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Abstract. Six years ago, we performed the first large-
scale comparison of automated test generators and soft-
ware model checkers with respect to bug-finding capabil-
ities on a benchmark set with 5 693 C programs. Since
then, the International Competition on Software Test-
ing (Test-Comp) has established standardized formats
and community-agreed rules for the experimental com-
parison of test generators. With this new context, it is
time to revisit our initial question: Model checkers or
test generators—which tools are more effective in finding
bugs in software? To answer this, we perform a compar-
ative analysis on the tools and existing data published
by two competitions, the International Competition on
Software Verification (SV-COMP) and Test-Comp. The
results provide two insights: (1) Almost all test genera-
tors that participate in Test-Comp use hybrid approaches
that include formal methods, and (2) while the consid-
ered model checkers are still highly competitive, they are
now outperformed by the bug-finding capabilities of the
considered test generators.

Key words: Software verification, Model checking, Pro-
gram analysis, Test generation, Testing, Fuzzing

1 Introduction

In previous research [44] we compare the bug-finding
capabilities of automated test generators and software
model checkers on C programs. At the time of that work,
no standardized formats existed for the experimental
comparison of test generators. So we selected formats
for the expected inputs and outputs of test generation,
implemented matching adapters for existing test genera-
tors, and our own coverage measurement. Nowadays, this
is unnecessary. The International Competition on Soft-
ware Testing (Test-Comp) [31] provides a community-set

framework for the evaluation of test generators for the
C language, including an exchange format for test suites,
a large and well-defined benchmark task set, and agreed-
upon resource limitations for benchmarking. So far, the
benchmark test tasks of Test-Comp target two goals of
test generation: “create a test suite that covers a known
bug in a given program”, and “create a test suite that
covers all branches of a given program”.

Thanks to the improvements Test-Comp brought, and
six years after our original research [44], it is time to re-
visit the comparison: Model checkers vs. test generators—
which tools are better at finding bugs in software?

We improve on the original comparison in multiple
ways: (1) For the original work, we selected an array of
test generators manually, and configured them to the best
of our knowledge. In this work, we base our comparison
only on participants of the International Competition
on Software Verification (SV-COMP) [28] and Test-Comp.
All tool configuration is provided by the participating
tool developers, and during the competition, developers
got early access to pre-run results to fix any shortcomings
of their tools evident through the benchmark set.

(2) Originally, we executed our own, novel experi-
ments. We do have high confidence in these results, but
in our new work, we reuse the freely available competi-
tion data of SV-COMP 2023 and Test-Comp 2023. Using
these results has the advantage that the data were peer-
reviewed by the tool developers before publication.

Through these two adjustments we ensure that the
used experimental data represents expert tool usage. It
also guarantees that we configured everything correctly,
and that we select tools that support all of the major
required language features.

(3) Originally, we counted that a model checker found
a bug when the reported bug was confirmed by at least
one witness validator [38]—which may solely rely on
static analysis. In this work, we pay higher tribute to
the actual execution of an error, and separately consider

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-0291-815X


2 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

whether a model checker’s bug report can be confirmed
through program execution [39].

(4) Originally, we considered the bug-finding capabili-
ties of model checkers and test generators, but did not ex-
plicitly tune test generators towards finding a bug in the
program. Our expectation is that many test generators
are originally designed for traditional coverage measures
like branch coverage or condition coverage, and are not
optimized to create a single test for an error location of
interest. But since Test-Comp asks participants to cre-
ate a test suite that covers a known bug, the Test-Comp
test generators may be tuned towards bug finding. To
check the effect of this, we compare the test suites gen-
erated by Test-Comp test generators for error coverage
and the test suites generated for branch coverage with
regards to their bug-finding capabilities.

(5) Furthermore, in the original work we compared
tools that market themselves as software model checkers
with tools that market themselves as test generators,
and gave only a coarse overview on the techniques they
used. Nowadays, many tools employ hybrid approaches
with multiple different techniques. Many formal meth-
ods that are used in model checking can also be used
for test generation [35, 112], and techniques originally
designed for testing can be used as a part of model check-
ing (for example input fuzzing [62]). This means that a
model checker and a test generator may use the same
underlying analysis techniques. To account for that, we
give more details about the techniques the tools use.

We evaluate the following research questions:

RQ 1 Are test generators more effective in finding bugs
than software model checkers?

RQ 2 Can the bug reports of software model checkers
be validated through execution?

RQ 3 Are test generators that target errors more effec-
tive in finding bugs than test generators that target
branch coverage?

To answer these questions, we use Test-Comp test gen-
erators and SV-COMP model checkers as representatives
of their respective domains, with the original competition
data. To the best of our knowledge, this is the first meta-
analysis of the two international competitions SV-COMP
and Test-Comp, and the largest evaluation that compares
the bug-finding capabilities of software model checkers
with those of test generators.

Related Work. The only large-scale comparisons of the
tools considered in this work are the annual competitions
SV-COMP [28] and Test-Comp [31], which we combine
and inspect in detail in this work.

Next to these experimental evaluations, there are lit-
erature surveys on test generation for JavaScript [14],
search-based testing [99], fuzzing [98], and symbolic exe-
cution [17, 55, 105]. There are also surveys on software-
model-checking techniques [72, 88] and formal methods
in a more general sense [20, 77], as well as the handbook
on model checking [63].

Program

Coverage
Criterion

Test-generation task

Test
Generator Test Suite

Fig. 1: Workflow of a Test-Comp test generator; a test gen-
erator produces a test suite for a program under test and
a coverage criterion
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Fig. 2: Workflow of a test executor; a test executor com-
putes whether (or to what percentage) a test suite fulfills
a coverage criterion for a program

This work focuses on reachability bugs in a sequen-
tial, self-contained program, similar to a failing assert
statement, and on tools and techniques aimed at finding
such errors. Other applications of model checking and
automated testing are, among many others, mutation test-
ing [104] and the verification of concurrent programs [80],
security properties [19], and hyperproperties [65].

2 Background

2.1 Testing

An input function in a program is any function that
retrieves a value from the program’s environment, for ex-
ample a system call. In our work, we use special functions
__VERIFIER_nondet_X that can return any input value of
type X. For example, function __VERIFIER_nondet_int()

returns an integer input value. A test vector ⟨v0, . . . , vn⟩
is a sequence of n values. When ⟨v0, . . . , vn⟩ is executed,
the i-th call to an input function is defined to return
value vi. A test suite is a set of test vectors. A test vec-
tor t covers a program operation op if the execution of t
goes through op. A test suite covers a program opera-
tion op if any of its contained test vectors covers op.

A Test-Comp test generator (Fig. 1) [31] takes as input
the program-under-test and a coverage-criterion (e.g.,
cover a call to function reach_error()), and generates as
output a test suite. The test executor (Fig. 2) then takes
as input the program-under-test, the coverage criterion,
and the generated test suite. It produces as output either
that the coverage criterion is fulfilled, or a percentage of
how many coverage goals that are defined by the criterion
are covered by the tests in the test suite.
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Fig. 3: Workflow of a model checker; a model checker
produces a correctness witness if it claims that the pro-
gram under verification fulfills the specification, or a
violation witness if it claims that the program violates
the specification

Program

Spec

Violation
Witness

Validation task

Witness Validator

Result confirmed

or

unconfirmed

Fig. 4: Workflow of a witness validator (for result valida-
tion of a violation witness); a witness validator confirms
the model checker’s verification result if it can reproduce
the result with the help of the witness

1 unsigned char __VERIFIER_nondet_uchar();
2 void reach_error();
3

4 int main() {
5 unsigned char a =
6 __VERIFIER_nondet_uchar();
7 unsigned char b =
8 __VERIFIER_nondet_uchar();
9 unsigned char sum = a + b;

10 unsigned char mean = sum / 2;
11 if (mean < a / 2) {
12 reach_error();
13 }
14 }

q0

q1

q2

q⊥ qE

5: a == 62

o/w

7: b == 224

o/w

11,else:
o/w

11,then:

Fig. 5: Example program and violation-witness automa-
ton (adapted from prior work [39])

2.2 Model Checking

An SV-COMP model checker (Fig. 3) [28] takes as input
a program and a specification and produces one of two
outputs: If the program fulfills the specification, a correct-
ness witness [37, 38] is generated. If the program violates
the specification, a violation witness [36, 37] is generated.

2.3 Witness Validation

Witness validation [37] aims to increase the trust
in results of model checking. The idea is the following:

A model checker (Fig. 3) analyzes a program with re-
gards to a specification. As output, it not only produces
a verification verdict “property fulfilled” or “property not
fulfilled”, but also a correctness witness or violation wit-
ness that helps to recreate the verification result. This
witness is then given to a witness validator (Fig. 4).
A witness validator takes the program-under-verification,
the original specification, and the previously produced
witness as input. It tries to reproduce the verification re-
sult with the help of the witness. If the witness validator
is successful, the result is confirmed and confidence in
the verification result increases.

In this work, we focus on bug-finding capabilities, so
we only consider violation witnesses.

We describe violation witnesses as violation-witness
automata (in version 1.0 [38], not yet version 2.0 [16]).
A violation-witness automaton is a finite-state automa-
ton. It contains at its transitions source-code guards e
and state-space guards ψ to describe a subset of the pro-
gram paths that contain the reported property violation.
A source-code guard e is a program statement identi-
fied by its source-code line number. A source-code guard
can also restrict the direction of program branchings,
for example at if statements. It only allows the tran-
sition from one witness-automaton state to another if
the currently considered program expression matches e
and the specified program branch is entered (if specified).
A state-space guard ψ is a predicate on the program
state. It restricts the possible program states to those
that fulfill ψ. Figure 5 shows an example program and
a violation-witness automaton for the violated property
unreach-call. Automaton label o/w describes a tran-
sition that is taken in all cases not covered by other
transitions. This violation-witness automaton describes
only the program state space that assigns a = 62 and
b = 224, which leads to an unsigned integer overflow and
makes the program enter the if branch: The automa-
ton stays in state q0 until the assignment in line 5 is
considered. It then transitions to q1 and restricts the con-
sidered program states to those that fulfill a == 62 (after
transitioning). When line 7 is reached, it restricts the
considered program states to those that fulfill b == 224.
When the if statement in line 11 is reached and the
if branch is entered, the violation location is reached.

SV-COMP requires participants to output violation wit-
nesses since SV-COMP 2015 [27]. It uses the XML-based
GraphML exchange format [2]. Figure 6 shows an excerpt
that represents the automaton displayed in Fig. 5.

Witness to Test. Execution-based witness validation [39]
takes a violation witness and tries to transform it into
an executable test. If it succeeds, the test is executed. If
this test execution triggers the property violation, the
verification result is confirmed.

To generate the executable test, execution-based
witness validation uses the source-code guards of the
violation-witness automaton to map the corresponding

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp23/c/properties/unreach-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
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1 <graph edgedefault="directed">
2 <node id="q0">
3 <data key="entry">true</data>
4 </node>
5 <node id="q1"/>
6 <edge source="q0" target="q1">
7 <data key="startline">5</data>
8 <data key="assumption">a == (62U);</data>
9 <data key="assumption.scope">main</data>

10 </edge>
11 <node id="q2"/>
12 <edge source="q2" target="qE">
13 <data key="startline">7</data>
14 <data key="assumption">b == (224U);</data>
15 <data key="assumption.scope">main</data>
16 </edge>
17 <node id="qE">
18 <data key="violation">true</data>
19 </node>
20 <edge source="q2" target="qE">
21 <data key="startline">11</data>
22 <data key="control">condition−true</data>
23 </edge>
24 <node id="qBot">
25 <data key="sink">true</data>
26 </node>
27 <edge source="q2" target="qBot">
28 <data key="startline">11</data>
29 <data key="control">condition−false</data>
30 </edge>
31 </graph>

Fig. 6: Excerpt of the GraphML representation of the
violation-witness automaton of Fig. 5

state-space guards to the program code. If every call to
an input function (__VERIFIER_nondet_X) is constrained
to a unique assignment through a state-space guard
(e.g., a == 62), these unique assignments represent
the test inputs—for example ⟨62, 224⟩. These inputs are
then written to a test harness that allows the execu-
tion of the test.

Because the result is confirmed by actual program
execution, execution-based witness validation provides
the same degree of confidence in the verification result
as testing.

2.4 The Benchmark Collection SV-Benchmarks

SV-Benchmarks [3] is the largest available collection of
benchmark tasks for the evaluation of automated veri-
fication techniques for the language C. SV-Benchmarks
contains verification tasks and test-generation tasks.

Verification task. A verification task of SV-Benchmarks
consists of a program (C code) to verify and a pro-
gram property to check. Program specifications are ex-
pressed in linear temporal logic and different proper-
ties exist: both safety properties (e.g., error never reach-
able) and liveness properties (e.g., program always termi-
nates). In this work, we only consider the safety property
unreach-call, which specifies that no program execu-
tion may ever call function reach_error.

Test-generation task. A test-generation task of SV-Bench-
marks consists of a program (C code) to generate a
test suite for and the coverage criterion which the test suite
should fulfill. Coverage criteria are expressed as FQL [84]
and, to date, two criteria exist: coverage-error-call
asks for a test suite that covers at least one call to func-
tion reach_error (signals a bug) and coverage-bran-
ches asks for a test suite that covers all branches of
the program.

Categories. SV-Benchmarks groups benchmark tasks into
categories. A detailed description of the categories is avail-
able online [7]. Table 1 gives an overview of the bench-
mark tasks with coverage criterion coverage-error-
call, grouped by their categories. The table shows the
category name, a description of the category, the number
of benchmark tasks in that category, and a plot that
illustrates the lines of program code per task in that
category. Each plot shows on the x-axis the number of
lines of code, and on the y-axis the number of tasks in
that category with the respective lines of code. In this
work, we only consider these benchmark tasks.

3 Evaluation

3.1 Experiment Setup

For all comparisons, we use the results obtained in SV-
COMP and Test-Comp using the following setup: Experi-
ments ran on machines with Intel Xeon E3-1230 v5 CPUs
with 3.40GHz, 8 cores, turbo boost disabled, and 33GB
of memory. For both competitions, each run of a verifica-
tion task or test-generation task was limited to 900 s of
CPU time, 15GB of memory (RAM), and 8 CPU cores.
Each violation-witness validation was limited to 90 s of
CPU time, 7GB of memory, and 2 CPU cores. Each
test-suite validation was limited to 300 s of CPU time,
7GB of memory, and 2 CPU cores. Resource limitation
and measurement was performed by benchexec [1, 47].

Note. On its web page [21], SV-COMP reports not only
the score but also the run times of its participants. We
refrain from reporting run time in this work because in
Test-Comp there is nothing wrong with fully using the
available run time; the tools may continue generating
tests until the time limit is hit—and they do.

3.2 Benchmark Tasks

We consider all benchmark tasks from the SV-Benchmarks
repository with coverage criterion coverage-error-call.

3.3 Considered Tools

We consider all 13 test generators that participated in
Test-Comp 2023 and the 31 software model checkers that

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-branches.prp
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://github.com/sosy-lab/benchexec
https://sv-comp.sosy-lab.org/2023/results/results-verified/
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Table 1: Subcategories (14) of Test-Comp with coverage criterion coverage-error-call; each plot in the column
‘Lines of Code‘ illustrates the lines of program code per task in that category; each plot shows on the x-axis the
number of lines of code, and on the y-axis the number of tasks in that category with the respective lines of code

Subcategory Description #Tasks Lines of Code

Arrays Require treatment of arrays 90

36 53 70
1

21

BitVectors Require treatment of bit-
operations

9

26 334 642
1

21

ControlFlow Program correctness depends
mostly on the control-flow struc-
ture and integer variables

5

3672 7335 10999
1

21

ECA Derived from event-condition-
action systems

18

1054 747111 1493168
1

21

Floats Require treatment of floating-point
arithmetics

32

17 525 1033
1

21

Hardware Created from word-level hardware-
model-checking benchmarks

494

60 86002 171944
1

21

Heap Require treatment of data struc-
tures on the heap, pointer aliases,
and function pointers

47

31 557 1083
1

21

Loops Require treatment of (potentially
indeterminate) loops

130

21 435 849
1

21

ProductLines Represent ‘products’ and ‘product
simulators’ that are derived using
different configurations of product
lines

169

2858 3328 3799
1

21

Recursive Require treatment of recursive
functions

20

17 60 103
1

21

Sequentialized Sequentialized concurrent pro-
grams that were derived from
SystemC programs; the programs
were transformed to pure C pro-
grams by incorporating the sched-
uler into the C code

98

286 1621 2957
1

21

XCSP Derived from constraint-
programming benchmark tasks
of combinatorial constrained
problems

54

216 1131 2047
1

21

BusyBox Tasks from the software system
BusyBox

5

3445 4486 5528
1

21

DeviceDriversLinux64 Tasks from the Linux Driver Veri-
fication project

2

16669 16722 16776
1

21

http://linuxtesting.org/project/ldv
http://linuxtesting.org/project/ldv
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participated in a subcategory of SV-COMP 2023 with
checked property unreach-call (excluding category Con-
currencySafety). Table 2 gives an overview on a selection
of verification techniques used by each tool, based on
data provided by the SV-COMP [28] and Test-Comp [31]
competition reports. The reports do not list the identical
set of techniques: if a report does not provide informa-
tion on a technique, this column is marked with ⊘ for
the respective tools. The table groups the features on
the x-axis in static techniques, dynamic techniques, and
strategies in verification that can be used with both
static and dynamic techniques. The tools are grouped
on the y-axis by SV-COMP and Test-Comp participation.
Within each group, the entries are sorted by the number
of found bugs over all benchmark tasks. We omit tools
that did not find a single confirmed bug in the consid-
ered verification tasks: CPA-BAM-BnB [15, 114], CPA-
BAM-SMG, Frama-C-SV [48, 66], Goblint [109, 113],
Infer-SV [56, 90], and Mopsa [89, 102].

The table shows that most test generators that par-
ticipated in Test-Comp 2023 use hybrid approaches: they
employ both static and dynamic analysis techniques.

Table 3 shows the external data from the competitions
that we used for our study.

3.4 Expanding the Study

To add new tools to the tool comparison, developers can
submit their tool to the next iterations of SV-COMP [26]
and Test-Comp [25]. For private experiments, the bench-
marking configuration is available online and described
on the competition websites of SV-COMP [22] and Test-
Comp [24]. Competition results can be analyzed with
scripts from our reproduction artifact [46].

3.5 Experimental Results

RQ 1. Are test generators more effective in finding bugs
than software model checkers? We use the original results
data of SV-COMP 2023 [29] and Test-Comp 2023 [30]. To
make the two data sets comparable, we map all results
for test-generation tasks in the Test-Comp data to results
for a verification task with property unreach-call: Each
successful test generation for coverage criterion cover-
age-error-call also produces a valid counterexample
for unreach-call. This means, if a test generator success-
fully generates a test suite that fulfills criterion coverage-
error-call, it also shows that unreach-call is violated.
For both SV-COMP and Test-Comp data, we only consider
a bug ‘found’ if it is confirmed by the competition through
successful violation-witness validation or test execution.

We report the highest bug-finding capability each tool
exhibits in its respective competition. The tool TracerX
only produces test suites for coverage-branches, and for
Legion/SymCC, the test suites generated for coverage-
branches cover more bugs than the test suites gener-
ated for coverage-error-call (cf. RQ 3). For these

tools, we always consider the test suites they generated
for coverage-branches.

Table 2 (right column) shows the overall number of
tasks for which a bug was found by the resp. tool. In
contrast to our original study [44], the two test generators
VeriFuzz [101] (964/1 173 bugs found) and FuSeBMC [13]
(939/1 173 bugs found) perform significantly better than
the best model checker, PeSCo [106, 107] (667/1 173 bugs
found). Both VeriFuzz and FuSeBMC use a combina-
tion of bounded model checking [49] (a static technique)
and fuzzing [78] (a dynamic technique).

Two notes: (1) Some of the model checkers listed
in Table 2 are specialized tools that (a) participate only
in selected categories of SV-COMP, or (b) focus on pro-
gram proofs, not bug hunting. For these reasons, a low
number of found bugs gives no indication about the
tool’s quality. For example, GDart-LLVM has the lowest
overall number of found bugs, but it only participates
in category BitVectors. The best three model checkers,
PeSCo, CPAchecker, and Esbmc-kind, participate in
all relevant categories. (2) The reported numbers do
not match the Test-Comp overall scores reported on the
official results page [23] because Test-Comp performs nor-
malization over each category’s number of tasks. We
do not perform normalization but report the sum of all
found bugs over all categories.

The tools Esbmc-kind, Symbiotic, and VeriFuzz par-
ticipated in both SV-COMP and Test-Comp. If not clear
from the context, we superscript their names with the
competition in which the result was received (for exam-
ple VeriFuzzSV-COMP or SymbioticTest-Comp). If results are
equal for both configurations, we write VeriFuzzBoth.

Table 4 displays the results of the selected tools per
category. For each category, the table lists data for the
three best test generators and three best model checkers
that found at least one bug in that category (four tools
each for category Overall). If there is a draw, all tools
with the same number of found bugs and with the same
number of bugs confirmed through execution (cf. RQ 2)
are displayed. To ease the differentiation between the two
groups, we prefix each test generator with T and each
model checker with M. The table lists the total tasks in
the respective category, the number of confirmed bugs
that the respective tool found, as well as the number
of bugs that the respective tool found and that were
confirmed by actual program execution. We omit the cat-
egory DeviceDriversLinux64 because no tool was able
to find a bug in it.

The table shows that, for bug finding, individual
test generators perform either better or as good as individ-
ual model checkers in all categories but Heap and XCSP.
A clear divide between test generators and model checkers
exists in four categories: In Arrays, the best test genera-
tor of that category, FuSeBMC, finds a bug in 90 tasks,
while the best model checker of that category, VeriAbsL,
finds a bug in only 81 tasks. In Hardware, VeriFuzz
finds a bug in 319 tasks, while Graves-CPA finds a bug

https://sv-comp.sosy-lab.org/
https://test-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/results/results-verified/
https://test-comp.sosy-lab.org/2023/results/results-verified/
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Table 2: Features used by Test-Comp and SV-COMP participants and their overall results in bug finding; if a competition
report does not provide information on a technique, this column is marked with ⊘ for the respective tools
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VeriFuzz [100, 101] ✓ ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 964
FuSeBMC [12, 13] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ ✓ 939
FuSeBMC_IA [11] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ ✓ 931
CoVeriTest [40, 87] ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 564
Klee [53, 54] ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 541
Symbiotic [58, 59] ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ ✓ 510
TracerX [85, 86] ✓ ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ 420
HybridTiger [52, 108] ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ 397
WASP-C [8] ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ 393
Esbmc-kind [75, 76] ✓ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ✓ 352
PRTest [44, 94] ⊘ ⊘ ⊘ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ 293
Legion/SymCC [6] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ 281

T
es

t-
C

om
p

Legion [95, 96] ✓ ⊘ ⊘ ⊘ ✓ ✓ ⊘ ⊘ ✓ ⊘ ⊘ ⊘ ✓ ✓ 108

PeSCo [106, 107] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ ✓ 667
CPAchecker [43, 67] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ ✓ 665
Esbmc-kind [75, 76] ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 660
VeriAbsL [69] ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ ✓ 645
Graves-CPA [93] ⊘ ⊘ ⊘ 643
VeriAbs [10, 68] ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ ✓ 639
Bubaak [57] ✓ ⊘ ✓ ⊘ ✓ ⊘ 635
Cbmc [64, 91] ✓ ⊘ ✓ ⊘ ✓ ⊘ 626
VeriFuzz [62, 100] ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 615
CVT-ParPort [41, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ ✓ 591
Symbiotic [59, 60] ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ 559
CVT-AlgoSel [41, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ 468
UAutomizer [82, 83] ✓ ✓ ⊘ ✓ ⊘ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ 311
Divine [18, 92] ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ ✓ ✓ 299
UTaipan [70, 79] ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ✓ ✓ ✓ ⊘ ✓ ✓ 294
Pinaka [61] ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 272
gazer-theta [9, 81] ✓ ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ✓ ⊘ ✓ 255
2ls [50, 97] ✓ ✓ ✓ ✓ ⊘ ✓ ⊘ ✓ ⊘ 213
UKojak [73, 103] ✓ ✓ ⊘ ✓ ⊘ ✓ ✓ ✓ ⊘ 189
Crux [71, 110] ✓ ⊘ ⊘ ✓ ⊘ 176
Korn [74] ✓ ✓ ✓ ⊘ ⊘ ✓ ⊘ ✓ 121
Theta [111, 115] ✓ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ ⊘ ✓ ✓ 116
Brick [51] ✓ ✓ ✓ ✓ ⊘ ⊘ ✓ ⊘ 99
Graves-Par [5] ⊘ ⊘ ⊘ 93

SV
-C

O
M

P

GDart-LLVM [4] ✓ ⊘ ✓ ⊘ ⊘ 1
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Table 3: Data that we use from the competitions

Artifact DOI

Benchmark collection 10.5281/zenodo.7627783
SV-COMP results 10.5281/zenodo.7627787
Test-Comp results 10.5281/zenodo.7701122
Test-Comp test suites 10.5281/zenodo.7701126
Test-suite validator 10.5281/zenodo.7701118

in only 147 tasks. In Loops, FuSeBMC finds a bug in
128 tasks while VeriAbs finds a bug in only 112 tasks. In
Sequentialized, VeriFuzz finds a bug in 95 tasks while
PeSCo finds a bugs in only 86 tasks.

The presented data answers our first research ques-
tion with ‘yes’: At the current state-of-the-art for C,
test generators perform significantly better in bug hunt-
ing than model checkers.

In our previous research study [44], the different tools
complemented each other well, so that the combination
of multiple tools yielded significant improvements in the
number of bugs found. This is not true for the current
results: Table 5 shows for each benchmark category the
number of bugs found by the best tool in that category,
the union of distinct bugs found by all test generators
together (All T), the union of distinct bugs found by all
model checkers together (All M), and the union of all
considered tools (All Tools). The table shows that the
unions only yield an improvement in 5 of the 13 categories,
and that these improvements are also small. We explain
this with the fact that, in contrast to the previous study,
almost all currently considered tools already combine
multiple approaches internally (cf. Table 2), rendering
further external combinations effectless.

RQ 2. Can the bug reports of software model checkers be
validated through execution? Since a failing program ex-
ecution provides the highest level of confidence in a ver-
ification result, we separately check how many of the
confirmed verification results were confirmed not only by
a third-party tool, but by actual program execution.

For this, we use the SV-COMP validation results of the
two execution-based witness validators CPA-witness2test
and FShell-witness2test. Table 4 shows in its last columns
the number of found bugs that are confirmed through
program execution. It is visible that the confirmation rate
can be very high, for example for Brick in category
Floats (29 of 30), for Cbmc in categories Heap (43 of 47),
Recursive (19 of 19) and XCSP (50 of 50), or for PeSCo
in category Sequentialized (86 of 86). On the other hand,
the confirmation rate can also be very low, even for model
checkers that perform well otherwise and in categories
that other model checkers perform well in: Cbmc gets only
29 of 85 results confirmed through execution in category
Sequentialized, and PeSCo gets only 61 of 109 results

confirmed in category Hardware. This hints to bug reports
(in the form of violation witnesses) that miss input values.

Thus, our answer to the second research question: The
data shows that the execution-based validation of verifica-
tion results is feasible and works well to provide a similar
level of confidence in the result of model checkers as in
test generators. But at the current state-of-the-art, model
checkers have to produce more precise violation witnesses
to offer the same level of confidence as test generators.

RQ 3. Are test generators that target errors more ef-
fective in finding bugs than test generators that target
branch coverage? To answer our last research question,
we consider the test suites [34] that each test generator
generated for coverage criterion coverage-branches in
Test-Comp 2023. We check how well these test suites per-
form for finding bugs, compared to the test suites that
testers specifically generated for bug-finding: We give
each test suite generated for coverage-branches to the
test executor of Test-Comp 2023, TestCov [45], but with
target measure coverage-error-call. The results over
all common categories are presented in Table 6.1

It is visible that 6 testers produce significantly better
test-suites for criterion coverage-error-call when told
to do so: FuSeBMC, VeriFuzz, FuSeBMC_IA, Symbi-
otic, and, with the most notable difference, Klee. This
shows that they adjust their behavior based on the cover-
age criterion provided to them. The other tools only show
very little difference between the two generated test suites
or did not provide test suites for both coverage criteria. It
is notable that the five best-performing testers all adjust
their behavior based on the coverage criterion.

This answers our third research question with ‘yes’:
Testers that actively target errors are more effective in
creating test suites for error coverage.

3.6 Threats to Validity

Internal Validity. We are confident in our analysis’s in-
ternal validity. We use the official SV-COMP 2023 and
Test-Comp 2023 data. Both competitions pay highest pri-
ority to precise measurements and reproducibility. For
validating test suites with coverage-error-call which
were generated for coverage-branches, we had to per-
form own experiments. For these, we used the official
competitions’ infrastructure to ensure correctness of re-
sults. Both our setup and the produced data are publicly
available [46] for inspection.

External Validity. We use the largest available bench-
mark set with well-defined C programs for testing. Still,
this benchmark set may not represent the full diversity of
real-world C programs. Similarly, because tools know the
SV-COMP and Test-Comp benchmark tasks before the

1 This excludes category Hardware, which only exists in the track
for coverage-error-call.

https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.5281/zenodo.7701126
https://doi.org/10.5281/zenodo.7701118
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Table 4: Results of the tools listed in Table 2 for each category; only the best test generators (T) and model
checkers (M) of each category are listed

Total #Bugs #Bugs
Tasks Found Confirmed

by Execution

Arrays
T FuSeBMC 90 90 90
T FuSeBMC_IA 90 88 88
T VeriFuzzTest-Comp 90 88 88
M VeriAbsL 90 81 76
M VeriAbs 90 80 66
M Bubaak 90 74 74
BitVectors
T FuSeBMC 9 9 9
T FuSeBMC_IA 9 9 9

T|MVeriFuzzBoth 9 9 9
M SymbioticSV-COMP 9 8 8
M Esbmc-kindSV-COMP 9 8 6
M Graves-CPA 9 8 6
ControlFlow
T FuSeBMC 5 5 5
T FuSeBMC_IA 5 5 5

T|MSymbioticBoth 5 5 5
M Bubaak 5 4 4
T|MVeriFuzzBoth 5 4 4
T Klee 5 4 4

ECA
T VeriFuzzSV-COMP 18 15 13
T Klee 18 14 14
M Bubaak 18 14 12
M SymbioticTest-Comp 18 13 13
M PeSCo 18 13 12
T FuSeBMC 18 12 12

Floats
T FuSeBMC 32 32 32
T FuSeBMC_IA 32 31 31
T VeriFuzzTest-Comp 32 31 31
M Brick 32 30 29
M CVT-ParPort 32 30 24
M CPAchecker 32 30 21
Hardware
T VeriFuzzTest-Comp 494 319 319
T FuSeBMC 494 288 288
T FuSeBMC_IA 494 288 288
M Graves-CPA 494 147 102
M CPAchecker 494 127 70
M PeSCo 494 109 61
Heap
M Cbmc 47 47 43
M VeriAbs 47 47 33
M Bubaak 47 46 44
T FuSeBMC 47 45 45
T FuSeBMC_IA 47 45 45
T Klee 47 45 45

T|MVeriFuzzBoth 47 45 45

Total #Bugs #Bugs
Tasks Found Confirmed

by Execution

Loops
T FuSeBMC 130 128 128
T FuSeBMC_IA 130 127 127
T VeriFuzzTest-Comp 130 123 123
M VeriAbs 130 112 103
M VeriAbsL 130 100 86
M Korn 130 98 97
ProductLines
T FuSeBMC 169 169 169
T FuSeBMC_IA 169 169 169
T Klee 169 169 169

T|MVeriFuzzBoth 169 169 169
M Bubaak 169 169 169
M VeriAbsL 169 169 169
Recursive
T FuSeBMC 20 19 19
T FuSeBMC_IA 20 19 19
M Cbmc 20 19 19
M CVT-ParPort 20 19 19
M Graves-CPA 20 19 17
T VeriFuzzTest-Comp 20 18 18

Sequentialized
T VeriFuzzTest-Comp 98 95 95
T FuSeBMC 98 94 94
T FuSeBMC_IA 98 92 92
M PeSCo 98 86 86
M CVT-ParPort 98 86 32
M Cbmc 98 85 29
XCSP
M Cbmc 54 50 50
M CVT-AlgoSel 54 49 49
T|MVeriFuzzBoth 54 49 49
T WASP-C 54 49 49

T|MEsbmc-kindBoth 54 48 48
T FuSeBMC 54 47 47

BusyBox
T FuSeBMC 5 1 1
T Klee 5 1 1
M PeSCo 5 1 0

Overall
T VeriFuzzTest-Comp 1 173 964 964
T FuSeBMC 1 173 939 939
T FuSeBMC_IA 1 173 931 931
M PeSCo 1 173 667 475
M CPAchecker 1 173 665 458
M Esbmc-kindSV-COMP 1 173 660 529
M VeriAbsL 1 173 645 543
T CoVeriTest 1 173 564 564
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Table 5: Number of bugs found by the best tool of each
category, the union of all test generators (T), the union
of all model checkers (M), and all tools

Category Best Tool All T All M All Tools

Arrays 90 87 90 90
BitVectors 9 9 9 9
ControlFlow 5 5 5 5
ECA 15 15 14 17
Floats 32 32 32 32
Hardware 319 340 175 342
Heap 47 45 47 47
Loops 128 128 127 128
ProductLines 169 169 169 169
Recursive 19 19 20 20
Sequentialized 95 95 90 95
XCSP 50 51 50 51
BusyBox 1 1 1 2

Table 6: Bug-finding capabilities of generated test suites
that are targeted at either coverage-error-call or co-
verage-branches; the results exclude category Hardware
because it is not part of the Test-Comp 2023 track on
branch coverage

Total #Bugs Found #Bugs Found
Tools Tasks error-call branches

FuSeBMC 679 651 594
VeriFuzz 679 645 611
FuSeBMC_IA 679 643 594
Klee 679 541 285
CoVeriTest 679 479 476
Symbiotic 679 476 456
TracerX 679 - 420
HybridTiger 679 362 281
WASP-C 679 354 355
Legion/SymCC 679 279 281
Esbmc-kind 679 352 -
PRTest 679 236 236
Legion 679 108 107

competition runs, tools that participate in SV-COMP and
Test-Comp may be tuned to the competitions’ benchmark
set, and perform worse on real-world projects.

The application domain that we can consider is lim-
ited: We consider testing of sequential, self-sufficient
C programs with a simple reachability specification, sim-
ilar to assert statements (cf. Table 1). This means that
the presented results may ignore program features and
some applications of testing, like string handling, object-
oriented programming, concurrency, or database queries.

Similarly, specific applications of verification, for ex-
ample the verification of network protocols or static
application-security testing, are not considered.

We only consider programs with at least one exist-
ing bug. We do not measure how good the generated

test suites are for detecting bugs that are newly intro-
duced in the future.

We also do not differentiate between a single found
bug and multiple found bugs. But a test suite that detects
multiple bugs in a program may be considered better than
a test suite that only detects a single bug. We consider
both options orthogonal research questions.

We only consider tools that participate in either SV-
COMP 2023 or Test-Comp 2023. This covers the latest
state-of-the-art for verification of C programs. There
may still be model checkers or test generators that did
not participate in the last iterations of SV-COMP or Test-
Comp, and which perform significantly better. In addition,
the comparison of test generators and model checkers may
differ in areas of application other than the considered.

Construct Validity. We designed our experiments to as-
sess whether test generators or model checkers find more
bugs in given programs. To quantify the quality of the
tools, we use the number of bugs found, which is the main
ingredient of the community-agreed scoring schemas that
the competitions use (considering the category Falsifi-
cationOverall in SV-COMP and category Cover-Error
in Test-Comp). Instead of normalization as used in the
competitions, we explicitly report the results per cat-
egory in Table 4.

4 Conclusion

We performed a thorough comparison of the bug-finding
capabilities for C programs of all SV-COMP 2023 and Test-
Comp 2023 participants. This comparison shows that—
while state-of-the-art test generators and model checkers
are highly competitive—the best considered test gener-
ators outperform the best considered model checkers in
bug finding. Notably, the best test generators do not limit
themselves to dynamic techniques, but also use static-
analysis techniques and formal methods. FuSeBMC [13]
and VeriFuzz [101] use a combination of bounded model
checking [49] and fuzzing [78].

Data-Availability Statement. The analysis and all
experimental data are archived and available at Zen-
odo [46]. We used the following existing data for our
study: the benchmark collection that was used by both
competitions [32], the SV-COMP results [29], the Test-
Comp results [30] and test suites [34], and the test-suite
validator TestCov [33] from Test-Comp. See Table 3
for a table view.

Funding Statement. This work was funded by the
Deutsche Forschungsgesellschaft (DFG) — 418257054
(Coop), the LMU PostDoc support fund, and the Free
State of Bavaria.
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