proc. TACAS (2). pp. 408–412.
LNCS 13244, Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_22

52. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von
Rhein, A., Apel, S., Beyer, D.: Facilitating reuse in multi-
goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015).
https://doi.org/10.1007/978-3-662-46675-9_6

53. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

54. Cadar, C., Nowack, M.: Klee symbolic execution en-
gine in 2019 (competition contribution). Int. J. Softw.
Tools Technol. Transf. 23(6), 867 – 870 (December 2021).
https://doi.org/10.1007/s10009-020-00570-3

55. Cadar, C., Sen, K.: Symbolic execution for software
testing: Three decades later. CACM 56(2), 82–90 (2013).
https://doi.org/10.1145/2408776.2408795

56. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D.,
Hooimeijer, P., Luca, M., O’Hearn, P.W., Papakon-
stantinou, I., Purbrick, J., Rodriguez, D.: Moving
fast with software verification. In: Proc. NFM. pp. 3–
11. LNCS 9058, Springer (2015). https://doi.org/10.
1007/978-3-319-17524-9_1

57. Chalupa, M., Henzinger, T.: Bubaak: Runtime
monitoring of program verifiers (competition con-
tribution). In: Proc. TACAS (2). pp. 535–540.
LNCS 13994, Springer (2023). https://doi.org/10.
1007/978-3-031-30820-8_32

58. Chalupa, M., Novák, J., Strejček, J.: Symbiotic
8: Parallel and targeted test generation (competi-
tion contribution). In: Proc. FASE. pp. 368–372.
LNCS 12649, Springer (2021). https://doi.org/10.
1007/978-3-030-71500-7_20

59. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces
for memory safety checking. In: Proc. SPIN. pp.
115–132. Springer (2018). https://doi.org/10.1007/
978-3-319-94111-0_7

60. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zao-
ral, L., Strejček, J.: Symbiotic 9: String analysis and
backward symbolic execution with loop folding (com-
petition contribution). In: Proc. TACAS (2). pp. 462–
467. LNCS 13244, Springer (2022). https://doi.org/
10.1007/978-3-030-99527-0_32

61. Chaudhary, E., Joshi, S.: Pinaka: Symbolic exe-
cution meets incremental solving (competition con-

https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7701118
https://doi.org/10.5281/zenodo.7701118
https://doi.org/10.5281/zenodo.7701126
https://doi.org/10.5281/zenodo.7701126
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.5281/zenodo.10232648
https://doi.org/10.5281/zenodo.10232648
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32


Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 13

tribution). In: Proc. TACAS (3). pp. 234–238.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_20

62. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.:
VeriFuzz: Program-aware fuzzing (competition con-
tribution). In: Proc. TACAS (3). pp. 244–249.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_22

63. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.:
Handbook of Model Checking. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8

64. Clarke, E.M., Kröning, D., Lerda, F.: A tool for check-
ing ANSI-C programs. In: Proc. TACAS. pp. 168–
176. LNCS 2988, Springer (2004). https://doi.org/
10.1007/978-3-540-24730-2_15

65. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J.
Comput. Secur. 18(6), 1157–1210 (2010). https://doi.
org/10.3233/JCS-2009-0393

66. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Sig-
noles, J., Yakobowski, B.: Frama-C. In: Proc. SEFM. pp.
233–247. Springer (2012). https://doi.org/10.1007/
978-3-642-33826-7_16

67. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with
support for recursive programs and floating-point arith-
metic (competition contribution). In: Proc. TACAS. pp.
423–425. LNCS 9035, Springer (2015). https://doi.
org/10.1007/978-3-662-46681-0_34

68. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A
tool for scalable verification by abstraction (compe-
tition contribution). In: Proc. TACAS (2). pp. 458–
462. LNCS 12652, Springer (2021). https://doi.org/
10.1007/978-3-030-72013-1_32

69. Darke, P., Chimdyalwar, B., Agrawal, S., Venkatesh,
R., Chakraborty, S., Kumar, S.: VeriAbsL: Scalable
verification by abstraction and strategy prediction (com-
petition contribution). In: Proc. TACAS (2). pp. 588–
593. LNCS 13994, Springer (2023). https://doi.org/
10.1007/978-3-031-30820-8_41

70. Dietsch, D., Heizmann, M., Nutz, A., Schätzle,
C., Schüssele, F.: Ultimate Taipan with symbolic
interpretation and fluid abstractions (competition
contribution). In: Proc. TACAS (2). pp. 418–422.
LNCS 12079, Springer (2020). https://doi.org/10.
1007/978-3-030-45237-7_32

71. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., Mc-
Namee, D., Tomb, A.: Constructing semantic models
of programs with the software analysis workbench. In:
Proc. VSTTE. pp. 56–72. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_5

72. D’Silva, V., Kröning, D., Weissenbacher, G.: A survey
of automated techniques for formal software verification.
IEEE Trans. on CAD of Integrated Circuits and Systems
27(7), 1165–1178 (2008). https://doi.org/10.1109/
TCAD.2008.923410

73. Ermis, E., Hoenicke, J., Podelski, A.: Splitting
via interpolants. In: Proc. VMCAI. pp. 186–201.
LNCS 7148, Springer (2012). https://doi.org/10.
1007/978-3-642-27940-9_13

74. Ernst, G.: A complete approach to loop verifica-
tion with invariants and summaries. Tech. Rep.
arXiv:2010.05812v2, arXiv (January 2020). https://
doi.org/10.48550/arXiv.2010.05812

75. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C.,
Nicole, D.A.: Esbmc v6.0: Verifying C programs us-
ing k -induction and invariant inference (competition
contribution). In: Proc. TACAS (3). pp. 209–213.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_15

76. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling
loops in bounded model checking of C programs via
k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (February 2017). https://doi.org/10.1007/
s10009-015-0407-9

77. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020
expert survey on formal methods. In: Proc. FMICS. pp.
3–69. LNCS 12327, Springer (2020). https://doi.org/
10.1007/978-3-030-58298-2_1

78. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated
whitebox fuzz testing. In: Proc. NDSS. The Internet Soci-
ety (2008), http://www.isoc.org/isoc/conferences/
ndss/08/papers/10_automated_whitebox_fuzz.pdf

79. Greitschus, M., Dietsch, D., Podelski, A.: Loop invari-
ants from counterexamples. In: Proc. SAS. pp. 128–
147. LNCS 10422, Springer (2017). https://doi.org/
10.1007/978-3-319-66706-5_7

80. Gupta, A., Kahlon, V., Qadeer, S., Touili, T.: Model
checking concurrent programs. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 573–611. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8_18

81. Hajdu, Á., Micskei, Z.: Efficient strategies for
CEGAR-based model checking. J. Autom. Reasoning
64(6), 1051–1091 (2020). https://doi.org/10.1007/
s10817-019-09535-x

82. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus,
M., Hoenicke, J., Li, Y., Nutz, A., Musa, B., Schilling,
C., Schindler, T., Podelski, A.: Ultimate Automizer
and the search for perfect interpolants (competition
contribution). In: Proc. TACAS (2). pp. 447–451.
LNCS 10806, Springer (2018). https://doi.org/10.
1007/978-3-319-89963-3_30

83. Heizmann, M., Hoenicke, J., Podelski, A.: Software
model checking for people who love automata. In:
Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

84. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.:
Query-driven program testing. In: Proc. VMCAI. pp.
151–166. LNCS 5403, Springer (2009). https://doi.
org/10.1007/978-3-540-93900-9_15

85. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: Trac-
erX: Dynamic symbolic execution with interpolation
(competition contribution). In: Proc. FASE. pp. 530–
534. LNCS 12076, Springer (2020). https://doi.org/
10.1007/978-3-030-45234-6_28

86. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.:
TRACER: a symbolic execution tool for verification. In:
Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

87. Jakobs, M.C., Richter, C.: CoVeriTest with adap-
tive time scheduling (competition contribution). In:
Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_18

88. Jhala, R., Majumdar, R.: Software model checking. ACM
Computing Surveys 41(4) (2009). https://doi.org/10.
1145/1592434.1592438

https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-031-30820-8_41
https://doi.org/10.1007/978-3-031-30820-8_41
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.48550/arXiv.2010.05812
https://doi.org/10.48550/arXiv.2010.05812
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438


14 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

89. Journault, M., Miné, A., Monat, R., Ouadjaout, A.:
Combinations of reusable abstract domains for a mul-
tilingual static analyzer. In: Proc. VSTTE. pp. 1–18.
LNCS 12031, Springer (2019)

90. Kettl, M., Lemberger, T.: The static analyzer Infer
in SV-COMP (competition contribution). In: Proc.
TACAS (2). pp. 451–456. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_30

91. Kröning, D., Tautschnig, M.: Cbmc: C bounded model
checker (competition contribution). In: Proc. TACAS.
pp. 389–391. LNCS 8413, Springer (2014). https://doi.
org/10.1007/978-3-642-54862-8_26

92. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation
via program transformation. In: Proc. ICTAC. pp. 313–
332. LNCS 11187, Springer (2018). https://doi.org/
10.1007/978-3-030-02508-3_17

93. Leeson, W., Dwyer, M.: Graves-CPA: A
graph-attention verifier selector (competi-
tion contribution). In: Proc. TACAS (2).
pp. 440–445. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_28

94. Lemberger, T.: Plain random test generation with
PRTest (competition contribution). Int. J. Softw.
Tools Technol. Transf. 23(6), 871–873 (December 2021).
https://doi.org/10.1007/s10009-020-00568-x

95. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion:
Best-first concolic testing (competition contribution). In:
Proc. FASE. pp. 545–549. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_31

96. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Le-
gion: Best-first concolic testing. In: Proc. ASE. pp. 54–
65. IEEE (2020). https://doi.org/10.1145/3324884.
3416629

97. Malík, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis
and memory safety (competition contribution). In: Proc.
TACAS (2). pp. 368–372. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_22

98. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M.,
Schwartz, E.J., Woo, M.: The art, science, and engi-
neering of fuzzing: A survey. IEEE Trans. Software Eng.
47(11), 2312–2331 (2021). https://doi.org/10.1109/
TSE.2019.2946563

99. McMinn, P.: Search-based software test-data generation:
A survey. STVR 14(2), 105–156 (2004). https://doi.
org/10.1002/stvr.294

100. Metta, R., Medicherla, R.K., Chakraborty, S.:
BMC+Fuzz: Efficient and effective test generation.
In: Proc. DATE. pp. 1419–1424. IEEE (2022). https:
//doi.org/10.23919/DATE54114.2022.9774672

101. Metta, R., Medicherla, R.K., Karmarkar, H.: Ver-
iFuzz: Fuzz centric test generation tool (compe-
tition contribution). In: Proc. FASE. pp. 341–346.
LNCS 13241, Springer (2022). https://doi.org/10.
1007/978-3-030-99429-7_20

102. Monat, R., Ouadjaout, A., Miné, A.: Mopsa-C: Mod-
ular domains and relational abstract interpretation
for C programs (competition contribution). In: Proc.
TACAS (2). pp. 565–570. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_37

103. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.:
Ultimate Kojak with memory safety checks (com-
petition contribution). In: Proc. TACAS. pp. 458–

460. LNCS 9035, Springer (2015). https://doi.org/
10.1007/978-3-662-46681-0_44

104. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon,
Y.L., Harman, M.: Chapter six - mutation testing ad-
vances: An analysis and survey. Adv. Comput. 112,
275–378 (2019). https://doi.org/10.1016/bs.adcom.
2018.03.015

105. Pasareanu, C.S., Visser, W.: A survey of new trends
in symbolic execution for software testing and analy-
sis. STTT 11(4), 339–353 (2009). https://doi.org/10.
1007/s10009-009-0118-1

106. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim,
H.: Algorithm selection for software validation based on
graph kernels. Autom. Softw. Eng. 27(1), 153–186 (2020).
https://doi.org/10.1007/s10515-020-00270-x

107. Richter, C., Wehrheim, H.: PeSCo: Predicting se-
quential combinations of verifiers (competition con-
tribution). In: Proc. TACAS (3). pp. 229–233.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_19

108. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger:
Hybrid model checking and domination-based partition-
ing for efficient multi-goal test-suite generation (com-
petition contribution). In: Proc. FASE. pp. 520–524.
LNCS 12076, Springer (2020). https://doi.org/10.
1007/978-3-030-45234-6_26

109. Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl,
H., Vogler, R., Vojdani, V.: Goblint: Thread-modular
abstract interpretation using side-effecting constraints
(competition contribution). In: Proc. TACAS (2). pp.
438–442. LNCS 12652, Springer (2021). https://doi.
org/10.1007/978-3-030-72013-1_28

110. Scott, R., Dockins, R., Ravitch, T., Tomb, A.: Crux:
Symbolic execution meets SMT-based verification (com-
petition contribution). Zenodo (February 2022). https:
//doi.org/10.5281/zenodo.6147218

111. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.:
Theta: A framework for abstraction refinement-based
model checking. In: Proc. FMCAD. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

112. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input
generation with Java PathFinder. In: Proc. ISSTA.
pp. 97–107. ACM (2004). https://doi.org/10.1145/
1007512.1007526

113. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V.,
Vogler, R.: Static race detection for device drivers: The
Goblint approach. In: Proc. ASE. pp. 391–402. ACM
(2016). https://doi.org/10.1145/2970276.2970337

114. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions
memory modeling method with separation into dis-
joint regions. Proceedings of the Institute for System
Programming (ISPRAS) 29, 203–216 (2017). https:
//doi.org/10.15514/ISPRAS-2017-29(4)-13

115. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, A.,
Molnár, V.: Theta: Portfolio of cegar-based analy-
ses with dynamic algorithm selection (competition
contribution). In: Proc. TACAS (2). pp. 474–478.
LNCS 13244, Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_34

Open Access. This chapter is licensed under the terms
of the Creative Commons Attribution 4.0 International

https://doi.org/10.1007/978-3-030-99527-0_30
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.5281/zenodo.6147218
https://doi.org/10.5281/zenodo.6147218
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34


Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 15

License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and re-
production in any medium or format, as long as you give
appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indi-
cate if changes were made.

The images or other third party material in this chapter
are included in the chapter’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material
is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Background
	3 Evaluation
	4 Conclusion

