
Non-termination Witnesses and Their Validation
Zsófia Ádám 1, Paulína Ayaziová 3, Levente Bajczi 1, Dirk Beyer 2B, Marek Jankola 2,

Marian Lingsch-Rosenfeld 2, and Jan Strejček 3

1Department of Artificial Intelligence and Systems Engineering,
Budapest University of Technology and Economics, Budapest, Hungary

2Institute for Informatics, LMU Munich, Munich, Germany
3Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract—Designing algorithms for complex problems as
certifying algorithms is an important approach to ensure
correctness of computational results. Instead of producing an
output y for an input x, a certifying algorithm produces as
output for x not only y but also a witness w. The witness w (also
called certificate) can now be used to check that y is indeed the
correct output for input x. Witnesses and their validation also
exist in the area of automatic software verification, and a large
number of tools support verification witnesses. SV-COMP 2025
reports 62 verifiers producing witnesses and 18 tools for witness
validation. In 2023, a new version 2.0 of the witness format for
software verification was introduced to overcome several problems
with the previous format, and this new format is now widely
supported. However, there is no format with a clear definition
and semantics for witnesses of non-termination. This paper closes
this gap by presenting an extension of the witness format 2.0 to
support program non-termination. Besides explaining the design
of this extension, we describe various approaches to generate
and validate non-termination witnesses. We also give an overview
of current tool support of the extended format, i.e., the verifiers
that can generate non-termination witnesses and the witness
validators able to analyze these witnesses. Finally, we present
an experimental evaluation showing the performance of these
tools on program-termination tasks of SV-COMP 2025.

Index Terms—Verification Witness, Software Verification,
Validation, Exchange Format, Non-termination, Counterexample

I. INTRODUCTION

The task of automatic tools for software verification
is to decide whether a given program satisfies a given
property. Negative answers are traditionally accompanied
by a counterexample, which is a description of a program
execution that violates the property. The first generic exchange
format for counterexamples, also called violation witnesses,
was introduced in 2015 [1]. This standardized GraphML-based
format allowed for the validation of violation witnesses and
was soon adopted by the Competition on Software Verification
(SV-COMP) [2]. The format was quickly extended to cover
also correctness witnesses, i.e., the arguments for the decision
that the program satisfies the property [3]. The final version of
the format [4], now called witness format 1.0, supports many
program features and properties, including program termination.

Several years ago, the community around SV-COMP iden-
tified some serious drawbacks of the format version 1.0. The
main drawback is that its semantics is formulated over programs
represented as control-flow automata (CFA). This makes
the semantics over real programs ambiguous as there is no

commonly accepted transformation of real programs to CFAs,
and existing transformations differ in several aspects, such as
granularity of instructions on edges or handling of function
calls. Other identified issues are, for example, that some features
of the format are unused in practice and not supported by any
tools, or that there are only vague descriptions of some parts
of the format, including witnesses of program non-termination.

In reaction to the drawbacks, a new witness format 2.0 [5]
was introduced in 2023 and quickly adopted by the
community [6]. This YAML-based format has a semantics
defined directly on C programs, and its principles are easily
adoptable to any imperative language. The initial version
of format 2.0 supports only some basic safety properties:
unreachability of a given error function, reachability of signed
arithmetic overflow, and unreachability of an invalid pointer
dereference. One of the most important properties currently
not supported by the witness format 2.0 is termination.

In this paper, we focus on counterexamples to termination,
i.e., termination violation witnesses, which can be also called
non-termination witnesses. Note that a program execution
can be non-terminating basically for two reasons:

1) it is blocked by some instruction (e.g., it waits endlessly
for some event that will never happen) or

2) it runs forever (i.e., evaluates an infinite sequence of
instructions, typically corresponding to the repeated
evaluation of a program loop).

The programs with non-terminating executions of the first
kind can be detected by a suitable reachability analysis.
In this paper, we consider solely the non-terminating
executions of the second kind.

We first recall background and related work relevant to (non-)
termination program analysis (Sect. II). Then, we introduce
the extension of witness format 2.0 to support non-termination
witnesses and explain our design choices (Sect. III). We
extended several state-of-the-art open-source verification tools
to generate non-termination witnesses in the extended format,
namely, SYMBIOTIC [7], THETA [8], and TRANSVER [9]. We also
extended several state-of-the-art open-source witness validation
tools to analyze these witnesses, namely, CPACHECKER [10]
THETA, and WITCH [11]. We describe the approaches of
individual verification (Sect. IV) and validation (Sect. V)
tools to generate and analyze the witnesses, respectively.
Finally, we present an experimental evaluation of these tools
on non-terminating programs of SV-COMP 2025 (Sect. VI).

https://doi.org/10.5281/zenodo.17237968
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0003-1072-8137
https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0003-4832-7662
mailto:dirk.beyer@sosy.ifi.lmu.de
https://orcid.org/0009-0008-7961-190X
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0001-5873-403X


Contributions. We make the following contributions:
• an extension to the witness format 2.0 to support

non-termination witnesses; in contrast to the old witness
format 1.0, the extension offers non-termination witnesses
with clearly specified syntax and semantics,

• implementations of the export and validation of non-
termination witnesses in the extended format in multiple
state-of-the-art tools based on different approaches,

• an evaluation of these tools on all relevant benchmark
tasks of SV-COMP 2025 [12], and

• a set of handcrafted witnesses [13], written in the
extended witness format, in order to encourage and
facilitate its adoption by the community.1

Further, we integrated our proposal with all other current
proposals for extensions of the witness format 2.0 [14, 15],
developed their joint documentation and contributed to the
release of version 2.1 of the format and its linter.

II. BACKGROUND AND RELATED WORK

A large body of research results and literature is available
to support the foundation and inspiration of our work. We
provide a short overview of the area below.

Verification Witnesses. Our contributions build on the concept
of certifying algorithms [16], which was first applied to
graph algorithms. The concept of witnesses was introduced
to software verification in 2013 [17], and the first standard
exchange format based on GraphML was proposed in
2015 [1]. The format was later extended to include correctness
witnesses [3] and witnesses for concurrent programs [18].
Verification witnesses were also used for deriving test cases [19]
and for debugging [20]. An overview is also provided in
the literature [4]. The latest development was the new
format version 2.0 [5], which is based on the YAML format.
Extensions were proposed to include ghost variables to witness
the correctness of concurrent programs [14] and to include
function contracts [15]. The community around the termination
competition (termCOMP [21]) has developed the CPF [22]
format for certifying termination of term-rewriting systems.

Termination. Program termination is one of the most important
properties to be mentioned in specifications for software,
considered for a long time in computer science [23, 24, 25].
Proving termination was made practically relevant by the
seminal papers by Podelski and Rybalchenko [26, 27] and
made applicable to industry shortly afterwards [28, 29]. The
problem of termination, if restricted to finite systems, can
be reduced to a reachability problem [30].

Non-termination. It is also important to consider proving that
a program does not terminate (i.e., it has some infinite run),
and there is a large set of verification tools supporting this.
There are 15 participants of SV-COMP 2025 with positive
scores in the category for program termination2 and 13 of
them decided that some programs have non-terminating

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_
requests/1634

2https://sv-comp.sosy-lab.org/2025/results/results-verified/META_
Termination.table.html

runs. We refer to the competition report [12] for obtaining
references to literature about those tools. By using reductions
from termination to reachability, even bounded model checkers
(e.g., [31]) or test-generation tools such as fuzzing tools
(e.g., [32]) can be used to prove non-termination.

The GraphML-based witness format [1] was extended for
non-termination of C programs (https://gitlab.com/sosy-lab/
benchmarking/sv-witnesses/-/tree/svcomp18/termination), and
this extension was soon adopted by several verification and
validation tools and by SV-COMP since 2018 (https://sv-comp.
sosy-lab.org/2018/rules.php). While the extension of the format
for non-termination witnesses and the fact that it served as the
community standard for many years is a great achievement, it
suffers from some serious problems (partly inherited from the
original GraphML-based witness format): some requirements
on the structure of non-termination witnesses are not clearly
stated, and the semantics over real programs is ambiguous.
As a consequence, some tools produce or even validate
non-termination witnesses that do not follow the format.3

Our work extends the witness format 2.0 to accommodate
non-termination witnesses. We aim for a clear description of
the extension, unambiguous semantics, and providing useful
information, even in minimal non-termination witnesses.

Approaches to Proving Non-termination. The approaches
that researchers have tried out so far include recurrent set
construction [31, 35, 36, 37], loop acceleration [38, 39], and
program-reversal techniques [40]. Some of our tool extensions
use an approach based on lassos with recurrent sets.

Lassos. One of the standard approaches [41, 42, 43] to prove
non-termination for a given program is to find a lasso with
a recurrent set [35] of program states. A lasso for a given
program p consists of two parts. The first part, called stem, is
a finite path of p that starts at the initial program location and
leads to a program location l. The second part, called loop, is
a finite path of p (with at least one transition) leading from l
back to l. The lasso is feasible if there exists an execution
along the stem followed by infinitely many copies of the loop.
To prove that a given loop is feasible, it is sufficient (but
not necessary) to find a recurrent set R of program states at
program location l such that at least one state of R is reachable
from the initial program location by executing the stem and
from each program state of R it is possible to reach a program
state from R again by executing the loop. The recurrent set R
is often represented by a formula called recurrence condition.

III. NON-TERMINATION WITNESS FORMAT

Before we introduce the format extension, we briefly recall
the shape of violation witnesses in format 2.0. The details
including the precise syntax and full semantics can be found
in the corresponding paper [5]. We then describe the format
extension along with our design decisions and show the
improved informative quality of even minimal witnesses.

3For example, the format [4] explicitly requires that each termination
violation witness must contain at least one node marked as cyclehead,
but APROVE [33] and BUBAAK [34] produce non-termination witnesses without
any such node and some of them are even validated by some witness validators.

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/tags/2.1
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1634
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1634
https://sv-comp.sosy-lab.org/2025/results/results-verified/META_Termination.table.html
https://sv-comp.sosy-lab.org/2025/results/results-verified/META_Termination.table.html
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/tree/svcomp18/termination
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/tree/svcomp18/termination
https://sv-comp.sosy-lab.org/2018/rules.php
https://sv-comp.sosy-lab.org/2018/rules.php


Note that the format 2.0 can describe only violation
witnesses of specific safety properties. A program violates a
safety property if it has an execution that enters an unsafe
program state. A violation witness in format 2.0 describes a set
of some program executions violating the considered property
and the witness is considered to be valid if the set is non-empty.

Structure of Violation Witnesses 2.0. A violation witness
in format 2.0 is a finite sequence of segments, where each
segment consists of a sequence of finitely many waypoints.
Each waypoint has a type , an action , and it is associated
with a program location . Some types of waypoints also
have a constraint . There are five possible waypoint types:

• an assumption waypoint claims that a given constraint

is satisfied immediately before the statement or declaration
identified by the location ,

• a branching waypoint must be associated with a branch-
ing statement and its constraint claims that the branch-
ing condition is evaluated to either true or false,

• a function_enter waypoint is associated with a
function call and claims that the called function is entered.
Waypoints of this type have no constraint ,

• a function_return waypoint is also associated with
a function call and claims that the function call has
been evaluated and that the returned value satisfies the
given constraint , and

• a target waypoint claims that the associated statement
or full expression contained in the statement violates the
considered safety property. Waypoints of this type have
no constraint .

A waypoint’s action is one of two possible values: (1) follow

indicates that the waypoint should be passed, while (2) avoid

indicates that the waypoint should be avoided. Waypoints
with the action avoid cannot be of type target .

Each segment is a finite sequence of waypoints with
action avoid terminated by one waypoint with action follow .
A segment with a follow waypoint of type target is
called final and all other segments are called normal. A
violation witness is a finite sequence of normal segments
terminated by one final segment.

Semantics of Violation Witnesses 2.0. An execution is repre-
sented by a witness with n segments if it can be divided into n
parts, where for every 1≤ i≤n, the i-th part matches the i-th
segment. An execution part matches a normal segment if

• it does not pass any waypoint with action avoid of the
segment,

• it ends in the moment when the follow waypoint of the
segment is passed, and

• the evaluation point of this follow waypoint is not
visited before by this execution part.

An execution part matches the final segment if:
• it does not pass any waypoint with action avoid of the

segment, and
• it enters an unsafe program state during evaluation of the

expression or statement pointed by the target waypoint.
The definition of passing a waypoint corresponds to the
intuitive meaning given above. We say that an execution

passes a waypoint if it visits its corresponding evaluation point
and the requirements given by its constraint are satisfied. For
example, an assumption waypoint is passed by an execution
that enters the associated location and the current program
state satisfies the constraint of the waypoint.

Note that avoid waypoints of a segment are evaluated
(but must not be passed) each time their evaluation point
is reached during the execution part, regardless of their
order in the segment, i.e., they can be evaluated in any
order an arbitrary number of times.

Design Decisions. The witness format 2.0 can only describe
finite traces and representing infinite executions requires
an extension of this format.

We had to decide whether our non-termination witnesses
will contain recurrence sets. At the end, we rejected this idea
for several reasons. First, a recurrent set can put a specific
constraint on the content of dynamically allocated memory
(e.g., that a dynamically allocated list is cyclic or descending)
and on the call-stack content, while currently there are no
established formalisms to efficiently handle such constraints in
witnesses. Second, verification techniques able to identify a non-
terminating program execution are not necessarily able to easily
derive the corresponding recurrence condition. Finally, validat-
ing the fact that some condition is a recurrence condition can
be expensive as one has to show that from every state satisfying
the condition there exists an execution path to a state satisfying
the same condition, whereas for validation of program non-
termination this might only be necessary for reachable states.

We were looking for a minimal extension of the witness
format 2.0 (in the terms of both syntax and semantics) that
would allow us to represent the (abstracted) stem and loop
of non-terminating program executions.

Structure and Semantics of Non-termination Witnesses.
We propose to extend the format with a new waypoint action
cycle which indicates that the waypoint has to be passed
infinitely often. Non-termination witnesses then use the above
defined normal segments and cycle segments, which are finite
sequences of avoid waypoints terminated by one waypoint
with action cycle . A non-termination witness is then a finite
sequence n1n2...nic1c2...cj of i≥0 normal segments n1,...,ni

followed by j > 0 cycle segments c1,...,cj .
Such a witness represents every infinite program execution

that can be divided into infinitely many non-empty parts such
that, for each k, the k-th execution part matches the k-th
segment of the sequence n1n2 ...ni(c1c2 ... cj)

ω, where the
definition of an execution part matching a cycle segment is
the same as the definition of matching a normal segment
given above. The witness is valid if it represents at least one
execution of the program for which it was produced.

The sequences n1n2...ni and c1c2...cj roughly correspond
to the stem and the loop of infinite executions. However, note
that each of the two sequences can represent many different
execution parts and thus the executions represented by such
a witness do not have to be ultimately periodic. In fact, they
do not even have to correspond to a program loop (it can
also represent, for example, an unbounded recursion).



1 int main() {
2 int i = nondet();
3 while (i > 0) {
4 if (i != 5) {
5 i = i-1;
6 }
7 }
8 return 0;
9 }

- entry_type: "violation_sequence"
metadata: ...
content:
- segment:
- waypoint:

type: "assumption"
constraint:

value: "i == 5"
format: "c_expression"

location:
file_name: Ex02_sim.c
line: 3

action: "follow"
- segment:

- waypoint:
type: "branching"
constraint:

value: "true"
location:

file_name: Ex02_sim.c
line: 3

action: "cycle"

qi

q1
cyclehead

qsink

3, i == 5

o/w

3, then o/w

3, else

Fig. 1: Program Ex02_sim.c (top, based on Ex02.c from SV-
Benchmarks) with a non-termination witness in format 2.1
(bottom left, based on Ex02.good1...yml from SV-Benchmarks)
and an equivalent witness in format 1.0 (bottom right)

- entry_type: "violation_sequence"
metadata: ...
content:
- segment:
- waypoint:

type: "assumption"
constraint:

value: "1"
format: "c_expression"

location:
file_name: ...
line: 123

action: "cycle"

qi
cyclehead

o/w

Fig. 2: Trivial non-termination witness in format 2.1 (left) and
in format 1.0 (right); the witness in format 2.1 contains more
information about the non-terminating behavior

Examples. An example of a simple non-termination witness
is provided in Fig. 1. The witness consists of one normal
segment and one cycle segment, both without any avoid
waypoints. While both waypoints refer to the same location,
the assumption waypoint is evaluated before the execution
reaches the while loop at line 3, and the branching

waypoint is evaluated after every evaluation of the controlling
expression of the loop. The witness then represents exactly
one execution of the given program, where the value of
i before the evaluation of the while loop is 5 and the
while loop never terminates. We also provide an equivalent
witness in format 1.0, which is a Büchi automaton with edges
matching the program statements. A precise description of the
syntax and semantics of non-termination witnesses in format
1.0 is, up to our best knowledge, not available.

To encourage adoption by the community, we contribute
a small set of handcrafted example witnesses that can also
be used as a test suite for developing a witness validator.
The example set contains two programs and 17 syntactically
correct witnesses (8 valid and 9 invalid), including the
example described above. All examples are contributed to the
SV-Benchmarks repository and published on Zenodo [13].

Minimal Non-termination Witnesses. In order to fulfill
a requirement to produce a verification witness, some
verification tools output simple witnesses that provide almost
no information. Figure 2 shows a minimal non-termination
witness in format 1.0 and format 2.1. While the minimal
witness in format 1.0 does not provide any useful information,
except the claim that the program is cycling, each non-
termination witness in format 2.1 has to contain at least
one cycle segment and the segment has to contain one
waypoint with action cycle . In Fig. 2, this waypoint is of
type assumption with a tautological constraint . Still, the
waypoint has to determine the corresponding location (in the
given witness, it is identified by the program line 123 in the
specified file). Each program execution represented by this
witness has to enter this location infinitely often. This means
that even a minimal witness in the new format has to provide
some relevant information about program non-termination.

IV. CONSTRUCTION OF NON-TERMINATION WITNESSES

We have implemented the support for the proposed extension
to the witness format 2.0 in multiple verifiers. In the following
sections, we first describe the common concepts that occur
in most of the approaches and then the individual techniques
of these tools with focus on the proposed witness format.

Liveness-to-Safety Reduction. Most of the verification and
validation approaches implemented in the presented tools
follow the same concept of reducing liveness checking to
safety checking [30]. In our setting, we reduce the verification
of non-termination, which is a liveness property, to the
verification of a safety property: reachability. Conceptually,
we add additional logic to the program or to the verification
algorithm to record a visited concrete state at the loop head.
The corresponding safety property then checks that each
subsequently visited state is different from the saved one.

In practice, tools typically introduce an additional ghost
variable v′ for each variable v modified inside the loop. The
values of v can be non-deterministically saved into v′ upon
each visit to the loop head. The property

∨
v∈LVar v ̸= v′,

where LVar is the set of variables modified in the loop, must
then hold after each loop iteration. If this property is violated,
it indicates the existence of a non-terminating execution that
revisits the same concrete state, saved in v′, infinitely often.

This reduction can be implemented either at the program
level or encoded directly into SMT queries posed by the
verification algorithm. The approach is sound but incomplete
for programs with infinite state spaces.

SYMBIOTIC. Symbiotic [7] is a program analysis tool that
combines configurable instrumentation, program slicing,

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/4aac1d903ec6c1edd4d356c071b3711f267a1a45/c/termination-restricted-15/Ex02.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/4aac1d903ec6c1edd4d356c071b3711f267a1a45/c/termination-restricted-15/witnesses/Ex02.good1.witness-2.1.yml
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks


and symbolic execution. Its termination analysis uses the
liveness-to-safety reduction, slicing, and symbolic execution
to verify assertion safety of the transformed program [44].

The analysis begins by instrumenting trivial infinite loops,
such as while(1){}, with failing assertions. The program is
then reduced by slicing [45] that uses non-termination sensitive
control dependence [46] and considers exit points of the
program and the added assertions as slicing criteria. SYMBIOTIC

then processes non-trivial loops that modify only program
variables and have a single entry. It applies a simplified liveness-
to-safety reduction by instrumenting the loop head such that
upon every visit, the current state is stored in the ghost variables,
and instrumenting the loop end with the corresponding assertion.
Hence, the assertion is violated only if the same state repeats
after one (but not necessarily the first) iteration of the loop.

This instrumented program is then explored by symbolic
execution to find possible violations of the instrumented
assertions. If such an error is found, SYMBIOTIC reports the
program to be non-terminating.

We extend SYMBIOTIC to produce witnesses in the proposed
format, utilizing its ability to generate witnesses for assertion
violations. Upon finding an assertion violation, SYMBIOTIC

obtains a vector of inputs that led the execution to the failed
assertion. As this vector does not contain the return values
of input functions that were removed by slicing, the process
is repeated without slicing, this time using the input vector
to significantly reduce the state space of the program. After
rediscovering the violation, a new input vector is generated
and converted into a witness based on function_return

waypoints specifying the inputs.
In our extension, if the failed assertion corresponds to

a trivial infinite loop, all inputs are turned into waypoints
in normal segments and the only cycle segment contains
an assumption waypoint with constraint "1" and a location
pointing into the loop. If the failed assertion corresponds to
a non-trivial loop, then the inputs read before the last iteration
of this loop are turned into waypoints in normal segments and
the inputs read during the last iteration before the assertion
violation are turned into waypoints in cycle segments. If
there are no inputs of the latter kind, we use the same cycle
segment as in the case of trivial infinite loops. The produced
witnesses do not contain any avoid -action waypoints.

THETA. The verification framework THETA [47] is primarily built
around symbolic model checking. Its modular architecture
enables a diverse set of verification algorithms to work on a
wide selection of input formats, including C programs [48, 49].
It supports three different verification approaches for
determining termination:

1) A lasso checker [50] using counterexample-guided abstrac-
tion refinement (CEGAR) with bounded unwinding [51];

2) A liveness-to-safety reduction for bounded techniques;
3) A transformation to a system of constrained Horn clauses

(CHCs), then solving with a dedicated CHC solver [52].
These approaches also represent the three configurations

of THETA in SV-COMP 2025 [12]: THETA for CEGAR-based
analyses, EMERGENTHETA for bounded techniques, and THORN

for delegating to CHC solvers.

1) CEGAR-Based Lasso Checking: The CEGAR
loop in THETA supports both straight and lasso-shaped
counterexamples [50]. Although the latter is primarily intended
to verify LTL properties, we can easily use it for termination
checking. To this end, we create a Büchi automaton accepting
all infinite sequences, and the verification starts by abstracting
the program with an initial coarse precision. It then builds the
synchronous product of the abstract model and the specification
automaton to search for accepting lassos. If no such shape
exists, the program is terminating. If a potential counterexample
is found, its feasibility is checked via a concretization step.
Spurious counterexamples lead to refinement and iteration.

THETA supports Boolean- and Cartesian-predicate abstraction,
as well as explicit-value abstraction [47]. We used explicit-value
abstraction for the experiments in Section VI.

2) Bounded Techniques: The EMERGENTHETA configuration
of THETA supports bounded model checking (BMC) [53],
k-induction [54], interpolation-based model checking
(IMC) [55], property directed reachability (PDR/IC3) [56],
and multi-valued decision diagram (MDD) analyses [57].
These all work on symbolic transition systems, which can
undergo a liveness-to-safety reduction to enable error state
reachability algorithms to prove non-termination. The detected
error trace is then transformed back into a lasso-shaped
trace before writing it into a witness file. We primarily used
k-induction for the experiments in Section VI.

3) Delegating to CHC Solvers: Constrained Horn clauses
are proven to be a convenient yet powerful representation of a
program verification problem [58, 59]. Encoding a program and
its safety property as constraints over predicates representing
program locations is both straightforward to do, and a
solution directly represents a useful abstraction of the system.
Termination, without a liveness-to-safety reduction, can be
encoded via an auxiliary index parameter in all predicates. In
this parameter, we keep track of the number of edges traversed
from the initial state (i.e., the length of the path from the initial
state to the current state), and if we encounter the same state
twice with different indices, the path leading through this state
back to itself is a counterexample to the termination property.

The THORN configuration relies on this transformation,
then solves the resulting system of CHCs using external
CHC solvers such as ELDARICA [52].

THETA was already capable of exporting reachability wit-
nesses, which we extended to export non-termination witnesses.
Extending the CHC solver-based method of THORN to termi-
nation was also added in this work.

Each configuration of THETA returns a sequence of actions
and states as a counterexample, which correspond to statements
in the program and the value of variables at certain sequence
points of the program execution. While we use large-block
encoding [60] on the edges of our CFA, we run a separate
concretization pass on a large-block-encoded trace that splits
it into smaller segments, each corresponding to a single
C statement, thus also including a state with full variable
information at most sequence points of the program.

To transform this counterexample trace into a non-
termination witness in the proposed format, we first identify the
first time the last state appears in the trace, which is designated



- entry_type: "violation_sequence"
metadata: ...
content:
...
- segment:
- waypoint:

type: "branching"
constraint:

value: "true"
location:

file_name: ...
line: 6

action: "follow"
...
- segment:

- waypoint:
type: "branching"
constraint:

value: "false"
location:

file_name: ...
line: 6

action: "follow"
...

1 int main() {
2 int i = nondet();
3 int i_1;
4 int saved = 0;
5 while (i > 0) {
6 if (nondet() &&
7 !saved) {
8 i_1 = i;
9 saved = 1;

10 } else {
11 assert(!saved ||
12 i != i_1);
13 }
14 if (i != 5) {
15 i = i-1;
16 }
17 }
18 return 0;
19 }

Fig. 3: Transformed program from Fig. 1 (right) with a snippet
of an assertion-violation witness (left)

as the cycle head, marking the beginning of the lasso loop.
We designate all states before the loop head to be part of the
stem, thus becoming follow -action assumption waypoints,
and all the states after (including the cycle head) to be part of
the loop, thus receiving cycle -action assumption waypoints.

Currently, THETA does not use avoid -action waypoints,
and only uses assumptions on the follow - and cycle -action
waypoints. It is capable of determining branching and function-
return information as well, but does not use these by default.

As THETA uses an inlined representation of the program,
variable scoping information needs to be re-established when
THETA creates the assumptions for the witness. It needs to
not include variables that have not been initialized at that
point (even though it handles them as if their values were
nondeterministically chosen), and it also needs to not include
variables that do not appear in the corresponding scope of the C
program. To overcome this, THETA only outputs variables with
changed values since the last segment, which helps mitigate
the latter problem, and determines which variables have been
written – thus which to include – to solve the former problem.

TRANSVER. The program-transformation tool TRANSVER [9]
implements a modular framework focused on reducing various
specifications to reachability. It takes a C program as input
and produces a transformed C program as output.

One of the supported transformations reduces non-
termination to reachability according to the liveness-to-safety
reduction. The transformed version of the program from Fig. 1
is shown in Fig. 3. TRANSVER does not yet support programs
with arrays or dynamic memory allocation because storing
a state with a complicated data structure can be very
expensive for verification tools.

The reduction enables any reachability verifier participating
in SV-COMP [12] to verify termination. However, the witnesses
produced by the transformation-verifier chain are violation
witnesses for a safety property, certifying the transformed
program. An example of such a witness is shown in Fig. 3.

In this work, we complete the workflow of this chain by
transforming the produced witness to a non-termination witness
in our extension of the format 2.0. To obtain a non-termination
witness, we make the following major adjustments:

1) Identify the Cycle: The violation witness for reachability
describes a finite execution that stores a state to the ghost
variables at some point and then violates the assertion in
the final state. We must identify the waypoint in the witness
that indicates when the state is stored, and the waypoint
that violates the assertion. By merging the two segments
containing these waypoints, we enclose the infinite execution
loop described by the witness.

The state that violates the assertion is described by
the target waypoint in the original violation witness. There
is exactly one such waypoint in witness version 2.0 [5]. The
state that stores variable values into ghost variables can be
identified as the branching waypoint with costraint "true"
at the if condition guarding the violated assertion. If there is
no such branching waypoint, TRANSVER will not produce a wit-
ness. For example, the witness in Fig. 3 contains two waypoints
for the if condition on the line 6. The first has the constraint
"true", i.e., storing the state, and the second is followed
by the target waypoint, hence violating the assertion and
reaching the same state again. We transform the follow action
of all waypoints between these two into cycle , and we remove
all waypoints that follow the second branching waypoint.

2) Adjust the Locations: Some of the line numbers in the
location entries are shifted due to the instrumented code,
and some refer to the code that does not exist in the original
program. We remove the branching waypoints that point to
locations containing instrumented if conditions. We remove
all the avoid waypoints. We retain the assumption waypoints
that point to the instrumented code but do not refer to the
instrumented variables, and we update them to point to the loop
from the original program instead. We identify the original
loop locations in the input program for the cycle waypoints
and adjust them accordingly. Concerning the other waypoints,
if we can determine their original source positions, which
may not always be feasible due to the formatting changes
during transformation, we also adjust and retain them.

V. VALIDATION OF NON-TERMINATION WITNESSES

We have also extended several witness validators to
process non-termination witnesses in the suggested format.
In this section, we describe the individual specifics of
each validation approach.

CPACHECKER. The verifier CPACHECKER [61] gains its strength
from composing different Configurable Program Analyses
(CPA) [62] into a single algorithm. Each CPA tracks a different
abstract domain that collects information about the concrete
states that it represents. In our validation approach, we use
three main CPAs: the automaton CPA [4], the termination
CPA, and the predicate CPA [63].

We implemented the parsing of non-termination witnesses
and the construction of an automaton. Each segment defines a
state mapped to a program location. Transitions then connect
the states in the sequence ordered according to the order of



the segments in the witness. There is an additional transition
from the last state to the state corresponding to the first
cycle segment, creating the lasso. We store the assumption ,
branching , and function_return constraints given by
waypoints in the corresponding transitions and they are then
used by predicate CPA at the corresponding program locations.
We currently do not support avoid waypoints.

Further, we combine the automaton with the existing analyses
in CPAchecker. The predicate CPA constructs SMT path
formulas Tstem and Tloop with SSA indices for variables to dis-
tinguish different unrollings. The formula Tstem encodes the ex-
ecutions of the program leading from initial states to the loop de-
scribed by the cycle segments, and the formula Tloop expresses
the executions of this loop. It uses the automaton CPA to make
these formulas more strict at the locations described by the
automaton. The path formulas are used by the termination CPA
to determine whether there exists a state that can be reached
twice, following the idea of liveness-to-safety reduction.

The termination CPA unrolls the loop and checks whether
there exists a state that can be visited twice by the loop. For
every loop head in the program, its abstract state keeps track
of how many times the loop was unrolled, and creates special
variables that represent all the past values of the variables
at the loop head. For example, after exploring paths with
two loop unrollings in the program from Fig. 1, the abstract
state of this CPA would contain {i′ = i0 ∨ i′ = i1}. The
primed variables are similar to the ghost variables in the
liveness-to-safety reduction and represent any previous value
of i seen at the loop head. The automaton CPA returns a
conjunction of all the assumptions given by the witness for
the specific unrolling. For example, the automaton constructed
for the witness in Fig. 1 gives only the constraint for the stem,
which is i0 = 5. Putting everything together, we obtain the
following formula for one unrolling of the witness in Fig. 1:(
i0>0 ∧ ((i0 ̸=5 ∧ i1=i0−1) ∨ (i0=5 ∧ i1=i0))

)︸ ︷︷ ︸
Predicate CPA

∧

∧
(
i0=i′) ∧

(
i1=i′)︸ ︷︷ ︸

Termination CPA

∧
(
i0=5

)︸ ︷︷ ︸
Automaton CPA

If such formula is satisfiable, there exists an infinite
execution and the witness is validated.

THETA. THETA can validate non-termination witnesses by
annotating its internal CFA representation of the input program
with information from the witness file. Using this annotated
CFA, THETA can either use a modular validation technique,
or it can use any of its existing model checking algorithms
supporting the termination property on the annotated CFA
to validate the witness. Both of these validation methods are
new additions to THETA as part of this work, except for their
reuse of the existing model checking analyses.

Annotating the CFA: THETA represents the input programs as
control-flow automata (CFA), parsed directly from the C source.
Abstract syntax tree (AST) nodes are stored as metadata on
the edges of the CFA. This enables THETA to find which CFA
edges correspond to which waypoint locations in the witness,
to add additional assumptions as state space guards.

A segment counter variable is added to the model, which
is incremented whenever a segment’s follow or cycle

waypoint has been passed, and reset after the last cycle
segment to the number of the first cycle segment. THETA does
not yet support avoid waypoints. The assumptions added
to the CFA state that if the value of the segment counter is
currently n and the location corresponds to the waypoint in
the n-th segment of the witness, then the constraint of the
waypoint must be satisfied. THETA supports the assumption ,
function_return and branching waypoint types.

For example, if the second waypoint with type assumption

contains the constraint x = 1, then

segment_counter=2 ⇒ x=1

is added to the edge just before the statement the location
information points to.

1) Modular Validation: THETA implements a cheap, but
incomplete check using the annotated CFA. This check can
not refute witnesses, but can often validate them successfully.

First, THETA reconstructs the stem-trace of the lasso based
on the follow waypoints in the witness, and encodes it as an
SMT formula Tstem . Then, it also reconstructs the loop of the
lasso based on the following cycle waypoints, and encodes
it as Tloop . If there is a program state that is both reachable
after Tstem , and from which —after Tloop— the same state is
reachable, then that program state can be used as the recurrent
set [35]. The existence of such a state can be checked using a
quantifier-free SMT formula. This is a strict check, because the
loop has to be unrolled enough times in the witness that Tloop

can repeat the exact same state after every iteration — e.g., a
loop variable repeating the values {0,1} periodically would ne-
cessitate the loop to be unrolled twice (or a larger multiple of 2).

A less strict (but still incomplete) check assumes the witness
encodes a recurrence condition as a constraint in the loop. While
detecting if a waypoint was meant to be such a statement is not
straightforward, we can assume that all assumptions added after
passing the last follow waypoint and before the first program
statement which changes the value of a variable may serve such
a condition. Thus, THETA collects all assumptions in the loop
which refer to the first SSA-index in the SMT encoding of Tloop ,
and takes their conjunction, resulting in R. Then, it checks if
a state in R is reachable after Tstem and if for every state r1
satisfying R, a successor state r2 exists that also satisfies R,
and which can be reached from r1 by Tloop . The latter check
is more expensive than the case of the concrete program state,
as we cannot encode this query without quantifiers.

In both cases, THETA can output a (potentially strengthened)
non-termination argument in the form of a recurrent set [35].
However, correct witnesses exist that this approach does
not validate, and therefore, we do not use the modular
validation technique to refute witnesses.

2) Validation Based on Model Checking: For a more generic
approach that can also refute witnesses, THETA can utilize
all its verification algorithms presented in Section IV on the
annotated CFA. Here —in contrast with modular validation—
we can not only confirm witnesses that allow THETA to
re-establish the non-termination argument, but can also refute
witnesses if they include incorrect information about the lasso.



As with verification, THETA uses a loop-checking CEGAR
configuration, EMERGENTHETA uses k-induction, and THORN uses
a mapping to CHCs for validation as well. THETA-modular
uses the modular validation with a direct SMT-encoding.

WITCH. The violation witness validator WITCH [11] is based on
symbolic execution. It uses and extends parts of the SYMBIOTIC

framework, most notably the symbolic executor JETKLEE, a fork
of KLEE [64] developed for the purposes of SYMBIOTIC. The tool
previously supported only witnesses of safety properties and
we adapted it to also support witnesses of non-termination.

As JETKLEE accepts programs in the LLVM intermediate
representation, WITCH first instruments the C code according
to the witness, adding assumptions and marking branching
points. The program is compiled to LLVM IR and the witness
is adjusted so that it only uses information preserved by
the compilation (see [11] for details).

Each loop in the LLVM IR program is then instrumented
following the idea of liveness-to-safety reduction, introducing
a special function for the choice whether to store the current
values of loop-modified variables, and special assertions for
checking that the current values differ from the values stored
in some previous iteration. The instrumented program is then
passed to the symbolic executor together with the witness.

The general approach to witness validation in WITCH is to
synchronously explore the program and the witness, mapping
parts of the program executions to witness segments. It
assigns a witness segment to each symbolic state, with the
initial symbolic state being assigned the first segment. When
the execution passes the follow waypoint of the assigned
segment, WITCH associates the next state with the next witness
segment. Throughout the process, it uses the constraints from
the witness to reduce the explored state-space.

We build upon this approach in our extension for non-
termination witnesses. After a program execution passes
the follow waypoint of the last normal segment, we assign the
first cycle segment to the next symbolic state. When presented
with the choice of storing the current state of loop-modified
variables, the symbolic execution forks — on one branch we
store the values and remember the current witness segment,
and on the other we omit this step to preserve the previously
remembered values. However, to be more efficient, the values
can be stored in the ghost variables only if the symbolic state is
assigned a cycle segment. On top of that, if there already was
such a non-deterministic choice on the path to this symbolic
state, and we stored the values, the values are not stored
again. This means that apart from initialization the values are
stored at most once on each program execution. Both of these
optimizations are done on the side of the symbolic executor.

Upon encountering an assertion comparing the stored and
the current values of variables, WITCH first checks that the
current witness segment is the same as the one remembered
at the time of the storing, and that the cycle -action waypoint
of this segment has been passed since. Only then the assertion
is evaluated. If the assertion fails, there exists an infinite
execution of the program that is described by the witness, and
the witness is confirmed. If WITCH explores all program paths

without confirming the witness, it means that there is no infinite
execution described by the witness and the witness is refuted.

The main limitation of this approach is that it handles only
loops that return to the same concrete state and modify only
program variables, and does not support recursion. Further,
unless the witness significantly reduces the state space, it
inherits the path explosion problem of symbolic execution,
and, if a program is possibly non-terminating but the witness
is incorrect, it can not refute the witness unless some of the
visited waypoints restrict the exploration to only finite runs.

VI. EVALUATION

With our evaluation, we aim to answer the following
research questions:

RQ 1 (Validation Effectiveness): How many witnesses ex-
ported by the new verifiers can the new validators validate?

RQ 2 (Validation Efficiency): Can the information in the
witnesses improve the efficiency of the validation compared
to the verification?

RQ 3 (Non-trivial Information): Do the newly implemented
tools export more non-trivial information in the witnesses
than tools of SV-COMP 2025 exporting witnesses 1.0?

Benchmark Set. In our evaluation, we utilize SV-Benchmarks,
a large and diverse benchmark set of C programs, in the
version used by SV-COMP 2025 [12]. The dataset contains
programs with known verdicts for different specifications,
including termination. We use all 992 tasks that are known
to be non-terminating.

Benchmark Environment. For conducting our evaluation,
we use BENCHEXEC in version d33e473 to ensure reliable
benchmarking [65] on a cloud cluster orchestrated by
BENCHCLOUD [66]. All benchmarks are performed on machines
with an Intel Xeon E5-1230 CPU (4 physical cores with
2 processing units each), 33GB of RAM, and running the
Ubuntu 24.04 operating system. In our experiments, we use
900 s as time limit and 15GB as memory limit for verification,
and 90 s as time limit and 7GB as memory limit for validation.
These are the same time and memory limits as used in
SV-COMP. We restrict all experiments to 2 processing units.

Tool Support. Table I summarizes the current state of the
tool support for non-termination witnesses in format 1.0
and in format 2.1. Notably, we have more than doubled the
number of available validators supporting the new format
compared to format 1.0. Additionally, we have implemented
the export of witnesses in the new format for almost half of
the verifiers that could export witnesses 1.0.

In our evaluation, we use the verifiers THETA [67], EMERGEN-
THETA [68], and THORN [47] in version 3caaa21, and SYMBI-
OTIC [7] in version 9cd025a. In addition we use TRANSVER [9]
in version 5fc7ca66 using CPACHECKER in version 66247485
to transform the termination tasks to reachability tasks and
construct the non-termination witnesses from the violation
witnesses for reachability. We chose UAUTOMIZER [69] in its
version from SV-COMP 2025 and CPACHECKER [10] in version
b20e3a16 as reachability verifiers, since they ranked first and

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/ayazip/benchexec/commit/d33e473a85531c58c01d1064e7bc313090357d98
https://github.com/ftsrg/theta/tree/3caaa21cbb0e958d7158a2e6534f91ceea43d49e
https://github.com/staticafi/symbiotic/tree/9cd025a744c84e399719d1b3b2ed54b1d968c43a
https://gitlab.com/sosy-lab/software/transver/-/tree/5fc7ca6651ca987132af9788c0782497ecd58d7d
https://gitlab.com/sosy-lab/software/cpachecker/-/commit/662474855f4bb809dca6cfca720dc947a2c6aef1
https://doi.org/10.5281/zenodo.14209043
https://gitlab.com/sosy-lab/software/cpachecker/-/commit/b20e3a163a40e0677b64e8bd300ea1f82e3eb5b9


TABLE I: Current tool support for non-termination witnesses
by active participants of SV-COMP 2025 or their components;
the horizontal line divides the tools where we implemented the
support of format 2.1 (above) and the tools that support only
non-termination witnesses in format 1.0 (below); the symbol ◦
denotes that almost all the witnesses 1.0 produced by the
respective tool in SV-COMP 2025 were syntactically incorrect,
even though some of them were confirmed by some validators

Export Validation

Tool 1.0 2.1 1.0 2.1

CPACHECKER • • •
EMERGENTHETA ◦ • •
SYMBIOTIC • •
THETA ◦ • •
THORN ◦ • •
TRANSVER •
WITCH •

2LS [70] •
APROVE [33] ◦
BUBAAK [34] ◦
PROTON [71] •
UAUTOMIZER [72] • •

second in the Overall category of SV-COMP 2025, respec-
tively. All the tools and their methodology to construct non-
termination witnesses are described in Sect. IV. For validation,
we use CPACHECKER [61] in version b20e3a16, EMERGENTHETA,
THETA, and THORN in version 3caaa21, and WITCH [11] in version
b717fec, utilizing the methods described in Sect. V.

A. RQ 1: Validation Effectiveness

One of the main goals of the new witness format is
to improve the interoperability of tools that export and
verify non-termination arguments. To achieve this goal, we
implemented in several tools the export and validation of
witnesses in the new format. Table II summarizes the results
of validating the exported witnesses. In sum, all tools together
produced 1379 witnesses for the 992 tasks.

SYMBIOTIC produced a non-termination witness for 658 (66%)
of the tasks, which is the highest number among our verifiers.
Due to the missing support for programs with arrays and
dynamic memory allocation, TRANSVER was able to transform
only 88 (8%) non-termination tasks into reachability tasks.
Therefore, CPACHECKER and UAUTOMIZER produced only 71
and 73 witnesses, respectively. Configurations of THETA lack
support for function pointers and complex dynamic memory
structures, therefore, they could not process the majority of the
programs (558), leaving 434 potentially verifiable tasks. From
this, THORN produced a witness for 221 (51%), THETA for 205
(47%), and EMERGENTHETA for 151 (35%) tasks. Together, these
configurations produced a witness for 246 (57%) unique tasks.

All the witnesses produced by SYMBIOTIC and the verification
chains using TRANSVER were validated by at least one validator.
Moreover, 143 (95%), 173 (84%), and 199 (90%) of the
witnesses produced by EMERGENTHETA, THETA, and THORN,
respectively, were validated by at least one validator. The
fact that almost all the produced witnesses were confirmed
by at least one validator indicates their high quality.

We observe that the highest number of validated witnesses
per verifier differs, i.e., no validator is the best for all of them.

Interestingly, the best validating algorithm is often not from the
same framework. For example, CPACHECKER outperformed THETA

in validating the witnesses produced by THETA. This shows that
information exchange among different verification tools is ad-
vantageous. In particular, THETA-modular could validate 80 addi-
tional tasks using information from the witnesses of other tools.

These observations indicate that the wide variety of the non-
termination arguments produced by different algorithms can
be successfully expressed in the proposed witness format
extension. Additionally, they show that the format is suitable
for exchanging information between different tools.

B. RQ 2: Validation Efficiency

The main goal of verification witnesses is to encode
information about the verification process in order to allow for
independent validation. One major consequence of this is that
the validation, having access to information collected during
the verification, can be more efficient than the verification itself.
In particular, for counterexamples, their validation should be
more efficient than the verification since the witnesses constrain
the search space. This is reflected by the lower time-limit for
the validation compared to verification, i.e., 90 s vs. 900 s.

For each of the considered verifiers, Fig. 4 shows the time
taken by the verifier to produce a witness (y-axis) and the
time needed by individual validators to confirm the witness
(x-axis). In many cases, the witness can be validated more
than 10 times faster than the initial verification of the program.

The results also show the difference between the validation
techniques. For WITCH, which is based on symbolic execution,
the restrictions of the program paths stemming from the
witness help reduce the validation time. However, for THORN

and EMERGENTHETA, the opposite result can be observed: they
take longer to validate their own witnesses than to verify
the original task. For THORN, this can be explained by the
larger size (and complexity) of the CHC-encoding, which
may result in a slower solution inside the CHC-solver. For
EMERGENTHETA, we theorize that in its transition-system-based
encoding, control-flow information may be removed during the
verification. During the validation, this is no longer possible,
due to having to keep track of the segment order in the witness.
Therefore, the witness may add additional proof goals in the
formulas used for k-induction. However, the witness also has
to be checked for potential issues, which adds overhead to
the original verification performance. Therefore, these tools
as validators underperform themselves as verifiers.

It is apparent in most of the scatter plots that the validators
tend to be faster than the verifiers, except THORN and EMERGEN-
THETA, for the reasons already discussed. The only exception is
the validation results of SYMBIOTIC witnesses. We can observe
that only WITCH is able to outperform SYMBIOTIC. The reason is
that both are implemented in C++, whereas all the other tools
use Java engines that run on the Java Virtual Machine (JVM).
The JVM typically takes 5–10 seconds to start. Therefore, sub-
tracting the JVM startup time of the Java-based tools, the valida-
tion would be in many cases as fast as the verification or faster.

https://gitlab.com/sosy-lab/software/cpachecker/-/commit/b20e3a163a40e0677b64e8bd300ea1f82e3eb5b9
https://github.com/ftsrg/theta/tree/3caaa21cbb0e958d7158a2e6534f91ceea43d49e
https://github.com/ayazip/witch/tree/b717fec23782b01e0eeaa6d56cf11d3b3b62f7fb


TABLE II: Numbers of exported non-termination witnesses in format 2.1 and the results of their validation; exported witnesses
are below each verifier, and pairs x / y mean that the corresponding validator confirmed x and refuted y of them

EMERGENTHETA THETA THORN TRANSVER-CPACHECKER TRANSVER-UAUTOMIZER SYMBIOTIC

Validators 151 witnesses 205 witnesses 221 witnesses 71 witnesses 73 witnesses 658 witnesses

CPACHECKER 115 / 0 156 / 0 172 / 0 69 / 0 66 / 0 204 / 0
EMERGENTHETA 62 / 1 37 / 1 61 / 1 39 / 1 41 / 0 32 / 3
THETA 131 / 1 109 / 2 177 / 2 39 / 0 28 / 0 158 / 0
THETA-modular 23 / 0 15 / 0 25 / 0 0 / 0 0 / 0 241 / 0
THORN 56 / 1 36 / 0 61 / 1 39 / 2 37 / 2 43 / 3
WITCH 104 / 0 148 / 0 164 / 0 57 / 0 64 / 0 658 / 0

Total confirmed 143 173 199 71 73 658

TABLE III: Numbers of exported non-termination witnesses in format 1.0 in SV-COMP 2025; exported witnesses are below
each verifier, and pairs x / y mean that the corresponding validator confirmed x and refuted y of them

2LS CPACHECKER PROTON SYMBIOTIC UAUTOMIZER

Validators 585 witnesses 637 witnesses 667 witnesses 623 witnesses 715 witnesses

CPACHECKER 385 / 8 486 / 0 422 / 1 350 / 1 431 / 41
UAUTOMIZER 181 / 380 519 / 13 128 / 467 56 / 538 685 / 2

Total confirmed 487 552 505 353 687

TABLE IV: P-values for a Wilcoxon signed-rank test comparing the CPU-time of validation and verification; missing values (–)
are due to the small sample size available for the test; values less than 0.01 printed in green, values greater than 0.9 in red

Validators EMERGENTHETA THETA THORN TRANSVER-CPACHECKER TRANSVER-UAUTOMIZER SYMBIOTIC

CPACHECKER 2.8×10−11 6.0×10−24 2.8×10−30 2.6×10−13 6.8×10−12 1.0
EMERGENTHETA 1.0 1.0 7.6×10−11 8.1×10−10 4.5×10−13 1.0
THETA 2.3×10−12 1.0 1.1×10−30 1.8×10−12 3.7×10−9 1.0
THETA-modular 2.5×10−5 0.95 3.0×10−8 – – 1.0
THORN 1.0 1.0 1.0 1.0 3.1×10−3 1.0
WITCH 4.3×10−19 2.5×10−26 5.8×10−29 2.6×10−11 1.8×10−12 1.9×10−108

Wilcoxon Signed-Rank Test. Since it is often difficult to
correctly infer the density of data points clustered in the same
region of scatter plots, we additionally report the p-values of
the Wilcoxon Signed-Rank Test [73] for each verifier-validator
pair in Table IV. The null hypothesis of the test states
that the distribution of differences between verification and
validation times is centered around zero – that is, the two
are approximately equal. The alternative hypothesis posits
that verification time is stochastically greater than validation
time. The reported p-values represent the probability of
incorrectly rejecting the null hypothesis. Therefore, lower
p-values indicate higher confidence that validation is, on
average, faster than verification. The statistical results confirm
the conclusions previously suggested by the scatter plots.

The results of our experiments mostly confirm that the
non-termination witnesses contain useful information that
helps rediscover non-terminating executions in less time.

C. RQ 3: Non-trivial Information

Precisely defining and measuring quality of witnesses,
i.e., how useful the included information is, is a difficult task.
However, the goal of our work is to add support for exporting
non-termination witnesses for multiple verifiers in a manner that
they should not export trivial witnesses. Thus, we compare the
witness quality between our results and the results of the state-
of-the-art tools of the witness 1.0 format in SV-COMP 2025.

All tools participating in SV-COMP 2025 were required
to export witnesses for non-termination in version 1.0. Some
tools circumvent this by exporting minimal witnesses or
reachability witnesses that do not include invariants and cycle
heads. Although a reachability witness can still provide useful
information regarding the stem, the presence of a target state
and the lack of information regarding the cycle should render
it invalid. Unfortunately, such witnesses were still validated
by some validators, thus the actual number of tools exporting
proper non-termination witnesses is not apparent at first glance.

To count and compare non-trivial witnesses, we collected
all non-termination violation witnesses 1.0 that were produced
in SV-COMP 2025 [74] and filtered out witnesses which
did not contain a cyclehead, or the tool’s answer was not
false, or the expected verdict was true, or they were not
approved by the witness linter.

Overall, we found 5 (active, non-meta) tools out of 12
that produced valid, non-trivial witnesses and 2 validators
capable of validating a subset of these witnesses. The results
are shown in Table III, while similar results for our new
witness-format experiment were shown in Table II.

The differing number of tools makes the comparison more
difficult, but we are comparing a fairly large number of non-
termination witnesses, so we can still draw some conclusions on
proportions based on the data. We collected 3227 witnesses 1.0
and 1347 witnesses 2.1, of which 1559 (48%) and 1272
(94%) were validated by at least one tool and refuted by none,
respectively. Furthermore, the number of refuted witnesses is
much lower for the witness 2.1 format, as shown in Table III.



1 10 100

1

10

100

1,000

C
P
U

T
im

e
fo
r
V
er
ifi
ca
ti
o
n
(s
)

EmergenTheta

1 10 100

1

10

100

1,000
Theta

1 10 100

1

10

100

1,000
Thorn

1 10 100

1

10

100

1,000

CPU Time for Validation (s)

C
P
U

T
im

e
fo
r
V
er
ifi
ca
ti
on

(s
)

TransVer-CPAchecker

1 10 100

1

10

100

1,000

CPU Time for Validation (s)

TransVer-UAutomizer

1 10 100

1

10

100

1,000

CPU Time for Validation (s)

Symbiotic

Fig. 4: Scatter plots comparing the time for verification and validation for validators CPACHECKER ( ), EMERGENTHETA ( ),
THETA ( ), THETA-modular ( ), THORN ( ), and WITCH ( ); x=y drawn as gray and dashed line; producing verifier above plot

Although the total number of collected witnesses differs
significantly, the high validation rate and lower refutation
rate for witness in format 2.1 suggest that it offers a
significant improvement over format 1.0.

Based on these results, we believe that broader adoption
of the format can significantly enhance the quality of the
exported information in non-termination witnesses.

D. Threats to Validity

Internal Validity. We ensured consistency and accuracy
of our experiments using the BENCHEXEC framework [65],
which relies on modern GNU/Linux features for reliable
benchmarking. CPU time —and thus task counts— may still
be affected by external factors like temperature fluctuations
or tool non-determinism. Bugs in tools are also possible, but
using multiple independent validators minimizes their impact.

External Validity. Our results may not generalize well
due to the limited size and diversity of the benchmark set.
Since SV-COMP [12] uses the same benchmark set, tools
might be tuned specifically towards the benchmark set,
limiting generalization to other tasks. Also, only a subset of
model-checking algorithms were represented by the evaluated
tools, so results may not extend to all approaches. However,
the diversity of tools in this paper helps to reduce this risk.

Construct Validity. The CPU time and solved tasks measures
are the same used in SV-COMP [12], and thus known to be
accepted by the software-verification community. Only known
non-terminating tasks from SV-Benchmarks were included,
so refutation capabilities of validators were not assessed.

VII. CONCLUSION

We have introduced an extension of the format for software-
verification witnesses to support non-termination witnesses. We
extended several state-of-the-art open-source tools for software
verification and witness validation to export and validate
non-termination witnesses in the extended format using various
approaches. Our experimental evaluation shows that the
developed tools support producing non-termination arguments
that can be validated by independent tools. We included our
format extension in the witness format 2.1 [75], together
with other extensions [14, 15]. The new format, the validation
benchmarks, and the extended validators are offered to validate
non-termination witnesses in SV-COMP 2026 and beyond.

Data-Availability Statement. Our reproduction package [76],
which includes all software and data that we used for our
experiments, and the set of example witnesses [13] to
demonstrate how the new format works, are available
on Zenodo. Interactive tables of the experimental
results are available at our supplementary web page:
https://www.sosy-lab.org/research/non-termination-witnesses/.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://www.sosy-lab.org/research/non-termination-witnesses/


Funding Statement. Zs. Ádám and L. Bajczi were supported
by projects EKOP-24-3-BME-{288,213}, DKÖP 400433/2023,
DKÖP 400434/2023, Erasmus, BAYHOST MobFA2025/15,
and BAYHOST MobFA2025/16. P. Ayaziová and J. Strejček
were supported by the Czech Science Foundation grant GA23-
06506S and by the Bayerisch-Tschechische Hochschulagentur
BTHA-MOB-2025-7 and BTHA-MOB-2025-9. D. Beyer,
M. Jankola, and M. Lingsch-Rosenfeld were supported by
the Deutsche Forschungsgemeinschaft (DFG) – 378803395
(ConVeY) and 496588242 (IdeFix).

REFERENCES

[1] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.:
Witness validation and stepwise testification across software verifiers. In:
Proc. FSE. pp. 721–733. ACM (2015). doi:10.1145/2786805.2786867

[2] Beyer, D.: Software verification and verifiable witnesses (Report on
SV-COMP 2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer
(2015). doi:10.1007/978-3-662-46681-0_31

[3] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses:
Exchanging verification results between verifiers. In: Proc. FSE. pp.
326–337. ACM (2016). doi:10.1145/2950290.2950351

[4] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T.,
Tautschnig, M.: Verification witnesses. ACM Trans. Softw. Eng.
Methodol. 31(4), 57:1–57:69 (2022). doi:10.1145/3477579

[5] Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček,
J.: Software verification witnesses 2.0. In: Proc. SPIN. pp. 184–203.
LNCS 14624, Springer (2024). doi:10.1007/978-3-031-66149-5_11

[6] Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572,
Springer (2024). doi:10.1007/978-3-031-57256-2_15

[7] Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L.,
Ayaziová, P., Strejček, J.: SYMBIOTIC 10: Lazy memory initialization
and compact symbolic execution (competition contribution). In:
Proc. TACAS (3). pp. 406–411. LNCS 14572, Springer (2024).
doi:10.1007/978-3-031-57256-2_29

[8] Bajczi, L., Telbisz, C., Somorjai, M., Ádám, Zs., Dobos-Kovács,
M., Szekeres, D., Mondok, M., Molnár, V.: THETA: Abstraction
based techniques for verifying concurrency (competition contribution).
In: Proc. TACAS (3). pp. 412–417. LNCS 14572, Springer (2024).
doi:10.1007/978-3-031-57256-2_30

[9] Beyer, D., Jankola, M., Lingsch-Rosenfeld, M., Xia, T., Zheng,
X.: A modular program-transformation framework for reducing
specifications to reachability. arXiv/CoRR 2501(16310) (January 2025).
doi:10.48550/arXiv.2501.16310

[10] Baier, D., Beyer, D., Chien, P.C., Jakobs, M.C., Jankola, M., Kettl,
M., Lee, N.Z., Lemberger, T., Lingsch-Rosenfeld, M., Wachowitz, H.,
Wendler, P.: Software verification with CPACHECKER 3.0: Tutorial and
user guide. In: Proc. FM. pp. 543–570. LNCS 14934, Springer (2024).
doi:10.1007/978-3-031-71177-0_30

[11] Ayaziová, P., Strejček, J.: WITCH 3: Validation of violation witnesses in
the witness format 2.0 (competition contribution). In: Proc. TACAS (3).
pp. 341–346. LNCS 14572, Springer (2024). doi:10.1007/978-3-031-
57256-2_18

[12] Beyer, D., Strejček, J.: Improvements in software verification and
witness validation: SV-COMP 2025. In: Proc. TACAS (3). pp. 151–186.
LNCS 15698, Springer (2025). doi:10.1007/978-3-031-90660-2_9

[13] Ádám, Zs., Ayaziová, P., Bajczi, L., Beyer, D., Jankola, M., Lingsch-
Rosenfeld, M., Strejček, J.: Non-termination witnesses in format 2.1
for ASE 2025 article ‘Non-termination witnesses and their validation’.
Zenodo (2025). doi:10.5281/zenodo.17264555

[14] Erhard, J., Bentele, M., Heizmann, M., Klumpp, D., Saan, S., Schüssele,
F., Schwarz, M., Seidl, H., Tilscher, S., Vojdani, V.: Correctness
witnesses for concurrent programs: Bridging the semantic divide with
ghosts. In: Proc. VMCAI, Part I. pp. 74–100. LNCS 15529, Springer
(2025). doi:10.1007/978-3-031-82700-6_4

[15] Heizmann, M., Klumpp, D., Lingsch-Rosenfeld, M., Schüssele, F.:
Correctness witnesses with function contracts. arXiv/CoRR 2501(12313)
(January 2025). doi:10.48550/arXiv.2501.12313

[16] McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying
algorithms. Computer Science Review 5(2), 119–161 (2011).
doi:10.1016/j.cosrev.2010.09.009

[17] Beyer, D., Wendler, P.: Reuse of verification results: Conditional model
checking, precision reuse, and verification witnesses. In: Proc. SPIN. pp.
1–17. LNCS 7976, Springer (2013). doi:10.1007/978-3-642-39176-7_1

[18] Beyer, D., Friedberger, K.: Violation witnesses and result validation
for multi-threaded programs. In: Proc. ISoLA (1). pp. 449–470.
LNCS 12476, Springer (2020). doi:10.1007/978-3-030-61362-4_26

[19] Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from
witnesses: Execution-based validation of verification results. In: Proc.
TAP. pp. 3–23. LNCS 10889, Springer (2018). doi:10.1007/978-3-319-
92994-1_1

[20] Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-
service for exploring error witnesses. In: Proc. CAV (2). pp. 502–509.
LNCS 9780, Springer (2016). doi:10.1007/978-3-319-41540-6_28

[21] Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.:
Termination competition (termCOMP 2015). In: Proc. CADE. pp. 105–
108. LNCS 9195, Springer (2015). doi:10.1007/978-3-319-21401-6_6

[22] Sternagel, C., Thiemann, R.: The certification problem format. In: Proc.
UITP. pp. 61–72. EPTCS 167, EPTCS (2014). doi:10.4204/EPTCS.167.8

[23] Turing, A.: On computable numbers, with an application to the
Entscheidungsproblem. In: Proc. LMS. vol. s2-42, pp. 230–265. London
Mathematical Society (1937). doi:10.1112/plms/s2-42.1.230

[24] Dijkstra, E.W.: A constructive approach to the problem of program
correctness. BIT Numerical Mathematics 8, 174–186 (1968).
doi:10.1007/BF01933419

[25] Manna, Z.: Termination of programs represented as interpreted
graphs. In: Spring Joint Computer Conf. pp. 83–89. ACM (1970).
doi:10.1145/1476936.1476956

[26] Podelski, A., Rybalchenko, A.: A complete method for the synthesis of
linear ranking functions. In: Proc. VMCAI. pp. 239–251. LNCS 2937,
Springer (2004). doi:10.1007/978-3-540-24622-0_20

[27] Podelski, A., Rybalchenko, A.: Transition predicate abstraction
and fair termination. In: Proc. POPL. pp. 132–144. ACM (2005).
doi:10.1145/1040305.1040317

[28] Cook, B., Podelski, A., Rybalchenko, A.: TERMINATOR: Beyond
safety. In: Proc. CAV. pp. 415–418. LNCS 4144, Springer (2006).
doi:10.1007/11817963_37

[29] Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs
for systems code. In: Proc. PLDI. pp. 415–426. ACM (2006).
doi:10.1145/1133981.1134029

[30] Schuppan, V., Biere, A.: Liveness checking as safety checking for
infinite state spaces. Electr. Notes Theor. Comput. Sci. 149(1), 79–96
(2006). doi:10.1016/j.entcs.2005.11.018

[31] Metta, R., Karmarkar, H., Madhukar, K., Venkatesh, R., Chakraborty,
S.: PROTON: Probes for non-termination and termination (competition
contribution). In: Proc. TACAS (3). pp. 393–398. LNCS 14572, Springer
(2024). doi:10.1007/978-3-031-57256-2_27

[32] Metta, R., Yeduru, P., Karmarkar, H., Medicherla, R.K.: VERIFUZZ 1.4:
Checking for (non-)termination (competition contribution). In:
Proc. TACAS (2). pp. 594–599. LNCS 13994, Springer (2023).
doi:10.1007/978-3-031-30820-8_42

[33] Lommen, N., Giesl, J.: APROVE (KoAT + LoAT) (competition
contribution). In: Proc. TACAS (3). pp. 205–211. LNCS 15698, Springer
(2025). doi:10.1007/978-3-031-90660-2_13

[34] Chalupa, M., Richter, C.: BUBAAK: Dynamic cooperative verification
(competition contribution). In: Proc. TACAS (3). pp. 212–216.
LNCS 15698, Springer (2025). doi:10.1007/978-3-031-90660-2_14

[35] Gupta, A.K., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.:
Proving non-termination. In: Proc. POPL. pp. 147–158. ACM (2008).
doi:10.1145/1328438.1328459

[36] Han, Z., He, F.: Data-driven recurrent set learning for non-
termination analysis. In: Proc. ICSE. pp. 1303–1315. IEEE (2023).
doi:10.1109/ICSE48619.2023.00115

[37] Bakhirkin, A., Piterman, N.: Finding recurrent sets with backward
analysis and trace partitioning. In: Proc. TACAS. pp. 17–35. Springer
(2016). doi:10.1007/978-3-662-49674-9_2

[38] Frohn, F., Giesl, J.: Proving non-termination via loop
acceleration. In: Proc. FMCAD. pp. 221–230. IEEE (2019).
doi:10.23919/FMCAD.2019.8894271

[39] Frohn, F., Fuhs, C.: A calculus for modular loop acceleration and
non-termination proofs. Int. J. Softw. Tools Technol. Transfer 24(5),
691–715 (October 2022). doi:10.1007/s10009-022-00670-2

[40] Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, D.: Proving
non-termination by program reversal. In: Proc. PLDI. pp. 1033–1048.
ACM (2021). doi:10.1145/3453483.3454093

[41] Chen, H.Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving
nontermination via safety. In: Proc. TACAS. pp. 156–171. Springer
(2014). doi:10.1007/978-3-642-54862-8_11

http://gepris.dfg.de/gepris/projekt/378803395
http://gepris.dfg.de/gepris/projekt/496588242
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/3477579
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_29
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.48550/arXiv.2501.16310
https://doi.org/10.1007/978-3-031-71177-0_30
https://doi.org/10.1007/978-3-031-57256-2_18
https://doi.org/10.1007/978-3-031-57256-2_18
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.5281/zenodo.17264555
https://doi.org/10.1007/978-3-031-82700-6_4
https://doi.org/10.48550/arXiv.2501.12313
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/BF01933419
https://doi.org/10.1145/1476936.1476956
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1145/1040305.1040317
https://doi.org/10.1007/11817963_37
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1007/978-3-031-57256-2_27
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-90660-2_13
https://doi.org/10.1007/978-3-031-90660-2_14
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1109/ICSE48619.2023.00115
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1007/s10009-022-00670-2
https://doi.org/10.1145/3453483.3454093
https://doi.org/10.1007/978-3-642-54862-8_11


[42] Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection
of non-termination and NullPointerExceptions for Java bytecode. In:
Formal Verification of Object-Oriented Software. pp. 123–141. Springer
(2012). doi:10.1007/978-3-642-31762-0_9

[43] Velroyen, H., Rümmer, P.: Non-termination checking for imperative
programs. In: Proc. TAP. pp. 154–170. Springer (2008). doi:10.1007/978-
3-540-79124-9_11

[44] Chalupa, M., Jašek, T., Tomovič, L., Hruška, M., Šoková, V., Ayaziová,
P., Strejček, J., Vojnar, T.: SYMBIOTIC 7: Integration of PREDATOR and
more (competition contribution). In: Proc. TACAS (2). pp. 413–417.
LNCS 12079, Springer (2020). doi:10.1007/978-3-030-45237-7_31

[45] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence
Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9(3), 319–349 (1987). doi:10.1145/24039.24041

[46] Chalupa, M., Klaška, D., Strejček, J., Tomovič, L.: Fast computation
of strong control dependencies. In: Proc. CAV. LNCS, vol. 12760, pp.
887–910. Springer (2021). doi:10.1007/978-3-030-81688-9_41

[47] Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based
model checking. J. Autom. Reasoning 64(6), 1051–1091 (2020).
doi:10.1007/s10817-019-09535-x

[48] Bajczi, L., Ádám, Zs., Molnár, V.: C for Yourself: Comparison of
Front-End Techniques for Formal Verification. In: Proc. FormaliSE.
IEEE (2022). doi:10.1145/3524482.3527646

[49] Ádám, Zs., Bajczi, L., Dobos-Kovács, M., Hajdu, A., Molnár, V.:
THETA: Portfolio of CEGAR-based analyses with dynamic algorithm
selection (competition contribution). In: Proc. TACAS (2). pp. 474–478.
LNCS 13244, Springer (2022). doi:10.1007/978-3-030-99527-0_34

[50] Mondok, M., Vörös, A.: Abstraction-based model checking of linear
temporal properties. In: Proc. PhD Mini-Symposium. pp. 29–32.
Budapest University of Technology and Economics, Department
of Measurement and Information Systems (2020), available at
http://real.mtak.hu/id/eprint/107359

[51] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: Proc. CAV. pp. 154–169. LNCS 1855,
Springer (2000). doi:10.1007/10722167_15

[52] Hojjat, H., Rümmer, P.: The ELDARICA Horn solver. In: Proc. FMCAD.
pp. 1–7. IEEE (2018). doi:10.23919/FMCAD.2018.8603013

[53] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
model checking. Advances in Computers 58, 117–148 (2003).
doi:10.1016/S0065-2458(03)58003-2

[54] Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software
verification using k-induction. In: Proc. SAS. pp. 351–368. LNCS 6887,
Springer (2011). doi:10.1007/978-3-642-23702-7_26

[55] Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model
checking revisited: Adoption to software verification. arXiv/CoRR
2208(05046) (July 2022). doi:10.48550/arXiv.2208.05046

[56] Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proc.
CAV. pp. 277–293. LNCS 7358, Springer (2012). doi:10.1007/978-3-
642-31424-7_23

[57] Mondok, M., Molnár, V.: Efficient Manipulation of Logical Formulas as
Decision Diagrams. In: Proc. PhD Mini-Symposium. pp. 61–65. Budapest
University of Technology and Economics, Department of Measurement
and Information Systems (2024). doi:10.3311/MINISY2024-012

[58] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SEAHORN
verification framework. In: Proc. CAV. pp. 343–361. LNCS 9206,
Springer (2015). doi:10.1007/978-3-319-21690-4_20

[59] Ernst, G.: KORN: Horn clause based verification of C programs
(competition contribution). In: Proc. TACAS (2). pp. 559–564.
LNCS 13994, Springer (2023). doi:10.1007/978-3-031-30820-8_36

[60] Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.:
Software model checking via large-block encoding. In: Proc. FMCAD.
pp. 25–32. IEEE (2009). doi:10.1109/FMCAD.2009.5351147

[61] Beyer, D., Lingsch-Rosenfeld, M.: CPACHECKER 4.0 as witness
validator (competition contribution). In: Proc. TACAS (3). pp. 192–198.
LNCS 15698, Springer (2025). doi:10.1007/978-3-031-90660-2_11

[62] Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software
verification: Concretizing the convergence of model checking and
program analysis. In: Proc. CAV. pp. 504–518. LNCS 4590, Springer
(2007). doi:10.1007/978-3-540-73368-3_51

[63] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based
software verification. J. Autom. Reasoning 60(3), 299–335 (2018).
doi:10.1007/s10817-017-9432-6

[64] Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In:
Proc. OSDI. pp. 209–224. USENIX Association (2008), available at
https://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

[65] Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
doi:10.1007/s10009-017-0469-y

[66] Beyer, D., Chien, P.C., Jankola, M.: BENCHCLOUD: A platform for
scalable performance benchmarking. In: Proc. ASE. pp. 2386–2389.
ACM (2024). doi:10.1145/3691620.3695358

[67] Telbisz, C., Bajczi, L., Szekeres, D., Vörös, A.: THETA: Various
approaches for concurrent program verification (competition contribution).
In: Proc. TACAS (3). pp. 260–265. LNCS 15698, Springer (2025).
doi:10.1007/978-3-031-90660-2_22

[68] Mondok, M., Bajczi, L., Szekeres, D., Molnár, V.: EMERGENTHETA:
Variations on symbolic transition systems (competition contribution).
In: Proc. TACAS (3). pp. 217–222. LNCS 15698, Springer (2025).
doi:10.1007/978-3-031-90660-2_15

[69] Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele,
F., Podelski, A.: ULTIMATE AUTOMIZER and the abstraction of bitwise
operations (competition contribution). In: Proc. TACAS (3). pp. 418–423.
LNCS 14572, Springer (2024). doi:10.1007/978-3-031-57256-2_31

[70] Malík, V., Schrammel, P., Vojnar, T., Nečas, F.: 2LS: Arrays and loop
unwinding (competition contribution). In: Proc. TACAS (2). pp. 529–534.
LNCS 13994, Springer (2023). doi:10.1007/978-3-031-30820-8_31

[71] Mukhopadhyay, D., Metta, R., Karmarkar, H., Madhukar, K.:
PROTON 2.1: Synthesizing ranking functions via fine-tuned locally
hosted LLM (competition contribution). In: Proc. TACAS (3). pp. 242–
247. LNCS 15698, Springer (2025). doi:10.1007/978-3-031-90660-2_19

[72] Heizmann, M., Barth, M., Dietsch, D., Fichtner, L., Hoenicke, J., Klumpp,
D., Naouar, M., Schindler, T., Schüssele, F., Podelski, A.: ULTIMATE AU-
TOMIZER 2023 (competition contribution). In: Proc. TACAS (2). pp. 577–
581. LNCS 13994, Springer (2023). doi:10.1007/978-3-031-30820-8_39

[73] Woolson, R.: Wilcoxon Signed-Rank Test, pp. 1–3. John Wiley & Sons,
Ltd (2008). doi:10.1002/9780471462422.eoct979

[74] Beyer, D., Strejček, J.: Verification witnesses from verification tools
(SV-COMP 2025). Zenodo (2025). doi:10.5281/zenodo.15012077

[75] Beyer, D., Strejček, J.: SV-Witnesses – Format 2.1. Zenodo (2025).
doi:10.5281/zenodo.17277275

[76] Ádám, Zs., Ayaziová, P., Bajczi, L., Beyer, D., Jankola, M., Lingsch-
Rosenfeld, M., Strejček, J.: Reproduction package for ASE 2025
proceedings ‘Non-termination witnesses and their validation’. Zenodo
(2025). doi:10.5281/zenodo.17237968

https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-540-79124-9_11
https://doi.org/10.1007/978-3-540-79124-9_11
https://doi.org/10.1007/978-3-030-45237-7_31
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/978-3-030-81688-9_41
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1145/3524482.3527646
https://doi.org/10.1007/978-3-030-99527-0_34
http://real.mtak.hu/id/eprint/107359
https://doi.org/10.1007/10722167_15
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.3311/MINISY2024-012
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-031-90660-2_11
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/s10817-017-9432-6
https://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/3691620.3695358
https://doi.org/10.1007/978-3-031-90660-2_22
https://doi.org/10.1007/978-3-031-90660-2_15
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-30820-8_31
https://doi.org/10.1007/978-3-031-90660-2_19
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1002/9780471462422.eoct979
https://doi.org/10.5281/zenodo.15012077
https://doi.org/10.5281/zenodo.17277275
https://doi.org/10.5281/zenodo.17237968

	I Introduction
	II Background and Related Work
	III Non-termination Witness Format
	IV Construction of Non-termination Witnesses
	IV-1 CEGAR-Based Lasso Checking
	IV-2 Bounded Techniques
	IV-3 Delegating to CHC Solvers
	IV-1 Identify the Cycle
	IV-2 Adjust the Locations


	V Validation of Non-termination Witnesses
	V-1 Modular Validation
	V-2 Validation Based on Model Checking


	VI Evaluation
	VI-A RQ1: Validation Effectiveness
	VI-B RQ2: Validation Efficiency
	VI-C RQ3: Non-trivial Information
	VI-D Threats to Validity

	VII Conclusion
	References

