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Abstract. Formal verification is essential but challenging: Even the best
verifiers may produce wrong verification verdicts. Certifying verifiers en-
hance the confidence in verification results by generating a witness for
other tools to validate the verdict independently. Recently, translating
the hardware-modeling language Btor2 to software, such as the pro-
gramming language C or LLVM intermediate representation, has been
actively studied and facilitated verifying hardware designs by software
analyzers. However, it remained unknown whether witnesses produced by
software verifiers contain helpful information about the original circuits
and how such information can aid hardware analysis. We propose a certi-
fying and validating framework Btor2-Cert to verify safety properties of
Btor2 circuits, combining Btor2-to-C translation, software verifiers, and
a new witness validator Btor2-Val, to answer the above open questions.
Btor2-Cert translates a software violation witness to a Btor2 violation
witness; As the Btor2 language lacks a format for correctness witnesses,
we encode invariants in software correctness witnesses as Btor2 circuits.
The validator Btor2-Val checks violation witnesses by circuit simulation
and correctness witnesses by validation via verification. In our evaluation,
Btor2-Cert successfully utilized software witnesses to improve quality as-
surance of hardware. By invoking the software verifier Cbmc on translated
programs, it uniquely solved, with confirmed witnesses, 8 % of the unsafe
tasks for which the hardware verifier ABC failed to detect bugs.

Keywords: Hardware verification · Software verification · Verification
witnesses · Witness validation · Word-level circuit · Btor2 · SMT · SAT

1 Introduction

Certifying algorithms [1] generate a certificate alongside the computed solution
such that proof checkers can independently validate the solution to increase users’
trust and the explainability of the results. In the model-checking community,
a certificate to explain a verdict for a verification task is called a witness [2],
and verifiers able to generate witnesses are called certifying verifiers. Witnesses
can be independently checked by witness validators to confirm the verification

https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0009-0000-7805-5931


2 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

Task T Certifying Verifier

Verdict v
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(a) Certifying and validating model checking
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(b) Translating SW witnesses to HW for validation

Fig. 1: A certifying hardware-verification framework using software analyzers

results. Figure 1a shows a generic workflow for certifying and validating model
checking. After a certifying verifier produces a verdict v and a witness ω on a
task T , a witness validator takes T and ω as input and checks if the information
in ω is enough to reestablish the results of the verifier on T . The outcome of the
verifier is certified if its verdict v and the validator’s verdict v′ are consistent.
In the rest of the paper, we use certifying model checking interchangeably with
certifying and validating model checking when it is clear from the context that
a framework contains both a certifying verifier and a witness validator. For
reachability properties, if a model violates a safety specification, a violation
witness [3] may contain external inputs to the model to replay the erroneous
execution trace. If the safety specification is satisfied, a correctness witness [4]
could record invariants of the model to reconstruct a safety proof. Section 2
presents a brief survey on witness validation in the formal-methods community.

Recently, hardware-to-software translators [5, 6] from the hardware-modeling
language Btor2 [7], a prevailing format for word-level hardware model checking
used in the Hardware Model Checking Competitions (HWMCC) [8, 9], have
been proposed to facilitate the application of software analyzers to hardware
circuits. Tools Btor2C [5] and Btor2MLIR [6] translate Btor2 circuits to
behaviorally equivalent imperative software in the programming language C [10]
and the intermediate representation used by the compilation toolchain LLVM [11],
respectively, and enable any software analyzer for C or LLVM-bytecode programs
to inspect Btor2 circuits. In an experiment on more than 1 000 Btor2 circuits [5],
software verifiers for C programs are shown to detect more bugs than the best
hardware model checkers by preprocessing the original circuit with Btor2C
and analyzing the translated C program. However, in this previous work [5],
only the verdicts of software verifiers but not the witnesses, which contain the
information and reasoning behind a verdict, are transferred back to the hardware
domain. In other words, the results of software verifiers on Btor2 circuits are
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not certified, and hence hardware designers may not trust software verifiers for
analyzing their circuits.

1.1 Our Motivation and Contributions

Motivated to mitigate the aforementioned threat to reliability and leverage the
capability of software verifiers to generate witnesses, we investigate the follow-
ing open questions in this work: (1) whether the software witnesses for trans-
lated programs contain useful information about original circuits and (2) how
to employ the information to aid hardware quality assurance. Our contributions
are summarized below.

A Certifying Framework for HW Verification with SW Analyzers.
Figure 1b shows the proposed certifying and validating hardware-verification
framework based on software analyzers to approach the open questions. The
framework translates a hardware-verification task TH to a software task TS and
applies software verifiers to TS . After obtaining a software witness ωS , it encodes
relevant information from ωS in the form of a hardware witness ωH and validates
the verdict returned by software verifiers with ωH . We instantiate the framework in
a tool Btor2-Cert for verifying Btor2 circuits with certified verdicts. In addition
to preprocessing Btor2 circuits with Btor2C [5] and invoking model checkers for
the translated C programs, such as CPAchecker [12], Cbmc [13], Esbmc [14], and
UAutomizer [15], Btor2-Cert features a translator from software witnesses to
Btor2 witnesses and a witness validator Btor2-Val to check Btor2 witnesses.
Section 4 shows our tool architecture.

Note that the framework in Fig. 1b is not limited to Btor2C and verifiers for C
programs. For example, one could also materialize the concept with the translator
Btor2MLIR [6], analyzers for LLVM-bytecode programs [11], such as Klee [16],
Smack [17], and SeaHorn [18], and a corresponding LLVM-to-Btor2 witness
translator. There also exist translators [19, 20, 21] from Verilog [22] circuits to C
programs or SMV [23] models. We choose Btor2C for task translation because
many verifiers for C programs participating in the International Competitions on
Software Verification (SV-COMP) [24] can generate witnesses in a standardized
and exchangeable format [2].

A Translator from Software Witnesses to Btor2 Witnesses. Btor2-Cert
translates software violation witnesses in the format used in SV-COMP [24] to the
format defined by the Btor2 language [7]. For tasks satisfying their specifications,
as there is no native format for correctness witnesses in Btor2, Btor2-Cert
extracts the invariants in software witnesses and represents them as Btor2 circuits,
whose inputs refer to the state variables of the original circuit. The advantages of
not inventing a new format but reusing the existing Btor2 language are twofold:
First, Btor2 extends SMT-LIB 2 [25] and provides the required operations on
the word level to accommodate most invariants derived by software verifiers.
Second, Btor2 is supported by many hardware model checkers participating in
HWMCC [8, 9] and offers a suite Btor2Tools [26] of utility tools for parsing and
simulation, which simplifies further development around the Btor2 format.
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A Validator for Btor2 Witnesses. To validate the witnesses for Btor2
circuits, we develop Btor2-Val, a portfolio-based witness validator involving
hardware simulators and verifiers. Btor2-Val validates violation witnesses by
invoking the simulator BtorSim from Btor2Tools [26]. For correctness witnesses,
Btor2-Val follows the validation-via-verification approach [27] by instrumenting
the original Btor2 circuit with the circuit representing the invariant and verifying
the instrumented circuit. The instrumented circuit satisfies the modified safety
property if the invariant can be used to reconstruct the proof of correctness.
Hardware verifiers are employed to check the instrumented circuits. Btor2-Val
leverages CoVeriTeam [28], a framework for cooperative verification, to coordinate
the underlying hardware simulators and verifiers.

Enhancing Confidence in SW Verifiers on HW Designs. We evaluate
Btor2-Cert on more than 1 000 Btor2 circuits to study its capability of providing
certified verification results using software analyzers. In the experiment,

• the witness translator was able to translate every violation witness and 97 %
of the correctness witnesses produced by software verifiers,

• the combination of witness translation and Btor2-Val outperformed mature
software witness validators in both effectiveness and efficiency, and

• Btor2-Cert provided certified results computed by software verifiers on
some Btor2 circuits that the best hardware model checkers failed to verify.

The conceptual message conveyed by Btor2-Cert is software analyzers can
derive useful information about circuits and complement conventional hardware
model checkers with trustworthy results. Our contributions have a positive impact
on analyzing hardware designs with software verifiers. The proposed framework
Btor2-Cert is open-source and available online (more information in Sect. 4).

2 Related Work

Generating and validating witnesses for analysis results have been studied through-
out the entire verification toolchain from satisfiability solvers to model checkers.
In the following, we briefly review witness validation and compare our work to a
recent certifying verification framework [29, 30, 31] targeting k -induction [32].

2.1 Witness Validation

For satisfiability solving, the competitions on propositional SAT solvers [33, 34]
use the DRAT format [35] to encode the certificates of unsatisfiability and inde-
pendent validators [36, 37] to check the proofs. The competitions on SMT solving
verify models to satisfiable formulas with the tool Dolmen [38]. Certifications for
quantified Boolean formulas have also been investigated [39, 40].

For model checking, an early work [41] suggests generating a deductive proof
from the run of model checkers with extra bookkeeping steps. In HWMCC [8, 9],
the Btor2 [7] language defines a format for violation witnesses as a sequence of
input values and initial values for registers that lead to an erroneous execution.
However, Btor2 has no format for correctness witnesses. The competitions on
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automated termination analysis [42] use the format CPF [43], and in SV-COMP [24],
a GraphML-based format [2] is used to describe software witnesses as automata.
In addition to the properties commonly used in tool competitions, a recent work
extends proof generation of model checking to full LTL properties [44].

Numerous approaches have been invented for validating software witnesses.
Methods to validate correctness witnesses include a parallel extension [45] of
k -induction, program instrumentation with invariants and re-verification [27]
(referred to as validation via verification in the publication), and program de-
composition into several straight-line sub-programs [46]. Execution-based vali-
dation [47] is an elegant approach to validate violation witnesses. It extracts a
sequence of external input values from a violation witness and employs debuggers
or simulators to testify the reachability of an error location. Our witness validator
Btor2-Val leverages validation via verification and execution-based validation.
More details are given in Sect. 5 and Sect. 6, respectively. In our evaluation, the
proposed validator Btor2-Val (together with the witness translator) competed
well against the winners in the witness-validation track of SV-COMP 2023 [24].

2.2 Validating k-Inductiveness of Properties in Hardware Models

Given a sequential circuit and a number k as input, the tool Certifaiger [29, 30]
aims to validate that the safety property of the input circuit is k-inductive.
Composing a k -induction-based hardware model checker and Certifaiger yields a
certifying and validating model checker (as depicted in Fig. 1a), whose witnesses
are the inductive length k. The key differences between the proposed framework
in Fig. 1b and this framework [29, 30] for k-inductiveness are as follows.

First, our validator Btor2-Val expects a candidate invariant in the correctness
witness but does not restrict the algorithms used by software verifiers. In contrast,
Certifaiger expects a candidate inductive length k and thus can only validate
results of k -induction-based model checkers. Second, to validate witnesses, Btor2-
Val relies on validation via verification [27] and invokes model checkers because
the candidate invariant may not be inductive. In comparison, Certifaiger avoids
model checking and reduces the validation problem to several SAT checks since
it assumes the safety property to be k-inductive. To sum up, our framework
complements the existing work [29, 30] by considering candidate invariants as
witnesses. Its applicability to algorithms other than k -induction comes at the
expense of potentially more complex validation procedure. Certifaiger is further
extended to accommodate temporal decomposition [48] as preprocessing to simplify
the verification tasks [31], which has not yet been considered in our framework
and is an important direction of future work.

3 Background

To facilitate the discussion in the rest of this manuscript, we provide prerequisite
knowledge on model checking and witness validation from the literature.

A state-transition system M is described by two predicates I(s) and TR(s, s′)
over states s and s′ of M, which encode the initial states and transition relation
(TR(s, s′) is true if s can transit to s′ via one step) of M, respectively. An
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1 sort bitvec 8

2 sort bitvec 1

3 constd 1 42

4 constd 1 2

5 zero 1

6 state 1 ; a

7 state 1 ; b

8 input 1 ; in

9 init 1 6 4 ; a init to 2

10 init 1 7 5 ; b init to 0

11 eq 2 6 5 ; a == 0

12 eq 2 7 4 ; b == 2

13 eq 2 8 3 ; in == 42

14 and 2 11 12

15 and 2 13 14

16 bad 15

17 one 1

18 srl 1 6 17

19 xor 1 7 17

20 next 1 6 18

21 next 1 7 19

(a) Btor2 circuit

1 extern void abort(void);

2 extern unsigned char nondet_uchar();

3 void main() {

4 typedef unsigned char SORT_1;

5 SORT_1 a = nondet_uchar();

6 SORT_1 b = nondet_uchar();

7 a = 2;

8 b = 0;

9 for (;;) {

10 SORT_1 in = nondet_uchar();

11 if (a == 0 && b == 2 && in == 42) {

12 ERROR: abort();

13 }

14 a = a >> 1;

15 b = b ^ 1;

16 }

17 }

(b) C program (simplified for demo)

Fig. 2: An example Btor2 circuit and its translated C program

invariant Inv(s) of a system M is a predicate over states of M such that Inv(s)
is true for every reachable state s of M. We denote “Inv is an invariant of M”
by M |= Inv. A safety-verification task consists of a state-transition system M
and a safety property P (s). We say a safety-verification task (or a verification
task for short) is safe if M |= P and unsafe otherwise. Given a verification task
of M and P , the problem of model checking asks whether M |= P or not. In
practice, state-transition systems manifest themselves as sequential digital circuits
or programs. In the following, we briefly introduce the modeling languages used
in HWMCC [8, 9] and SV-COMP [24] with a running example.

3.1 The Btor2 Language for Word-Level Circuits

The Btor2 hardware-modeling language [7] was invented to describe model-
checking problems of word-level sequential circuits. It extends the bit-level AIGER
format [49] with data sorts of bit-vectors and arrays and inherits word-level
operations from SMT-LIB 2 [25]. Figure 2a shows an example Btor2 circuit.
The circuit has two state variables a and b and an external input in, defined
in lines 6-8, respectively. The states and input are bit-vectors of width 8 (the
sort bitvec 8 defined in line 1). Variables a and b are initialized to 2 and 0,
respectively. In each iteration, variable a is right-shifted by 1 bit (line 18), and
variable b is bitwise XOR-ed with 1 (line 19). Indicated by the keyword bad in
line 16, a property violation happens if variable a equals 0, variable b equals 2,
and input in equals 42. The example Btor2 circuit satisfies its safety property
because variable b never equals 2. However, if variable b is initialized to a different
value at line 10 (marked in red), say 2, a property violation will be triggered after
two steps of state transition if 42 is given as the external input in the last iteration.

Translating Btor2 Circuits to C Programs. Btor2C [5] is a lightweight
translator from the Btor2 language to the programming language C [10]. It
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encodes Btor2 data sorts with unsigned integers and static arrays, expresses
Btor2 operations with corresponding operators of C, and uses an infinite loop
to model the execution of a sequential circuit. Given the example Btor2 circuit
in Fig. 2a as input, Btor2C generates a translated C program1 shown in Fig. 2b.
Btor2C follows the rules of SV-COMP [24] to encode safety-verification tasks
for C programs, so compositional hardware model checkers for Btor2 circuits can
be readily formed by combining software verifiers participating in SV-COMP as
verification engines and Btor2C as preprocessing. In an extensive experiment [5],
software verifiers are shown to detect more bugs in Btor2 circuits than the best
conventional hardware model checkers, such as ABC [50] and AVR [51].

3.2 Representing Software Witnesses as Automata

Software witnesses can be represented as protocol automata [2], describing program
invariants needed to construct a safety proof or program paths leading to a property
violation. A letter in the alphabet of such a protocol automaton is a pair of a set
of program edges and a condition over program variables. The set of program
edges indicates the control flow, and the condition can be used to restrict the
state space of the program. Program invariants that should hold at a certain
program location can be annotated to a protocol automaton. In the following, we
give an example correctness witness for the C program in Fig. 2b and an example
violation witness for the same C program but with line 8 commented out.

s0start

s1b>=0 && b<=1

o/w

o/w

8: ⊤

Fig. 3: A correctness witness

Correctness Witnesses. Figure 3 shows an exam-
ple correctness witness for the C program in Fig. 2b.
The correctness witness shows that a program in-
variant b>=0 && b<=1 is established once line 8 is
executed. Indeed, variable b switches between 0
and 1 after being initialized, and b>=0 && b<=1 is
an invariant at the loop head of the program. A program invariant is stored as
a C expression in a software witness and hence potentially more compact than
invariants represented in other formalisms, e.g., a bit-level AIGER [49] circuit.

q0start

q1

q2

q3

qE

o/w

o/w

o/w

o/w

6: b==2

10: ⊤

10: ⊤

10: in==42

Fig. 4: A violation witness

Violation Witnesses. Figure 4 shows an example
violation witness for the modified C program with
variable b uninitialized (by commenting out line 8
in Fig. 2b). The violation witness shows how to
reach the error in line 12 of the C program. First,
it assumes the value of variable b to be 2 via the
condition when line 6 is executed. Second, it goes to
the next state when line 10 is executed for the first
two times. Third, it assumes the external input
to be 42 when line 10 is executed for the third
time. Indeed, the error in line 12 can be reached if
variable b gets an initial value of 2 and the external
input equals 42 in the third loop iteration.

1 The intermediate variables in the actual output program of Btor2C are omitted.

https://www.sosy-lab.org/research/btor2c/
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Invariant
Quality

C Program

Correctness
Witness

Btor2 Circuit

Invariant
Extractor

Btor2
Witness Circuit

Circuit
Instrumentor

Instrumented
Circuit(s) HW Verifier Verdict

Btor2-Val for Correctness WitnessesWitness Translation

(a) Validating correctness witnesses by circuit instrumentation and verification

C Program

Violation
Witness

Btor2 Circuit

Input/State Value
Extractor

Btor2
Violation Witness

HW Simulator
(BtorSim) Verdict

Btor2-Val for Violation WitnessesWitness Translation

(b) Validating violation witnesses by circuit simulation

Fig. 5: Witness translation and validation in Btor2-Cert and Btor2-Val

4 Architecture of Btor2-Cert and Btor2-Val

We instantiate the proposed certifying and validating hardware-verification frame-
work in Fig. 1b as Btor2-Cert2 with the Btor2-to-C translator Btor2C [5],
model checkers for C programs [52] that can produce verification witnesses in the
format discussed in Sect. 3, a C-to-Btor2 witness translator, and the witness
validator Btor2-Val. Figure 5 shows the translation and validation flows for
correctness (in Fig. 5a) and violation witnesses (in Fig. 5b). Both the translator
and the validator Btor2-Val for Btor2 witnesses are implemented in Python 3.
Btor2-Val is based on a portfolio of hardware verifiers and simulators, with differ-
ent tools coordinated by the cooperative-verification framework CoVeriTeam [28].

4.1 Validating Correctness Witnesses

Given a safe Btor2 circuit, its translated C program, and a correctness witness
produced by some software verifier, Btor2-Cert certifies the results of the software
verifier in two steps, as depicted in Fig. 5a. In the first step of witness translation,
Btor2-Cert extracts the invariant at the loop head of the C program and
represents it as a Btor2 circuit. The Btor2 circuit is named a witness circuit
and refers to the state variables of the original circuit from its primary inputs.
Second, in the validation step, Btor2-Val takes as input the original circuit, the
witness circuit, and a user-defined parameter called invariant quality that specifies
the level of strictness imposed on the invariant. Btor2-Val offers three levels
of invariant quality to users, based on which it instruments the original circuit.
Hardware verifiers are invoked on the instrumented circuit and will deem it safe
if the invariant meets the specified invariant quality for reconstructing a safety
proof. The details of validating correctness witnesses are presented in Sect. 5.
2 https://gitlab.com/sosy-lab/software/btor2-cert

https://github.com/Boolector/btor2tools
https://gitlab.com/sosy-lab/software/btor2-cert
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4.2 Validating Violation Witnesses

Given an unsafe Btor2 circuit, its translated C program, and a violation witness
produced by some software verifier, Btor2-Cert certifies the results of the software
verifier in two steps, as depicted in Fig. 5b. In the first step of witness translation,
Btor2-Cert extracts the values for external inputs and uninitialized states from
the software violation witness and encodes the information as a Btor2 violation
witness [7]. Second, in the validation step, Btor2-Val invokes BtorSim [26], a
simulator for Btor2 circuits, to decide whether the Btor2 violation witness can
trigger a bug in the original circuit. The details of validating violation witnesses
are presented in Sect. 6.

5 Certifying Results of Software Verifiers: Correctness

In this section, we describe how Btor2-Cert certifies verification results for safe
verification tasks. The Btor2 circuit and its translated C program in Fig. 2
as well as the software correctness witness in Fig. 3 will be used to explain the
translation and validation of correctness witnesses, as outlined in Fig. 5a.

5.1 Witness Translation

Given a software correctness witness with a predicate annotated at the loop
head of the translated C program, which some software verifier claims to be an
invariant,3 Btor2-Cert considers the predicate as a candidate invariant for the

1 sort bitvec 8

2 sort bitvec 1

3 zero 1

4 one 1

5 input 1 ; state "b"

6 ugte 2 5 3 ; b >= 0

7 ulte 2 5 4 ; b <= 1

8 and 2 6 7

9 output 8

Fig. 6: A witness circuit

original Btor2 circuit and extracts it to reconstruct a
safety proof. We encode the candidate invariant, written
as an expression in the programming language C, into a
combinational Btor2 circuit whose inputs refer to the
state variables of the original Btor2 circuit and unique
output asserts the predicate. Translating C expressions
into Btor2 circuits is feasible thanks to the word-level
data sorts and operations in the Btor2 language [7].
We name the combinational Btor2 circuit a witness
circuit and refer to it as a Btor2 correctness witness.
Note that our notion of a witness circuit is different
from Certifaiger’s definition of a k-witness circuit [29], which is a sequential
circuit simulating k-step execution of the original circuit in one step. Figure 6
shows the witness circuit generated from the software correctness witness in Fig. 3.
The input defined in line 5 refers to state variable b of the Btor2 circuit in Fig. 2a.
The output defined in line 9 asserts the candidate invariant b >= 0 && b <= 1.

5.2 Witness Validation via Verification

Following the idea of validation via verification [27], the validator Btor2-Val in
Btor2-Cert checks Btor2 correctness witnesses by instrumenting the original
circuit with the witness circuit and invoking hardware model checkers. It distin-
guishes three levels of quality for a candidate invariant computed by software
3 Many mature verifiers in SV-COMP derive invariants at loop-head locations.
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Table 1: Candidate invariants at the loop head of the program in Fig. 2b
Predicate Quality Reason

⊥ not invariant M |= Inv fails.
⊤ invariant but unsafe Inv ⇒ P fails.
b!=2 safe invariant but not inductive Inv(s) ∧ TR(s, s′) ⇒ Inv(s′) fails.
b>=0 && b<=1 safe and inductive invariant All checks succeed.

verifiers. According to the notation introduced in Sect. 3, we denote the state-
transition system of the original Btor2 circuit by M, with initial states I(s), a
transition relation TR(s, s′), and a safety property P (s). A predicate Inv(s) is

• an invariant if M |= Inv,
• a safe invariant if M |= Inv and Inv(s) ⇒ P (s), and
• a safe and inductive invariant if (1) Inv(s) ⇒ P (s), (2) I(s) ⇒ Inv(s), and

(3) Inv(s) ∧ TR(s, s′) ⇒ Inv(s′).

In the literature [29], the three conditions for safe and inductive invariants are
also named consistency, initiation, and consecution, respectively. Table 1 shows
four predicates and highlights their respective quality as an invariant at the loop
head of the program in Fig. 2b (P is the negated error condition).

Btor2-Val takes the original Btor2 circuit, the witness circuit, and a user-
specified invariant quality for the correctness witness as input and instruments the
original circuit accordingly. To check if Inv(s) is an invariant helpful to reestablish
a proof of P , Btor2-Val combines the witness circuit and the original circuit by
connecting the state variables of the original circuit to the corresponding inputs of
the witness circuit. That is, Btor2-Val builds a circuit that encodes M |= Inv∧P .
The instrumented circuit is given to hardware model checkers, which will utilize
the information provided by the witness circuit to find a proof of correctness or
refute the predicate if it is not an invariant. Note that the verification time of the
instrumented circuit is expected to be shorter than that of the original circuit
because the predicate can guide the search of hardware model checkers.

To implement the consistency, initiation, and consecution checks for safe
or inductive invariants, Btor2-Val also relies on circuit instrumentation and
hardware model checkers. While the three checks are not model checking but
satisfiability in essence, it is convenient to encode them as combinational Btor2
circuits. Moreover, some hardware model checkers, such as ABC [50], can simplify
the circuits before performing satisfiability solving, which is usually faster than
solving the queries directly with satisfiability solvers.

6 Certifying Results of Software Verifiers: Violation

In this section, we describe how Btor2-Cert certifies verification results for
unsafe verification tasks. The unsafe versions of the Btor2 circuit and its
translated C program in Fig. 2 with the state variable b being uninitialized
(namely, with line 10 in Fig. 2a and line 8 in Fig. 2b commented out) as well as
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the software violation witness in Fig. 4 will be used to explain the translation
and validation of violation witnesses, as outlined in Fig. 5b.

The Btor2 language defines a format for violation witnesses [7]. A Btor2
violation witness contains a sequence of input values fed to the Btor2 circuit
in each cycle and the initial values for uninitialized state variables. Figure 7
shows an example violation witness for the unsafe version of the Btor2 circuit
in Fig. 2a. It demonstrates how to trigger the error specified by the 0th bad
statement (indicted by b0) via giving the initial value 2 to the 1st state variable b
(under #0; a is the 0th state variable) and 42 to the 0th input in in the 2nd
cycle (indicated by @2). The simulator BtorSim [26] takes a Btor2 circuit and
a Btor2 violation witness and executes the circuit with the values for inputs
and states in the witness. It confirms the violation witness if an error is triggered.
The violation witness in Fig. 7 does not specify input values in the first two
cycles because they are irrelevant to the error. In this case, BtorSim will assume
the unspecified values to be zero.

6.1 Witness Translation

sat

b0

#0

1 00000010 ; b==2

@0

@1

@2

0 00101010 ; in==42

.

Fig. 7: A Btor2 vio-
lation witness

Given a software violation witness of the translated C pro-
gram, Btor2-Cert extracts the conditions over program
variables from the protocol automaton. These conditions
are used by the software violation witness to prune out
irrelevant program paths and highlight an error path.
Btor2-Cert uses such information to give values to the
corresponding Btor2 inputs and state variables in the
form of a Btor2 violation witness. For example, the soft-
ware violation witness in Fig. 4 will be translated to the
Btor2 violation witness in Fig. 7.

6.2 Witness Validation via Execution

Following the idea of execution-based witness validation [47], Btor2-Val checks
Btor2 violation witnesses by invoking the simulator BtorSim on the original
Btor2 circuit and the translated Btor2 violation witness. An advantage of
execution-based witness validation is its speed: In our evaluation, Btor2-Val
was able to validate Btor2 violation witnesses translated from software vio-
lation witnesses much faster than software verifiers for finding the bugs. The
speed of Btor2-Val minimizes the overhead to validate the alarms reported by
software verifiers and makes the results of software verifiers more trustworthy
and transparent for hardware designers.

7 Evaluation

To address the open questions highlighted in Sect. 1.1, we evaluated the pro-
posed certifying hardware-verification framework Btor2-Cert on more than 1 000
Btor2 circuits and the witness validator Btor2-Val prepended with witness
translation against the top contenders in the witness-validation track of SV-COMP
2023 [24]. Our experiment is designed to answer the following research questions:
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• RQ1: Can Btor2-Cert translate software witnesses to Btor2 witnesses?
• RQ2: Is Btor2-Val prepended with witness translation effective compared

to state-of-the-art software witness validators?
• RQ3: Is Btor2-Val prepended with witness translation efficient compared

to state-of-the-art software witness validators?
• RQ4: Is the run-time consumed by witness validators shorter than the run-

time consumed by software verifiers?
• RQ5: Can Btor2-Cert complement conventional hardware model checking

by providing additional certified verification results?

7.1 Benchmark Set

We executed our experiments on a benchmark set consisting of 1214 safety-
verification tasks of Btor2 circuits, among which 758 are safe and 456 are unsafe.
The verification tasks are collected from HWMCC as well as other sources and were
used to compare the performance of hardware and software model checkers [5].

7.2 Experimental Settings

All experiments were conducted on machines running Ubuntu 22.04 (64 bit),
each with a 3.4GHz CPU (Intel Xeon E3-1230 v5) with 8 processing units and
33 GB of RAM. The resource limits imposed on verifying translated C programs
and validating generated witnesses are both set to 2 CPU cores, 15min of CPU
time, and 15GB of RAM. We used BenchExec [53] to ensure reliable resource
measurement and reproducible results. Btor2-Cert uses Btor2C at commit
36c1ad52 for translating a Btor2 circuit to a C program. In our experiment, we
configure the witness validator Btor2-Val to use the PDR [54] implementation
in ABC [50] at commit 65ccd3cc and BtorSim [26] as the underlying hardware
model checker and simulator, respectively.4 We also tried AVR [51] for validating
correctness witnesses, but it encountered errors on many instrumented circuits
even though the circuits are syntactically valid according to Btor2Tools [26].

7.3 Evaluated Verifiers and Validators

To verify the translated C programs, we used CPAchecker [12] at revision 44619
and UAutomizer [15] at commit 6fd36663 on safe tasks because they are good
at constructing invariants in the competitions. We configured CPAchecker to
run four algorithms based on Craig interpolation [55], including IMC [56, 57],
ISMC [58], Impact [59], and predicate abstraction [60]. On unsafe tasks, we evalu-
ated the BMC [61] implementations in CPAchecker, Cbmc [13], and Esbmc [14]
because BMC is the prevailing technique for bug hunting. Both Cbmc and Esbmc
were downloaded from the archiving repository of SV-COMP 2023 [52]. For UAu-
tomizer, we used its default settings in SV-COMP for both safe and unsafe tasks.

To evaluate Btor2-Val, we prepended it with the witness-translation step and
compared the combination, which takes software witnesses as input, to validators
for software witnesses. For correctness witnesses, we evaluated the first place
4 As ABC works on the bit level, we bit-blasted Btor2 circuits into the AIGER format

with Btor2AIGER [26] before invoking ABC.

https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/tree/6c2870427db379c9de050d54a1b74768b6a85d18
https://gitlab.com/sosy-lab/software/btor2c/-/tree/36c1ad528f1d6eb45a21728f5a1d66e48b3c200a
https://github.com/berkeley-abc/abc/tree/65ccd3cc692d2a7976d7d57954bc2572ddb9c9c9
https://svn.sosy-lab.org/software/cpachecker/branches/export-btor2c-invariants@44619
https://github.com/ultimate-pa/ultimate/tree/6fd36663860db5b5209d174c8d3ac52bc681e931
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winner UAutomizer of the witness-validation track in SV-COMP 2023 [24]. We
also used an emerging validator LIV [46] at commit cf736e45, which decomposes
a program into straight-line sub-programs to check inductive invariants. We cannot
compare Btor2-Val to Certifaiger [29, 30] because Certifaiger consumes a
candidate inductive length as input, while Btor2-Val expects an invariant from
the witnesses. For violation witnesses, we compared Btor2-Val to execution-based
validators [47] CPA-w2t and FShell-w2t. The former is of the same version
as CPAchecker (i.e., at revision 44619) and the latter was downloaded from
the tool archive of SV-COMP 2023 [52]. We also evaluated MetaVal [27], a tool
using validation via verification, but it did not terminate when instrumenting the
translated C programs and failed to validate any witness in our experiment.

7.4 Results
RQ1: SW-to-HW Witness Translation. The upper part of Table 2 (resp.
Table 3) shows the numbers of correctness (resp. violation) witnesses produced by
the software verifiers and those successfully translated by the witness translator in
Btor2-Cert. Table 2 additionally shows in its 2nd row the numbers of software
witnesses with candidate invariants annotated to the loop head of a translated C
program. About 97 % of the candidate invariants in software correctness witnesses
can be translated to Btor2 witness circuits. The CPAchecker’s 14 candidate
invariants that cannot be translated were due to the C-expression parser5 exceed-
ing the time limit when constructing abstract syntax trees. This is a technical
limitation orthogonal to the proposed approach. Furthermore, all 4 candidate in-
variants of UAutomizer that could not be translated refer to undeclared program
variables, rendering the witnesses to be syntactically incorrect.6

For software violation witnesses, all of them were successfully translated by
Btor2-Cert. The median translation time was below 2 s for both correctness
and violation witnesses. Moreover, measured by the number of lines of a Btor2
witness, the translated correctness witnesses have a median size of 321, and the
violation witnesses have a median size of 308. The results show the feasibility to
translate and represent the information found by software verifiers in a native
hardware-modeling format.

RQ2: Effectiveness of Btor2-Val. The lower part of Table 2 (resp. Table 3)
summarizes the numbers of correctness (resp. violation) witnesses that were
validated by Btor2-Val and the compared validators.

Btor2-Val was able to validate the correctness witnesses produced by both
CPAchecker and UAutomizer. When configured to accept safe and inductive
invariants (recall the three levels of invariant quality in Sect. 5), it validates 329
out of 576 correctness witnesses translated to Btor2 witness circuits. In contrast,
UAutomizer, the winner of the witness-validation track in SV-COMP 2023 [24],
was not able to validate any correctness witness produced by CPAchecker (the
corresponding cells are marked as “-”). LIV is designed to confirm safe and
inductive invariants [46] and accepted 305 correctness witnesses in total, similar
5 Btor2-Cert uses pycparser 2.21 (https://github.com/eliben/pycparser).
6 https://github.com/ultimate-pa/ultimate/issues/660

https://gitlab.com/sosy-lab/software/liv/-/tree/cf736e4579e10cf6c909cfa2d12f2a8c167f51fb
https://svn.sosy-lab.org/software/cpachecker/branches/export-btor2c-invariants@44619
https://github.com/eliben/pycparser
https://github.com/ultimate-pa/ultimate/issues/660
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Table 2: Summary of results on validating correctness witnesses

Val.
Verif. CPAchecker

UAutomizer
Sum of each analysis

IMC ISMC Impact PredAbs accepted rejected others

(proofs) 119 85 155 182 79 620 - -
w/ candidate inv. 114 79 148 178 75 594 - -
translated 113 79 139 174 71 576 - -

B
t-

V
a
l invariant 77 66 117 119 67 446 105 69

safe 27 47 90 118 45 327 228 65
safe& inductive 28 47 90 118 46 329 243 48

LIV 15 32 95 122 41 305 252 63
UAutomizer - - - - 74 74 2 3

Table 3: Summary of results on validating violation witnesses

Val.
Verif. Cbmc CPAchecker Esbmc UAutomizer

Sum of each analysis
accepted rejected others

(alarms) 369 197 302 31 899 - -

Btor2-Val 59 197 295 27 578 321 0
CPA-w2t 0 122 0 0 122 - 777
FShell-w2t 44 38 44 24 150 - 749

to Btor2-Val. Btor2-Val and LIV agreed on the majority of the correctness
witnesses, and the cases where they computed different verdicts were caused by
a bug7 in LIV, which has been fixed by its developers. The results show that
Btor2-Val is more robust than UAutomizer and achieves similar effectiveness
as LIV. We manually inspected several witnesses rejected by both Btor2-Val
and LIV and found that they indeed contain incorrect candidate invariants that
do not overapproximate the reachable state spaces. Such invalid invariants might
be caused by bugs in the conversion step of software verifiers from its internal
formula representation back to the programming language C.

Table 2 also reports the results when Btor2-Val is configured to accept
correctness witnesses with different levels of invariant quality. Overall, 77% of
the candidate invariants derived by software verifiers passed the invariant check
of Btor2-Val, but only 57% are deemed safe and inductive. As expected, the
number of rejections increases with the strictness for invariant quality. However,
there are 2 instances in Table 2 that passed the level “safe & inductive” but were
not confirmed at the level “safe” by Btor2-Val. Such cases occurred because
ABC, the backend verifier of Btor2-Val, ran into timeout when performing model
checking, whereas the consistency, initiation, and consecution checks based on
satisfiability easily went through. Among the four interpolation-based algorithms
in CPAchecker, predicate abstraction is the best in terms of invariant quality:
It generated the most safe and inductive invariants. The results demonstrate
the unique value of Btor2-Val to quantify the quality of invariants derived
by software verifiers.

For violation witnesses, Btor2-Val was far more effective than CPA-w2t
and FShell-w2t in our experiment. Among 899 violation witnesses generated
by software verifiers, Btor2-Val was able to validate 578 cases; It rejected

7 https://gitlab.com/sosy-lab/software/liv/-/issues/2

https://gitlab.com/sosy-lab/software/liv/-/issues/2
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Fig. 8: CPU-time comparison of verification and witness validation (unit: s)

other witnesses because they contain an incomplete or infeasible error path. In
comparison, CPA-w2t and FShell-w2t only confirmed 122 and 150 witnesses,
respectively. The numbers of rejected witnesses for CPA-w2t and FShell-w2t
are not listed in Table 3 as the tools do not distinguish rejection of witnesses
from other errors. We also observed that only 11 violation witnesses produced
by CPAchecker, Esbmc, and UAutomizer were not validated by Btor2-Val,
but witnesses generated by Cbmc suffered from a high rejection rate. This is
because the violation witnesses of Cbmc often report an infeasible error path.
Moreover, we notice that for many cases, different error paths are printed in
Cbmc’s violation witnesses and the console logs for its execution.8 If we extract
Btor2 violation witnesses from the console logs instead, Btor2-Val could validate
359 out of the 369 cases where Cbmc found an alarm. The effectiveness of Btor2-
Val in confirming translated Btor2 violation witnesses showcases the value
of Btor2-Cert because hardware designers can now trust software verifiers to
detect bugs in their circuits and obtain a certified test case to trigger an error
if software verifiers reported one.

RQ3: Efficiency of Btor2-Val. We compared the CPU time required for
Btor2-Val and other state-of-the-art validators. From our experimental results,
Btor2-Val (configured to accept safe and inductive invariants) achieved a median
speedup of 2.2× over LIV for correctness witness validation, and a median
speedup of 11× and 1.1× over CPA-w2t and FShell-w2t for violation witness
validation, respectively. In addition, Fig. 8 shows the scatter plots for the CPU
time consumption of the compared validators. A data point (x, y) in the plots
corresponds to a case where CPAchecker took x seconds to produce a witness
and a validator took y seconds to validate the witness. Observe that most data
points of Btor2-Val are below those of other validators. The efficiency of the
proposed certifying framework in translating and validating violation witnesses
minimizes the overhead to apply software analyzers to find hardware bugs and
makes the results of software verifiers trustworthy for hardware designers.

8 https://github.com/diffblue/cprover-sv-comp/issues/70

https://github.com/diffblue/cprover-sv-comp/issues/70
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RQ4: Verfication versus Validation Time. Figure 8a (resp. Figure 8b)
compares the CPU time for CPAchecker to compute a verdict and generate a
correctness (resp. violation) witness to the CPU time for a validator to check
the witness. We can see that almost all data points are below the diagonal,
indicating that validation time is typically shorter than verification time. Such
speedup shows that the validators are able to utilize the information in witnesses
to reconstruct proofs of correctness or violation more efficiently than verifying
the task from scratch.

RQ5: Complementing HW Model Checking with Btor2-Cert. The
empirical evaluation in the TACAS 2023 publication [5] on Btor2C demonstrates
that software verifiers are able to complement the state-of-the-art hardware model
checkers by finding more bugs and uniquely solving dozens of tasks. We take a
step further and investigate whether the verification results of those additional
alarms and uniquely solved tasks can be certified by Btor2-Cert.

Btor2-Cert certified 37, 1, and 4 alarms found by the BMC implementa-
tions of Cbmc, CPAchecker, and Esbmc, respectively, which cannot be detected
by the BMC implementation of ABC.9 The additional alarms found by Cbmc
alone account up to 8% of unsafe tasks in our benchmark set. With the help
of Btor2-Cert, the violation witnesses generated by software verifiers can be
translated to Btor2 witnesses and validated by BtorSim. That is, the property
violation reported by software verifiers can be replayed fully in the hardware
domain, demonstrating the unique ability of Btor2-Cert to provide trustworthy
verification results obtained by software analyzers.

For property satisfaction, although the previous study shows that software
verifiers are not as good at finding proofs for correctness as their hardware
counterparts, we still observed a case where ABC (the backend verifier used by
Btor2-Val) went into timeout but only required less than 3 s to reconstruct
a proof using the invariant generated by CPAchecker, and another case with
a 5× run-time speedup.

Summaries of Results. From the reported results, we conclude that (1) software
witnesses can be translated to hardware witnesses (Table 2 and Table 3), (2) Btor2-
Val is effective (Table 2 and Table 3) and efficient (Fig. 8), (3) witness validation by
Btor2-Val consumes less time than software verification (Fig. 8), and (4) Btor2-
Cert complements state-of-the-art hardware model checkers.

As a by-product of this work, our intensive investigation of software witnesses
led to the discovery of several bugs in software verifiers. We reported the issues
to the developers of the tools, and some of the bugs have been fixed. A complete
list of issues that we found in software analyzers during this project is available
on the supplementary webpage [62].

7.5 Threats to Validity

For external validity, our claims are established on a large set of Btor2 circuits
to increase confidence, but it is unclear if they will hold on tasks with different

9 We considered the 359 validated witnesses translated from console logs of Cbmc.

https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/blob/6c2870427db379c9de050d54a1b74768b6a85d18/bv/btor2/goel-opensource/pipeline.btor2
https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/blob/6c2870427db379c9de050d54a1b74768b6a85d18/bv/btor2/goel-crafted/paper_v3.btor2
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features that are not covered in the used benchmark set. For construct validity,
we report that witness validation is faster than verification, but validation and
verification were done on behaviorally equivalent but syntactically different models
(namely, a Btor2 circuit vs. a C program). While the setting is not exactly the
same as in a previous publication [4], it is necessary because our experiment is
designed to investigate how information in software witnesses can be used by
hardware analyzers. We compared Btor2-Val prepended with witness translation
to software witness validators. The former also uses the original Btor2 circuit
as input, but the validators for software do not leverage circuit information.
We performed the comparison this way because the hardware witness validator
Certifaiger [29] does not accept an invariant as input. For internal validity, we
ran the experiments with the popular benchmarking framework BenchExec [53]
to guarantee reproducibility.

8 Conclusion

Validating verification results is vital to make formal methods applicable in
practice, as it reinforces the trust of users and offers more insights into the
analyzed model. In this manuscript, we proposed Btor2-Cert, a certifying and
validating hardware-verification framework built upon translators and software
analyzers. Btor2-Cert is an open-source toolchain, involving the Btor2-to-C
translator Btor2C, certifying verifiers for C programs, a C-to-Btor2 witness
translator, the Btor2 simulator BtorSim, and the validator Btor2-Val. We
evaluated Btor2-Cert’s capability of transferring the information across software
and hardware analyzers and providing certified verification results on a large
benchmark set. By employing software model checkers for hardware verification, we
identified and certified 8 % of the unsafe tasks in our benchmark set that the state-
of-the-art conventional hardware model checker ABC overlooked. For future work,
we will augment Btor2-Cert to accommodate temporal decomposition [48], a
preprocessing technique used to simplify sequential circuits before model checking.
Such extension [31] has been made to k-inductiveness validators [29, 30].

Data-Availability Statement. All verification tasks, tools, and experimental
results from our evaluation are available in the reproduction artifact [63]. A
previous version [64] of the reproduction package was reviewed by the Artifact
Evaluation Committee. The updated version [63] fixes some bugs in the witness
translator. More information is available on the supplementary webpage [62].
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