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Abstract—Cooperative software verification divides the task of
software verification among several verification tools in order to
increase efficiency and effectiveness. The basic approach is to let
verifiers work on different parts of a program and at the end
join verification results. While this idea is intuitively appealing,
cooperative verification is usually hindered by the fact that
program decomposition (1) is often static, disregarding strengths
and weaknesses of employed verifiers, and (2) often represents
the decomposed program parts in a specific proprietary format,
thereby making the use of off-the-shelf verifiers in cooperative
verification difficult.

In this paper, we propose a novel cooperative verification
scheme that we call dynamic program splitting (DPS). Splitting
decomposes programs into (smaller) programs, and thus directly
enables the use of off-the-shelf tools. In DPS, splitting is dy-
namically applied on demand: Verification starts by giving a
verification task (a program plus a correctness specification)
to a verifier V;. Whenever V; finds the current task to be
hard to verify, it splits the task (i.e., the program) and restarts
verification on subtasks. DPS continues until (1) a violation is
found, (2) all subtasks are completed or (3) some user-defined
stopping criterion is met. In the latter case, the remaining
uncompleted subtasks are merged into a single one and are
given to a next verifier V, repeating the same procedure on
the still unverified program parts. This way, the decomposition
is steered by what is hard to verify for particular verifiers,
leveraging their complementary strengths. We have implemented
dynamic program splitting and evaluated it on benchmarks
of the annual software verification competition SV-COMP. The
evaluation shows that cooperative verification with DPS is able
to solve verification tasks that none of the constituent verifiers
can solve, without any significant overhead.

Index Terms—Software verification, cooperation, program
splitting, off-the-shelf tools.

I. INTRODUCTION

Software verification is the task of showing that programs
adhere to given specifications. While recent years have seen
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continuous research innovation and increasing tool develop-
ment in software verification [7], there are still numerous
programs that are in principal verifiable, but none of the
existing tools can automatically solve them.

Cooperative verification [17] aims at improving this sit-
uation by having tools (verifiers) cooperate on the task of
software verification. Cooperative verification is inspired by
the observation that verifiers have their specific strengths and
weaknesses: there are tasks (i.e., programs with specifications)
on which one verifier succeeds and some other fails, and vice
versa. The basic scheme of cooperation proceeds by letting
verifiers work on different parts of a program, and at the end
join verification results. In this, program parts are in the major-
ity of cases statically calculated, based on program structure:
an upfront decomposition determines program blocks [15],
modules [60], control-flow paths [74] or ranges of execution
paths [37], [47], [75]. This decomposition often either results
in specially annotated or heavily instrumented subprograms
(e.g., [46]) or in no subprograms at all (e.g., only test inputs
for path ranges [47], [75]).

Dynamic decomposition, i.e., a decomposition occurring
during verification runs based on progress, is less frequent.
We are only aware of two types of dynamic decomposition:
(1) Approaches building specific verifiers documenting their
progress in specific formats (e.g., [6], [11], [23], [42], [81)),
and (2) approaches based on work stealing concepts where one
verifier “steals” subtasks of others when it observes insufficient
progress of others [25], [84]. Both types of approaches prohibit
cooperation between off-the-shelf tools, the first type because
it requires at least one specialized verifier documenting veri-
fication progress (and possibly a second understanding these
documents) and the second type because it requires verifiers
to monitor each other’s progress.

In this paper, we propose a cooperative verification scheme
called dynamic program splitting (DPS) allowing for a cooper-
ation of arbitrary off-the-shelf verifiers. This scheme dynami-
cally applies program splitting on demand whenever a verifier
discovers that its current verification task is hard to verify.
“Hardness” is therein defined by (user definable) upper limits
on verification time. Splitting itself is carried out on branches
of programs’ execution trees and the result of splitting is a
number of subprograms (i.e., subtasks). The DPS technique
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Fig. 1: Cooperation through Dynamic Splitting. Both Vn and V, fail to verify P for different reasons (?). By iteratively
splitting P, we can independently verify parts of P with Vn and V.

is successively applied on subtasks until (a) one subtask ends
with the verdict “specification violated” or (b) all subtasks end
with verdict “specification fulfilled” or (c) some user-defined
stopping criterion is reached. In case of (c), the remaining
(uncompleted) subtasks are merged into a single task. DPS
is subsequently applied to this remaining task, employing the
next verifier in a given list. As all inputs to verifiers in this
scheme are programs, cooperation between off-the-shelf tools
is directly achieved.

We have implemented the cooperation scheme with dynamic
program splitting for C programs and have evaluated it on
benchmarks of SV-COMP [7]. The evaluation shows that the
choice of verifiers to be used in cooperation and the order
in which they are employed in this scheme has significant
impact on the effectiveness and efficiency of DPS. We have
observed the best results when the first verifier employs an
underapproximating analysis (e.g., symbolic execution [59]°),
fast at finding bugs, and the second verifier an overapproximat-
ing analysis (e.g., some form of abstract interpretation [27]).
For such combinations, there are verification tasks in the
benchmark set which are uniquely solved by the cooperative
scheme.

Example. In Fig. 1, we provide an example that shows how
cooperation between off-the-shelf verifiers could be achieved
via splitting. Consider the program P in Fig. 1. The program
computes a value for the variable out based on the input
in (of type int) and val (of type float). The assertion
at line 12 gives the correctness specification and specifies the
expected postcondition to be verified, namely that out is non-
negative at the end of the program (which holds). The program
contains two constructs which could be challenging during
the verification process: (1) a floating point multiplication at

OWe consider symbolic execution to be an underapproximating technique
because it cannot inspect all execution paths in case of programs with
unbounded loops.

line 3 and (2) a (potentially unbounded) loop at line 9. Now,
assume that we have two verifiers Vn and V. V employs
an underapproximating analysis (e.g. symbolic execution) that
can easily handle floating point operations, but can get stuck
in the loop. V|, employs an analysis that overapproximates
the state space of the loop. It however fails to verify the
program due to the floating point multiplication at line 3.
By splitting the program P into two subprograms P; and
P>, we can independently verify the part of the program that
includes floating point multiplication with VH and the part of
the program with a loop with V.

Our approach starts by giving the initial program P (with
included specification) to the first verifier V. It fails to solve
the entire task, and hence DPS splits the program into P; and
P5. Verifier Vo succeeds on P; (with verdict “specification
fulfilled”, ¥), but fails on P, (verdict ?). Thus DPS splits P
once more leading to subtasks P»; and P»o. This procedure is
repeated until a stopping criterion is reached. Here, we use the
maximum splitting depth 2 as the stopping criterion, so when
verifier V4 succeeds on P,y (with ) and fails on Psy (?),
we do not split Pos once more. Instead, we give the residual
program P, (which is P55) to the second verifier V. V|,
succeeds on P, with verdict ¢, which is then also the overall
verdict for P.

Novelty. We provide the following novel contributions:

« We conceptually develop a cooperative verification tech-
nique via dynamic program splitting, which determines
splits on demand based on verifier capabilities and which
enables usage of off-the-shelf verifiers.

« We prove soundness of the technique.

« We implement dynamic program splitting for C programs.

e We carry out a rigorous experimental evaluation using
benchmarks of 4771 verification tasks (written in C),
employing 4 different types of off-the-shelf software
verifiers.



Significance and Potential Impact. Competitions on software
verification and evaluations in research literature have shown
that existing verification tools indeed have their individual
strengths and weaknesses, and automatic verification fails for
some programs where it should — in principle — not fail.
Cooperative verification has emerged as a way out of this
problem, but could so far not completely fulfill its promises.
By allowing arbitrary off-the-shelf tools to cooperate on ver-
ification tasks, specifically running tools on parts hard for
others, we see our contribution as a significant step towards
unleashing the full potential of cooperative verification. Our
dynamic splitting scheme is moreover directly applicable to
other types of software analyses, e.g. testing.

Artifact. All our proofs, implementations and data are
archived and available at Zenodo! [72].

II. BACKGROUND

We start by introducing some basic notations about syntax
and semantics of programs as well as the task of software
verification.

Programs. In our presentation, we consider simple, imperative
programs that execute assignments, conditionals (if-then-else),
and loops using a set X’ of integer variables; our implemen-
tation supports C programs. We formally model a program as
a control-flow automaton (CFA) P = (L, {y, G) with program
locations L, an initial location ¢y € L, and control-flow
edges G C L x Ops x L (where the set Ops contains all
possible program statements). In that, if-then-else and loops
are encoded using assume operations on boolean expressions
for conditions. We let P be the set of all control-flow automata,
i.e., all programs. From a CFA we can derive the syntactically
possible paths. A synractic program path = =ty 25 ... 2% ¢,
is a sequence of program locations and control-flow edges such
that ¢, is the initial program location and for all 7, 1 <1 < n,
we have g; = (0;i—1,+, 4;).

For the semantics of programs, we need to extend syn-
tactic program paths with information on variable values.
To this end, we represent program states by pairs (¢,d) of
program location ¢ and data state d : X — Z from the
set D of all data states. Then, a program execution path
ex = (Lo, do) B ... & (¢,,d,) is a sequence of program
states and control-flow edges such that ¢ B Ty isa
syntactic program path and for all ¢, 1 < ¢ < n, the data states
adhere to the semantics of g;’s operation op;. This means,
assume operations op; = assume(b) need to evaluate to true
(d;—1 [ b) and do not change the data state (d;,—1 = d;), while
assignments change the data state according to the strongest
postcondition (d; = SP,y, (d;—1)). Given a program execution
path ex = (EQ,do) g .. 94 (gn,dn) with g; = (&—1,0])1'7&)
(1 < i < n), we call the sequence 7 = dpop1d; .. .oppd, a
program trace. The set tr(P) denotes the set of all program
traces of program P.

Ynttps://doi.org/10.5281/zenodo. 13142908

Algorithm 1 Dynamic Program Splitting (DPS)

Input: Verifier V
Program P
Specification ¢
Qutput: Verdict
Set of Programs
verdict < V (P, ¢);
if verdict = « then return v, ();

if verdict = % then return X, { P};

splits < {P};
while |splits| > 0 A —stop do
choose Pspiiy € splits; splits < splits \ {Pupiit }5
Py, ..., P, + split(Pspiit);
T1yeeeyTp HPIV(PZ7 g@);
if X e {ry,...,r,} then
return X, { Pt } U splits;

splits < splits U{P; | r; = ?};
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> in parallel
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. if splits = () then return v, ();
: return ?, splits;
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Safety. We use program traces to define safety of programs. A
safety specification ¢ C D x (Ops x D)* describes sequences
doop1rds . .. opmd,, of allowed program traces. We let ¢ be
the set of all specifications. In practice, a specification ¢ may
e.g. be defined by all traces (a) fulfilling an assertion (as in
the case of the example in Fig. 1), (b) not causing integer
overflows, or (c) adhering to particular operation sequences
(e.g., typestate specifications [79]). A program P is safe wrt.
specification  if and only if ¢ allows all of its program traces,
ie., tr(P) C ¢, otherwise it is unsafe. In case a program P
is unsafe wrt. specification ¢, there exists at least one error
trace T € tr(P) \ ¢.

Verifier. Given a program P and a specification ¢, the task
of a software verifier is to check whether a program is safe
wrt. ¢. Formally, we see a verifier as a function V : P x & —
{v,%,?}, and V is sound if V(P, ) =  implies tr(P) C
¢ and V(P,p) = X implies the existence of an error trace
7 € tr(P) \ ¢. The third value ? (unknown) is necessary here
since verification is in general undecidable, and verifiers may
fail to prove the existence or the absence of disallowed paths.
In the following, we refer to the elements in {¢, %, ?} as
verdicts.

III. COOPERATION VIA DYNAMIC SPLITTING

Our novel cooperative verification scheme achieves co-
operation through dynamic program splitting. We start by
introducing the algorithm behind DPS and we show that it
has some useful properties enabling the use of off-the-shelf
components in cooperative verification.



A. Dynamic Program Splitting

Algorithm 1 describes the process of dynamic program
splitting using a single verifier V. We first run V on P. If
it completes the verification (verdict ¥ or X), we are done
and can return the outcome together with either an empty set
or with the set {P}. The returned set of programs in both
cases includes the error traces of P. If the verdict of V is 2,
program P is hard to verify for V and splitting starts with
splits = {P}. At the beginning of each loop iteration (line
6), splits contains all subprograms that still must be verified.
Within the loop (lines 7 to 12) we choose one program from
splits, split it once more and run V in parallel on all newly
generated subprograms (line 9). When a subprogram P; does
not get verified (r; = ?), the subprogram is included into
splits (line 12). Finally, we end the loop if (1) all splits have
been verified (i.e., splits is empty), (2) a stopping criterion
is fulfilled (e.g., a timelimit is exceeded) or (3) a property
violation is detected (line 10). In all cases, we return the
remaining splits together with a verification verdict.

Trace Splitting. A central part of DPS is the function split
that we use for program splitting. The task of split is to
divide a given program P into a finite number of subprograms
Py, ..., P, such that we can verify each subprogram individ-
ually. To achieve this, we adopt a trace splitting strategy that
preserves the set of program traces. Formally, we thus define
split as a function split : P — 27 satisfying the following

condition:
wP)= U
P;esplit(P)

VP ecP: tr(P;)

Note that a function returning the original program (i.e.,
split(P) = {P}) is already a valid splitter, though not
a very useful one. In practice, we use more sophisticated
instantiations of split (see Sec. III-C).

Properties. DPS has some useful properties when used with
a function split that satisfies the aforementioned condition.

Lemma 1: Let P be a program, ¢ a specification and V a
sound verifier. If DPS(V, P, ) returns verdict, progs, then

tr(P)\ ¢ C U tr(P;) C tr(P)

P;eprogs

Lemma 1 states that the set of (sub)programs returned by
Alg. 1 includes all unverified parts of the program. In par-
ticular, the set of subprograms always include all error traces
of the original program.

Lemma 2: Let P be a program, ¢ a specification and V a
sound verifier. If DPS(V, P, ) returns verdict, progs, then
« verdict = « implies progs = (), and
o verdict = % implies tr(P) \ ¢ # 0.
Lemma 2 basically states that Algorithm 1 always returns a
sound result.
Proof: The proofs of Lemma 1 and Lemma 2 can be found in
the accompanying artifact [72].

Algorithm 2 Coop Veri

Input: Verifiers V = (Vpead) © Viail
Program P
Specification ¢

Output: Verdict

1: if Vigu = () then

22 return Vyeqa(P, ¢);

3. wverdict, progs < DPS(Vheqd, P, ¢);
4: if verdict # ? then return verdict;
5
6

: P. < merge(progs);
. return Coop Veri(Vyait, Pr, ©);

B. Cooperation via Splitting

To enable cooperation between verifiers, we first employ
DPS to identify the parts of a program that are hard to analyze
for a particular verifier. We then use the results of DPS to
construct a residual program P,., which can be processed by
the next verifier. Algorithm 2 describes the overall procedure
of this cooperation scheme. The algorithm basically defines a
new verifier based on a non-empty list of existing verifiers V.
The goal is to verify the program P wrt. specification ¢. The
algorithm starts by considering the first verifier Vjqq at the
head of the list. If there are no subsequent verifiers in Vg,
we do not need to generate a residual program and therefore
only execute Vjeqq On the given program (line 2). Otherwise,
we use DPS to compute an intermediate verdict and a set
of unverified program parts. If the verdict is conclusive, we
stop and return the current verdict. If we need to continue
the verification process (verdict = ?), we compute a residual
program P, by merging all unverified parts of the original
program. The residual program is then processed by the next
verifier in V4.

Trace Merging. To compute P,, we use the function merge
for merging the traces of the subprograms. The task of merge
is to rejoin a given set of programs { Py, ..., P,} into a single
program P while keeping the overall set of program traces
of all subprograms. Formally, we define merge as a function
merge : 2F — P satisfying the following condition:

U ()

P; eIl

VI € 27 :  tr(merge(l)) =

Soundness. Given a set of sound verifiers, we can now show
that our cooperative verification scheme is sound.

Theorem 1: Let P be a program, ¢ a specification and let
Vi,...,V,, be sound verifiers. Then CV : Px® — {« %X ?}
defined by CV(P,¢) := CoopVeri({V1,...,V,),P,¢) is a
sound verifier.

Proof: The proof can be found in the accompanying arti-
fact [72].
Note that if at least one verifier is completez, then our

2A verifier is complete if it can prove the existence or absence of error
traces for every possible program.



cooperative verifier is also complete for all trace-based safety
specifications.

C. Instantiations of Split and Merge

We next discuss some concrete instantiations of the func-
tions split and merge used for trace splitting and trace
merging.

Control-Flow Splitting. For implementing the split function,
we employ a control-flow based splitting technique. The al-
gorithm is shown in Alg. 3. We start by identifying potential
split locations in the program P = (L, ¢y, G). A split location
lsp € L is a program location in P that (1) has multiple
successor locations in G (a branching location) and (2) cannot
be (re-)reached again in the CFA after being visited for the
first time (e.g., a location belonging to an if but not to a
while statement). To find a potential split location, we first
search for a branching location in G (lines 1 to 7) and then
check whether the branching location can be reached again
(rereach in line 9). We abort (line 7) if no branching location
can be found.

It is important to note that a split location always corre-
sponds to a branching decision taken at most once in a program
execution. Thus, syntactically splitting the program at a given
split location does not influence future (semantic) branching
decisions. This property is crucial for the soundness of split:
Splitting a program at a location that cannot be reached again
ensures that the set of traces of P can be represented by a
finite set of subprograms P;. Splitting at branching locations
of loops and in functions that are called multiple times would
potentially require a split into infinitely many subprograms (for
each of the potentially infinitely many branching decisions)
and is therefore not allowed. To still be able to split program
location that are reached again in the original CFA (lines 10
to 11), we employ several program unfolding strategies which
we describe below.

To then finally compute a concrete split (in lines 13 to 16),
we construct a split condition b3 such that all executions that
reach /), and that satisfy b follow the same branch in the pro-
gram, i.e., follow the outgoing edge ({sp, assume(b),-) € G.
We then construct two subprograms P, and P}, such that B,
contains all execution paths that (1) either do not reach ¢, at
all, or (2) reach /,;, and satisfy b; P, contains all remaining
execution paths. An example program and the corresponding
splits are shown in Fig. 2. A proof that our control-flow based
splitting strategy implements a valid split function can be
found in the accompanying artifact [72].

Unfolding Strategy. In general, we apply splitting on the first

split location reachable from ¢y. As not all programs contain

split locations, we might, however, first need to apply one of

the following two unfoldings to generate split locations and

thereby enable splitting (unfold in line 10 of Alg. 3).

Loop unrolling We unroll loops. This generates new if
statements that can serve as split locations.

3The split condition b often corresponds to the condition of an i f. Switch
statements require extra care.

Algorithm 3 Control-Flow Splitting split

Input: Program P = (L, ¢y, G)
Output: Set of Programs
1: fsp +— Lo
2: visited < {{p};
3. while —isBranch(P,l,) do
& M3, € Lt (ly.[l,) € GALL, ¢ visited then
5: Lsp < Uy, visited « visited U {€5, };
6
7
8
9

else
return {P}; > No split location found
. if rereach(P,{s,) then
10: P’ < unfold(P, lsp);
11 return split(P’);
12:
13: choose ({sp,0p,-) € G with op = assume(b);
4: Gy = G\ {(lsp, 00, L) | op' # op}:
15: G < G\ {(Usp, 00, £,) | op’ = op};
16: Py, Pi, < (L, lo, Gy), (L, bo, G 1p);
17:
18: return {P,, P\, };

> Unfold program

Function cloning We clone functions that are called multiple
times. To this end, we copy the function definition, re-
place the function name of the cloned function with a new
function name and modify the function call accordingly.
This generates a new function that is only called once
and can therefore be split.

We apply loop unrolling or function cloning depending on
what we see first in the program, a loop or a function called
multiple times. When neither technique helps with generating
a split location, e.g., because the program contains no further
loops, splitting simply returns the original program. When we
unroll a loop, we mark it as unrolled and do not unroll it in
successive splits. Once all loops in the program are marked, we
remove the markings so that the loops can be unrolled again.
This way we balance unrolling the loops. Most importantly,
we avoid unrolling only the same loop over and over again.

Merging. To implement the merge function, we exploit the
structure of the DPS algorithm.

DPS Inversion. DPS implicitly defines a tree of program splits.
Each parent program has a set of child program splits and
the leaves of the tree are the final splits. Each final split
is either solved or left open for the next verifier. To merge
the remaining subprograms, we employ an iterative merging
strategy. Starting from the leaves, we compute a merged
program for each split operation. If all children are verified,
we return an empty program and mark it as solved. If only
one child remains unsolved, we propagate the child up the
tree and mark it as unsolved. If two or more children remain
unsolved, we merge them via a control-flow-based merging
strategy (described next). After merging all subprograms, we



(a) Example program P

(b) Split program P

0 if (b){ <- split here 0 if (b) { 0 if (b){

1 // CODE BLOCK A 1 // CODE BLOCK A 1 abort (); <- stop here
2 } else { 2} else { 2 } else {

3 // CODE BLOCK B 3 abort (); <- stop here 3 // CODE BLOCK B

4y 4} 4

S // CODE BLOCK C S // CODE BLOCK C 5 // CODE BLOCK C

(c) Split program Py,

Fig. 2: A simplified program P and the obtained splits P, and P, after splitting P with split condition b.

end up with a residual program P,, which can be directly
processed by the next verifier.

Control-Flow Merging. For the actual merging, we exploit
the fact that the programs to be merged are all splits of one
common start program P. Hence, two programs P; and P
to be merged always consist of some first (potentially empty)
part that they share followed by parts in which they differ.
To merge P, and P>, merging needs to first find the merge
locations {,,4, which are the locations at which the common
part of the two programs ends. Technically, we identify merge
locations on the product automaton of the CFAs of P; and
P5, and sometimes we also need to employ loop unrolling
and function cloning to be able to find merge locations at all.

Merging P, and P, at a found merge location £,,, should
then ideally construct a merged program P, such that £,
is a split location of P, and splitting at this location gives
us programs P; and P,. Further recall that the objective of
merging is to guarantee that the traces of P, is exactly the
union of traces of P; and P,. Therefore, to construct P,
we start by setting P, to be P;. We then successively search
for merge locations and merge parts of P into P,, whenever
we notice that traces of P, are missing in P;. In this case,
the merge location fixes the point in the program at which
the additional behavior of P, is added. In our example in
Fig. 2, the if at line O is a merge location for B, and
P,,,, and merging indeed gives P again. We employ various
optimizations to obtain a merged program that is as similar
as possible to the original program before any splitting. For
example, our merger detects potential join locations (e.g., the
start of cope Brock c in Fig. 2) from where the splits may be
the same and tries to join them together during the merging
process.

Whenever we are provided with more than two subpro-
grams, we incrementally merge them together.

IV. EVALUATION

Our DPS-based cooperative verification scheme enables
cooperation between off-the-shelf verification tools. Our focus
in the evaluation is thus on examining whether this brings us
any practical advantages wrt. the effectiveness and efficiency
of verification. Our evaluation is guided by the following
research questions:

RQ1 How does DPS-based cooperative verification compare
with non-cooperative approaches?

RQ2 How does DPS-based cooperation compare with existing
cooperation schemes?

RQ3 How does the unfolding strategy impact the ability
of DPS-based cooperation to uniquely solve verification
tasks?

A. Implementation

We implemented our DPS-based cooperation scheme within
BUBAAK* [20]. BUBAAK is a tool mainly designed for the
dynamic composition of verification tools. Tools in BUBAAK
are not composed in a static scheme, but invoked based on
information gathered during the verification process. We im-
plemented Algorithm 2 as a new type of dynamic composition.
For our instantiations of split and merge, we furthermore
required program analyses that can directly process and trans-
form C code. For this, we implemented pycpa’, a novel
program analysis framework for C written in Python. pycpa
directly operates on a code representation (i.e., CFA) that is
grounded6 in the actual C code. Therefore, code modifications
like splitting or loop unrolling can be done on the code and
are then directly reflected in the CFA. pycpa is implemented
in around 6K lines of Python code and supports the analysis
and transformation of ANSI C programs.

B. Tools and Techniques

Modern verification tools often employ a variety of verifica-
tion techniques [7]. To evaluate the impact of our cooperation
scheme on the verification process, we employ implementa-
tions of the most common techniques, focusing on techniques
with complementary strengths.

Symbolic Execution. Symbolic Execution (SE) [59] sym-
bolically executes programs, enumerating feasible program
execution paths. Hence, SE is good at finding specification
violations, but has difficulties in proving the safety of pro-
grams with large or unbounded number of execution paths.
For our evaluation, we employ BUBAAK-LEE [20], which is a
fork of symbolic executor KLEE [19] for LLVM bitcode. We
characterize SE as an underapproximating technique (UA).

Bounded Model Checking. Bounded Model Checking
(BMC) [38] constructs a logical formula encoding program
paths and examines its satisfiability in conjunction with a

*https://gitlab.com/mchalupa/bubaak
Shttps://github.com/cedricrupb/pycpa
%I.e., we maintain a one-to-one correspondence between code and CFA.



formula for a specification. To ensure that the program formula
can be constructed, it bounds loop iterations. Hence, BMC
can prove a program to be safe up to a given loop bound.
In our experiments, we employ ESBMC [38], a verification
tool specialized for SMT-based BMC and k-Induction. We
configure ESBMC to run incremental BMC, i.e., a variant of
BMC that incrementally increases the given loop bound. BMC
is an underapproximating technique (UA).

k-Induction. k-Induction (KI) [5], [32] is an extension of
BMC for verifying programs with unbounded loops. KI first
performs BMC with a given bound on loop iterations, and
then tries to prove that a given property holds also for all
future iterations. Therefore, KI can be used to prove the safety
of programs with bounded and/or unbounded loops. In our
experiments, we employ ESBMC-kInd [38] which is a version
of ESBMC specifically configured to run k-Induction. KI is
an overapproximating technique (OA).

Predicate Analysis. Predicate Analysis (PA) [14] is a tech-
nique based on abstract interpretation. To prove the safety
of programs, PA abstracts the concrete execution state with
a predicate-based abstraction. Therefore, PA can analyze
programs with unbounded loops if their behavior can be
abstracted with a finite set of predicates. To compute the
set of predicates used for the abstraction, we use PA with
counterexample guided abstraction refinement (CEGAR) [26].
For our evaluation, we employ PA as implemented in the
verification framework CPAchecker [13]. PA is another over-
approximating technique (OA).

Conditional Model Checking. Finally, for RQ2 we want to
compare our approach to another cooperation scheme. For this,
we have chosen conditional model checking (CMC) [6] as
it also employs dynamic decomposition based on verification
progress. In CMC, two verifiers cooperate by exchanging so-
called verification conditions. A verification condition doc-
uments the progress of the first verifier by describing the
already verified program part. To the best of our knowledge,
CPAchecker [13] is currently the only tool to generate and
understand verification conditions. The second verifier within
CMC can still be an off-the-shelf tool, because there is a re-
ducer technique for converting conditions into programs [11].
For the first verifier generating the condition, we can never-
theless only use CPAchecker.

C. Experimental Setup

We run our experiments on machines with Intel Core i5-
1230, 8 cores, 33GB of memory and Ubuntu 22.04 LTS with
Linux kernel 5.15. To increase reproducibility of our experi-
mental results, we run our experiments with BenchExec [16].
Each verification run is restricted to 15 GB RAM, 4 CPU cores
and 15min CPU time. The setup is comparable to the setup
used in SV-COMP. For evaluation, we employ verification
tasks of SV-COMP 2024 [7], which represents the largest
available benchmark set for verification of C programs. We
included all 4 771 tasks from the categories Arrays, BitVectors,
ControlFlow, Floats, Heap, Loops, ProductLines, Recursive,

Sequentialized, XCSP and Combinations. A verification task
is either safe (and contains no specification violation) or unsafe
(contains a violation, viz. an error trace). We use CPAchecker
version 2.3, BUBAAK-LEE version 3.0 and the version of
ESBMC used in SV-COMP 2024.

V. RESULTS

We report about the results per research question.

A. RQI: Cooperation via DPS vs. no cooperation

To answer our first research question, we run Alg. 2 with
different lists of verifiers and compare it to the verifiers
individually. Each list consists of two verifiers V; and Vs.
Below we will also see results for lists with more than two
verifiers. As stop function within Alg. 1 we use a timeout:
We limit the runtime of V; to 16s’, the overall execution time
of the DPS algorithm to 100 s and let the verifier Vo run until
it finishes or a global resource limit is exceeded.

Results. Our experimental results are shown in Tab. I. We
list the number of verification tasks that each verification
approach solved correctly, incorrectly® and which it cannot
solve (unknown). The correct and incorrect results are further
categorized into proofs and alarms, i.e. whether the approach
reported a proof or a specification violation respectively.
Uniques are the number of verification tasks that the com-
bination V1+Vsy can solve, but not the baseline verifiers V;
and Vs individually. Due to a lack of space, we focus on
combinations with SE when combining underapproximating
(UA) with overapproximating (OA) analyses.

DPS Cooperation increases number of verified programs. We
observe that in all cases the combination of any two verifiers
V1 and Vs solve significantly more verification tasks correctly
than verifier V; or V5 alone. In some cases, e.g. SE+PA, the
combination solves up to 794 and 528 tasks more than the
baseline verifiers PA and SE, respectively. We moreover see
that there are at least 4 to 35 tasks (row Uniques) that can
only be correctly solved by a combination of two verifiers
V1 and Vs but not by the individual verifiers V; and Vs
(within 900s). These tasks require cooperation between Vi
and Vo and would not be solved by a combination that
simply executes the verifiers one after another on the same
verification task (e.g. [62]). The number of incorrect results
does not increase significantly, except for the combinations
PA+SE and PA+KI. There, PA produces some incorrect alarms
because it investigates execution paths after splitting (and
wrongly attribute these as error traces) that would not have
been considered at all without splitting due to a failure of PA
on other, previously examined paths.

Tool choice and order matters. Table I also gives us results
about useful combinations of verifiers and their ordering. UA

"We experimented with different runtimes ranging from 2s to 64s. We
found that 16s is long enough for the verifiers to effectively guide DPS,
while being short enough to ensure a sufficient number of program splits.

8Verifiers can produce unsound (incorrect) results due to bugs in their code.



TABLE I: DPS-based cooperation vs. no cooperation (Columns UA and OA show results of single verifiers, other columns
show results of DPS-based cooperation with different lists of verifiers, ordering giving sequence of verifier list).

UA OA UA — UA UA — OA OA — VA OA — OA

SE BMC KI PA SE+BMC BMC+SE SE+KI  SE+PA KI+SE  PA+SE KI+PA  PA+KI

Correct 2244 2389 2500 1978 2672 2564 2816 2772 2681 2654 2683 2795
Correct proof 1016 1144 1258 984 1254 1174 1401 1410 1294 1386 1377 1491
Correct alarm 1228 1245 1242 994 1418 1390 1415 1362 1387 1268 1306 1304
Incorrect 1 5 5 33 5 1 6 32 2 45 32 50
Incorrect proof 0 5 5 0 3 1 4 0 2 0 2 5
Incorrect alarm 1 0 0 33 2 0 2 32 0 45 30 45
Unknown 2526 2377 2266 2760 2094 2206 1949 1967 2088 2072 2056 1926
Uniques - - - - 26 4 35 6 10 6 29 31
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Fig. 3: Quantile plot for SE, KI, PA and their combinations
SE+KI, KI+SE and PA+KI.

tools are often more effective in finding specification viola-
tions. Therefore, the combination of two UA tools (SE+BMC)
is able to find more than 100 violations more than any OA
combination (KI+PA and PA+KI). As expected, OA tools are
often more effective in producing safety proofs. We thus find
that a combination of UA and OA tools (SE+KI) achieves the
overall highest number of correctly solved tasks, and it is on
average better to have the UA tool first in the list.

Efficiency. We are also interested in the runtime of verifiers
alone and of the cooperation. Figure 3 shows quantile plots for
the verifiers SE, KI, PA and their combinations SE+KI, KI+SE
and PA+KI. A data point (z, y) means that the x fastest results
are solved each within y seconds of CPU time. The gray box
marks the time between 16s and 100s, i.e., the time where
most of the splits are performed. We observe that both tool
choice (SE or PA for V;) and tool order (SE+KI or KI+SE)
have a significant impact on efficiency, but except for PA+KI
no significant difference to runtimes of tools alone shows.

More verifiers, more tasks solved. We finally investigate the
impact of incorporating more tools in DPS-based cooperation.
For this, we run Alg. 2 with verifier list (SE, BMC, PA,
KI). Here, every verifier except KI (which is the last one)
is restricted to a runtime of 100s (still with the limit of 165
per split). To investigate the impact of constituent verifiers,
we also run Alg. 2 with suffixes of this list. Our results are
shown in Fig. 4. We report the number of tasks that the DPS-
based cooperation can correctly solve (in total, plus per proof
and alarm) but not the base verifier KI. We find out that by
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Fig. 4: Number of tasks that the DPS-based combinations can
solve but KI cannot.

increasing the number of diverse verification technologies in
our DPS-based cooperation we also increase the number of
correctly solved tasks.

DPS-based cooperation can significantly increase verifi-
cation performance. Effectiveness and efficiency of the
cooperation is often sensitive to tool choice, order, and the
number of tools used in the combination.

B. RQ2: Cooperation via DPS vs. other cooperation schemes

We compare our approach with CMC-based cooperation.
Similar to DPS, CMC-based cooperation performs dynamic
decomposition based on verification progress. However, CMC
can only utilize tools that can generate verification conditions,
and hence in CMC we have to employ CPAchecker at
least for the first verifier. To allow for variations of tool
orderings, we hence also employ an implementation of SE
within CPAchecker in addition to the PA implementation.
For a fair comparison, we limit the runtime of the first verifier
to 100s in each combination.

Results. Table II presents the results of our comparison. We
report the number of correctly and incorrectly solved tasks
for the combinations SE+PA and PA+SE. We report results
for a CMC-based cooperation (CMC, passing conditions from
one to the next verifier), a reducer-based cooperation (Reducer,
reducing the condition to a program before giving it to the next
verifier) and a DPS-based cooperation (DPS-CPA), all using
SE and PA implementations within CPAchecker. Finally,
DPS-KLEE runs KLEE instead of the CPAchecker based
symbolic execution.



TABLE II: DPS-based vs CMC-based Cooperation

SE + PA PA + SE
Correct Incorrect Correct Incorrect
CMC 2186 27 2254 50
Reducer 1694 43 2128 58
DPS-CPA 2260 34 2002 45
DPS-KLEE 2772 32 2654 45

TABLE III: Impact of Unfold Strategy on DPS Uniques

SE + KI PA + KI SE + BMC

DPS (with all unfolding) 35 31 26
w/o loop unrolling 23 15 22
w/o function cloning 35 31 24

DPS can be as effective as CMC. In comparison with CMC
and Reducer, we observe that DPS-CPA performs comparably
for SE+PA and slightly worse for PA+SE. For SE+PA, there
are 195 tasks that DPS-CPA correctly solves but neither CMC
nor Reducer do. For PA+SE, there are 25 tasks that DPS-CPA
solves but neither CMC nor Reducer do. However, there are
also between 118 (SE+PA) and 280 (PA+SE) tasks that CMC
and Reducer can solve but DPS-CPA cannot. For most of these
tasks (103 and 268 tasks, resp.), the main reason of failure is
the short runtime provided to the first verifier: As DPS restricts
the runtime of the first verifier to 16s during splitting, tasks
that can be solved after 16 s are often missed. The remaining
tasks (15 and 12, resp.) are uniques that are solved with the
help of the generated condition.

Off-the-shelf tools can significantly improve performance. By
employing off-the-shelf components, DPS-KLEE can solve
significantly more verification tasks correctly than the other
cooperation types. This highlights the importance of being
able to use off-the-shelf tools: Without any modification, KLEE
alone already solves 565 tasks that neither SE (CPAchecker)
nor PA do. With DPS, we can exploit the effectiveness of
KLEE in our cooperative scheme while maintaining the ability
to uniquely solve verification tasks.

DPS-based cooperation achieves performance comparable
to CMC and reducer-based cooperations. By employing ef-
ficient off-the-shelf verifiers, DPS can significantly increase
the number of verification tasks solved.

C. RQ3: Impact of Unfold Strategy

For RQ3, we evaluate the impact of our unfold strategy on
the best performing combinations in terms of overall correct
results (SE+KI), overall correct proofs (PA+KI) and overall
correct alarms (SE+BMC). We compare the effectiveness of
DPS with both types of unfolding turned on and without them.
In this, we specifically focus on the number of uniquely solved
tasks per combination.

Results. Our results are shown in Tab. III. We find out that
loop unrolling is necessary and deactivating it significantly

reduces the number of uniquely solved tasks (with a reduction
of 4 to 16 uniques). Deactivating function cloning has often
a negligible impact on the number of uniquely solved tasks.
This indicates that most of the tasks that are uniquely solved
are solved by splitting at split locations that directly appear
in the program or appear in loops. As all types of unfolding
turned on works best, we employed DPS with both types of
unfolding activated in our experiments for RQ1 and RQ2.

Both types of unfolding can have a positive impact on the
number of uniquely solved tasks achieved with a DPS-
based cooperation.

VI. DISCUSSION

We briefly describe some insights about DPS we gained
while inspecting specific results of the experiments, and dis-
cuss limitations of our approach as well as threats to the
validity.

A. Lessons Learned

To gain a better understanding of how DPS impacts the
verification process, we had a closer look at the tasks that
could and could not be solved by the individual verifiers after
running DPS. In the following, we discuss the lessons we
learned in the process.

Already small changes can drastically change verifier behav-
ior. A key assumption of our work is that software verifiers
behave consistently. In particular, we assume that a verifier that
is powerful enough to solve the original task is also powerful
enough to solve all reduced variants. In this way, we can safely
apply our cooperation scheme without making the task harder
for the second verifier. However, we found that this is not
always the case: Fig. 5 presents one extreme case where just
unrolling the loop once lets the verifier (PA) fail. To understand
why this happens, we manually analyzed the verification log
of PA. We detected that due to loop unrolling PA can no longer
compute the correct loop invariant (via interpolation) that is
necessary to prove the task safe. Interestingly enough, we
noticed that slight modifications of the program can also help
us in the verification process. For example, at least 4 out of
the 35 tasks uniquely solved by SE+KI are solved because the
program merger encodes the control flow slightly differently.

Splitting can help verification. Recent works on static program
splitting [37], [47], [75] have shown that program splitting can
significantly improve the performance of underapproximating
analyses in finding specification violations. Haltermann et
al. [47] report that static program splitting has no significant
impact on the ability of overapproximating analyses to prove
programs safe. Therefore, we were quite surprised to find
that the overapproximating analyses (PA and KI) were able
to prove some tasks safe during DPS that they could not solve
alone. For example for the combination KI+SE, we find that
5 out of 10 uniques are proofs that KI could only generate
when running on program splits.



int x, y;

assume (x ==y && x >= 0);

// UNROLLED

if(x > 0){
X==; y==;
while (x > 0)

}

assert (y>=0);

{ x==; y=——; }

NN AW —=O

Fig. 5: benchmark37_conjunctive after unrolling the
while loop once.

DPS is most effective for tasks with multiple verification goals.
After analyzing the uniquely solved tasks for the combinations
SE+BMC, SE+KI, KI+PA and, PA+KI, we noticed that the
majority of uniquely solved tasks (between 17 and 22 tasks)
are tasks with multiple verification goals (e.g., multiple asserts
or error locations). For these tasks, the first verifier is able to
prove a subset of all verification goals. The residual program
then contains the remaining verification goals which are solved
by the second verifier.

B. Limitations and Threats to Validity

We have conducted our experiments using tasks from the
sv-benchmarks of SV-COMP, one of the largest available
collections for C program verification. Although it is widely
used (especially in software verification competitions), our
findings might not completely carry over to other real world
C programs. In our experiments, we focused on a subset of
4771 tasks of the ReachSafety category and three verification
tools that implement four different verification techniques. Our
results might therefore be biased to the specific selection of
tasks and tools used in our experiments.

The correctness of our program transformations used for
program splitting and merging is another threat. In principle,
a bug in our implementation could lead to new tasks solved
correctly (for the wrong reasons). Therefore, we manually
checked whether all tasks that are newly solved are trans-
formed correctly. Still, since our implementation is a proto-
type, it might contain bugs that impact the behavior of DPS
on other tasks.

We found during our experiments that DPS significantly
suffers from redundancy of computation and trivial splits.
Because most off-the-shelf verifiers do not have an interface
to share their verification progress, the verifiers have to re-
explore a significant part of the program after each split.
Trivial splits are program splits that do not significantly
reduce the number of feasible traces per split. This could for
example happen if the split condition is trivially true or false.
While this does not affect the soundness of our approach,
it could significantly reduce the effectiveness and efficiency
of our approach. Still, as our evaluation shows, our approach
improves the performance of existing verifiers.

VII. RELATED WORK

In this work, we proposed a novel cooperative scheme
that uses dynamic program splitting to enable the cooperation

between off-the-shelf verification tools. In the following, we
discuss the most closely related approaches in cooperative
verification and program decomposition.

Cooperative verification. Many approaches have been pro-
posed to combine the strengths of verification techniques [1],
(21, [4], [5], 91, [12], [27], (28], [301, [33], [39], [40],
[43]-[45], [51]-[54], [63], [68], [69], [77], [82], [83]. These
approaches combine verification techniques by running them
in parallel, in sequence or interleaved. Many of these ap-
proaches require some form of conceptual integration [2],
[91, [27], [28], [43], [63], i.e., the approach tightly combines
various verification components within one tool. Exchanging
components or integrating new verification techniques in a
conceptual integration is therefore often difficult (as it requires
new implementations) or impossible (as it requires algorithmic
innovation). For this reason, recent approaches [1], [4], [5],
[39], [40], [44], [45], [49], [52], [68], [69], [77], [83] have
explored ways to combine (black-box) verification compo-
nents more loosely. For example, Conditional Model Checking
(CMC) [6] combines multiple verifiers that exchange infor-
mation about the progress of the verification. C-CEGAR [8§]
decomposes the CEGAR loop into multiple components that
work together to solve a common verification task. Key to
all of these approaches are verification artifacts (such as
verification conditions) that can be generated and understood
by the individual components. This naturally limits the types
of verification components that can be used in a cooperation.
Our technique employs C programs as the exchange format
and only relies on the outputs naturally provided by a verifier
(e.g. whether a program split is safe or not). Therefore,
our technique can be used to combine arbitrary off-the-shelf
verifiers.

Static Decompositions. Another way to combine verification
components is via static (program) decompositions [3], [31],
(361, [41], [50], [57], [58], [60], [61], [64]-[66], [70], [73],
[74], [76], [78]. The key idea is to statically split the given
program or its state space into multiple parts that can be
analyzed individually. For example, ranged symbolic execu-
tion [75], SynergiSE [71], [80], ranged model checking [37],
and ranged program analysis [46]-[48] split the program paths
into multiple path ranges (i.e., consecutive paths) that can be
analyzed in parallel. Distributed Summary Synthesis [15] splits
the program into program blocks. Inverso and Trubiani [56]
and EPA-Lazy-CSeq [35], [67] internally split the paths of a
multi-threaded program based on thread scheduling. Most of
these techniques utilize the computed splits internally to guide
the verifier. Therefore, Haltermann et al. [46] recently pro-
posed to encode the restriction to the range into the program
via instrumentation statements, which allows the application of
arbitrary analyses. They however noticed in a later work [48]
that static splitting can easily lead to suboptimal splits such
that the individual verifiers waste time on a subprogram that
could be solved by another verifier. With dynamic program
splitting, we can use a verifier to guide the splitting process.



Dynamic Decompositions. There are mainly two approaches
to dynamic program decompositions in software verification:
(1) work stealing [18], [25], [75], [80], [84] and (2) verifier-
guided decompositions [10], [11], [29], [55]. In work steal-
ing, an idle verifier “steals” subtasks from another verifier.
Subtasks can be subprograms that are split from the original
task. In verifier-guided decompositions, the verifier explicitly
reports information about its verification progress, which is
then used to decompose the program in already verified and
unverified parts. For example, Reducer [10], [11], [29] utilize
the verification condition generated by the first verifier to con-
struct a residual program containing all unverified parts. Huster
et al. [55] split the task into verified and unverified proof
obligations (as reported by the verifier). Further approaches
document their achieved work in the program in the form of
verification annotations [23], [24] or assume statements [34].
All of these approaches require that the verifier explicitly
informs the decomposition procedure about the progress made
on the program. As a result, all of these approaches require
verifiers that are modified [10], [11], [23], [24], [29], [55] or
specifically designed [34] for this purpose. With our approach,
we can utilize the effectiveness of off-the-shelf components
without any modification.

Finally, the idea of dynamic program splitting along control-
flow has already been used in the recently proposed tool
BUBAAK-SpLit [21]. BUBAAK-SpLit, however, only uses
a fixed combination of tools (first KLEE, second SLOW-
BEAST [22]). It moreover does neither employ merging nor
different stop criteria for splitting. Our approach can thus be
seen as a generalization and extension, enabling the use of
arbitrary off-the-shelf verification tools that can be chained
together to form a stronger verifier.

VIII. CONCLUSION

Software verification is an important but very challenging
problem. It is important since we depend on the correctness
and reliability of software systems and it is challenging as
the problem is in general undecidable. To address software
verification problems, many software verification tools have
been developed that all come with their own strengths and
weaknesses. Cooperative verification promises to combine
their strengths, but so far no cooperative approach has been
proposed that can fully utilize all publicly available off-the-
shelf verification tools.

To address this shortcoming, we explored a novel cooper-
ative scheme comprising dynamic program splitting. By dy-
namically splitting the verification task into multiple subtasks,
our approach can identify which parts of the task are already
verified and which have to be further processed by a second
verifier. As each subtask is encoded within a program, our
cooperation scheme can utilize arbitrary off-the-shelf verifica-
tion tools. Our evaluation has shown the importance of this
property: Not only can our cooperation scheme be used to
improve the performance of a single verification tool, but
by using off-the-shelf components, our approach is able to

outperform existing cooperation techniques that rely on tighter
integrated forms of cooperation.

In future work, we will investigate whether the inefficiencies
of our method can be addressed without compromising its
generality. A first idea would be to integrate a form of value
analysis in the splitting process to directly avoid generating
trivial splits.
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