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Abstract. Software verification is a complex problem, and verification
tools need significant tuning to achieve high performance. Due to this,
many verifiers choose to specialize on basic reachability properties. In-
stead of implementing algorithms for each possible specification, some
verifiers implement known transformations from the given specification to
reachability on their internal representations. Unfortunately, those internal
transformations are not reusable by others. To improve this situation,
we propose TransVer, a tool which offers transformations as modular
stand-alone component, modifying the input program instead of the inter-
nal representation, enabling their usage as a preprocessing step by other
verifiers. This way, we separate two concerns: improving the performance
of reachability analyses and implementing efficient transformations of
arbitrary specifications to reachability. We implement the transformations
in a framework that is based on instrumentation automata, inspired by the
BLAST query language. In our initial study, we support three important
concrete specifications for C programs: termination, no-overflow, and
memory cleanup. We conduct experiments with ten different verifiers. The
experiments evaluate the efficiency and effectiveness of our transforma-
tions. The results are promising: Our transformations can extend existing
verifiers to be effective on specifications for which they have no integrated
support, and the efficiency is often similar or better to state-of-the-art
verifiers that have integrated support for the considered specifications.

Keywords: Specification · Monitoring · Specification Reduction · Reachability ·
Formal Verification · Model Checking · Software Verification · Program Analysis

1 Introduction
Software verification is the problem to decide, for a given program P and speci-
fication φ, whether the program P satisfies its specification φ, in short: P |= φ.
To address this issue, a software verifier is usually constructed in one of two
ways: (a) implement a verification algorithm for P |= φ or (b) reduce the prob-
lem by transformation in order to solve it using an existing algorithm. The
transformation-based approach consists of two steps and assumes an existing
verifier v that supports a specification φ′. In the first step, the problem P |= φ is
transformed to a problem P ′ |= φ′, such that P |= φ holds if and only if P ′ |= φ′

holds. In the second step, the problem P ′ |= φ′ is solved by the existing verifier v.
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Several verification tools already choose to use transformations [1, 2, 3], since
transformations allow for a separation of concerns: (1) support a rich set of
specifications and (2) tune the performance of specialized algorithms for one
particular specification. For example, given a verifier that supports reachability,
the verifier can be extended to support other specifications, like termination and
no-overflow, for which a transformation to reachability is available.

Currently, a developer who desires to extend a verifier to support more specifi-
cations using the transformation approach has to re-implement the transformation.
The goal of this paper is to show (a) that it is possible to construct verifiers in a
modular way from independent components, that is, compose an ‘off-the-shelf’
transformation with an ‘off-the-shelf’ verifier, such that a transformation can
be used with arbitrary verifiers for C programs to support more specifications,
(b) that transformation-based approaches can be even more efficient than inte-
grated support for specifications, and (c) that the standalone transformations do
not necessarily lead to a performance decrease in comparison to tool-specific im-
plementations for checking the input specification (using internal transformation).

To achieve this, we developed TransVer, a transformation framework and
tool for software verification, in which verification engineers write specifications
at a high-level as instrumentation automata (IA), which contain instructions to
instrument and monitor the program. Instrumentation automata are inspired by
the BLAST query language [4] and SLIC [5], which is a specification language
for SLAM [6]. Both specification languages are based on monitor automata and
have shown to be useful in practice, since the convenient and succinct notation
of monitor automata is often easier to understand than LTL formulas. Monitor
automata can be implemented either by instrumentation of the monitor into the
program code [4, 5] or by an implicit on-the-fly product construction in which the
monitor is a separate analysis component [7, 8]. Instrumentation automata observe
the control-flow automaton of a program, and weave monitoring instructions and
error assertions into the control-flow where appropriate.

To showcase our approach, we have implemented three transformations that
reduce verification problems for which the specification is to check termination,
memory cleanup, or (arithmetic) no-overflow, to verification problems for which
the specification is to check reachability. Those three kinds of specifications are
important and often used, because we want programs to not cycle infinitely
but progress with useful computation (termination), we want the programs to
free all allocated memory such that we can use the programs as components
as part of other programs (memory cleanup), and we want the software to not
run into undefined behavior, like signed-integer overflow, and always have values
within their types (no-overflow). The target specification is reachability since
most verifiers (28 verifiers) for software verification that participated in the
competition on software verification (SV-COMP) in 2024 [9] support it and
have focused on tuning their algorithms towards best performance on such tasks.
Fewer verifiers support other specifications, such as no-overflow (19 verifiers),
termination (16 verifiers), or memory cleanup (21 verifiers), since adding support
for multiple properties is a time-consuming process.

https://gitlab.com/sosy-lab/software/transver
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In summary, the advantage of our approach is a clear separation of concerns,
because the concern of optimizing a verification algorithm (for reachability) is now
completely independent from checking whether a (non-reachability) specification
is satisfied. In addition, this approach opens new opportunities, for example, using
test-generation tools like fuzzers to check for violations of a specification defined
as instrumentation automaton. For example, it is now possible to construct a
fuzzing-based non-termination checker similar to existing tools [10, 11] without
spending any development effort on the fuzzing tool. All it takes is developing an
instrumentation automaton for TransVer. In particular, the verifiers Emergen-
Theta [12], Theta [13], and Thorn used TransVer as a preprocessing step for
SV-COMP 2025, which demonstrates TransVer’s modularity.

Contributions. This paper makes the following contributions: 1

• We propose a verifier-independent, modular transformation framework for the
instrumentation of C programs. It allows verifiers for reachability to be used
also for other specifications as well.

• We provide an open-source implementation of our transformation framework.
• We conduct an experimental evaluation on the SV-COMP benchmark set of

C programs, which shows that we can effectively extend existing verifiers to
specifications that they did not support before (RQ1), that verifiers com-
bined with transformations sometimes even outperform verifiers specialized in
verifying the original property (RQ2, RQ3), and that verifiers with internal
transformations are not necessarily more efficient than a composition using
our transformation framework and an ‘off-the-shelf’ verifier (RQ 4).

2 Related Work
Program transformations have a wide variety of applications [15, 16]. We focus on
three kinds [17] of program transformations closely related to our approach.

Reducers can simplify complicated language constructs, for example, by se-
quentializing concurrent programs [18, 19], by reducing the program to a simplified
syntax [1, 20], or by merging multiple loops into one single loop [21, 22]. There are
also reducers that replace program constructs (for example, loops) by constructs
that are easier to verify [23, 24, 25, 26, 27, 28]. Sometimes they even use information
from run-time verification to ease the static analysis [29].

Specifications transformers convert a problem P |= φ to a new problem
P ′ |= φ′. This makes it possible to use algorithms for the verification of φ′ to also
verify φ [2, 30, 31, 32, 33, 34, 35, 36, 37]. Specifications transformers can also be used
for testing, in order to transform a program and a coverage specification to another
program and coverage specification, such that existing tools for test generation or
test-suite analysis can be used [38, 39]. Our work focuses on this kind of program
transformation. We improve over existing works by two aspects: modularity
and generality. Outputting a modified C program makes the application of any
C verifier that supports reachability effortless. Moreover, we demonstrate that
our framework supports transformations for multiple properties.
1 A preliminary version of this article was published as technical report [14].

https://gitlab.com/sosy-lab/software/transver
https://gitlab.com/sosy-lab/software/transver
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Instrumentors add code to the program that is used to collect information
for further analysis. Some instrumentors express the verification goal as part of
the program to be verified. This has been studied for a variety of applications.
One such example is in the context of verification witnesses [40, 41] in the case of
MetaVal [42], which creates a product of the witness and the program. Another
example is proof-carrying code [43], where the proof is embedded into the pro-
gram. Furthermore, instrumenting additional logic into the program allows for its
run-time monitoring [44, 45, 46] or improves the verification process, for example
by using shadow memory [47, 48]. Furthermore, there also exist configurable
instrumentors, for example, tools like AspectJ [49] and AspectC++ [50] are used
in aspect-oriented programming. Moreover, there are verifiers with configurable
instrumentation engines that can produce instrumented code. For example, Sym-
biotic [51, 52, 53] can instrument LLVM and Esbmc [54, 55] can instrument C
code to unroll loops or inject additional goals.

Instrumentation can also speed up the verification of programs containing op-
erations over arrays using ghost variables and rewriting rules [56]. The three main
differences between our and the mentioned approach are (a) that we transform
the task from other specifications to reachability specifications, and the above-
mentioned approach transforms programs with extended quantifiers in assertions
to programs with simpler assertions, (b) the implicit ordering of instrumentation,
and (c) our approach does the matching on a control-flow automaton of the
program and not on its syntax.

3 Background

Control-Flow Automata. We model the control-flow of a program as control-
flow automaton (CFA) [57]. A CFA (L, l0, G) consists of a finite set L of locations,
an initial location l0 ∈ L, and a set G ⊆ L×Ops× L of edges, which represent
that the control flows from one location to the next while executing an operation.
We use the special function nondet(), which returns a non-deterministic value,
and the special operation assert(π), which means that the condition π over
program variables holds whenever the program execution reaches this operation
(condition π is a location invariant). Figure 1 shows an example of a program and
a corresponding CFA. The program-to-CFA transformation is implemented in the
software-verification framework CPAchecker [8], which we use in TransVer as a
component. CPAchecker also stores information about the type of variables and
expressions used on the edges of the CFA. We assume that the CFA is constructed
from a C program such that every edge contains at most one operation, and at most
one arithmetic or boolean expression (composite expressions are decomposed into
multiple edges). Since CPAchecker leaves expressions with multiple arithmetic
expressions, e.g., x + y + z, during the transformation, we introduce new edges
on demand to split the arithmetic operation into, e.g., tmp = x + y and tmp + z.
However, instead of creating explicit auxiliary variables, we keep track of which
subexpressions should be substituted in their place. A program state is a mapping
from program variables to their values, including a program counter pc, which is
a variable that is mapped to the current program location.

https://gitlab.com/sosy-lab/software/transver
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1 int main(void) {
2 unsigned int x = 0;
3 assert(x >= 0);
4 int y = 1;
5
6 while (x < 127) {
7 x = x + y;
8 y = y + 1;
9 }

10 }

l0

start

l3

l4

l6

l7l8

l10

unsigned int x = 0;

assert(x ≥ 0);

int y = 1;

[x < 127]

[x ≥ 127]

x = x+ y;

y = y + 1;

Fig. 1: Example program (left) with corresponding CFA (right)

Table 1: Specifications considered in this work, as defined by SV-COMP

Specification Explanation

reachability
The function reach_error is not called in any execution of the
program. We write assert(π) for if (!π) reach_error() .

no-overflow No execution of the program produces during an operation a
signed integer value that is outside the range of the signed C type.

termination No execution of the program has infinitely many operations.

memory cleanup No execution of the program allocates a pointer and then termi-
nates without freeing it.

Specifications. One of the most prominent specification languages for behavioral
properties is linear-time temporal logic (LTL) [58]. In the International Compe-
tition on Software Verification (SV-COMP) [59], verifiers compete in verifying
several practical LTL properties2. Table 1 lists the specifications from SV-COMP
for which we showcase transformations within our framework in Sect. 5. There
are two important subclasses of LTL formulas: safety and liveness.

Safety specifications describe properties that must hold for all reachable
program states on all program executions ("something bad never happens").
A violation consists of a finite execution that has a program state for which the
property does not hold. In SV-COMP, the most general version of this kind of spec-
ification is reachability. Other safety specifications like no-overflow and memory
cleanup can be expressed as reachability by applying a program transformation.

Liveness specifications describe properties that must eventually hold on every
program execution ("something good eventually happens"). A violation consists of
an infinite execution on which the property never holds or a finite execution that
terminates before the property holds. SV-COMP uses only one liveness property,
program termination, which we also showcase in this paper.

2 https://sv-comp.sosy-lab.org/2024/rules.php

https://sv-comp.sosy-lab.org/2024/rules.php
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Program P

Specification φ

CFA C

IA A
CFA C′

Program P ′

Specification φ′

⊗

⊎

Transformation Framework

Fig. 2: Workflow of the program transformation using TransVer

4 Transformation Framework
We show the workflow of our transformation framework in Fig. 2. TransVer
takes a program P and a specification φ as an input. It uses CPAchecker to
construct the corresponding CFA C 3 for program P and combines it with the
instrumentation automaton A to a modified CFA C ′ using the sequentialization
operator ⊗. The operations of the new control-flow edges of C ′, along with the
corresponding line numbers at which the operations should be inserted in P , are
then exported by CPAchecker. Finally, the exported modifications are added
to P using the instrumentation operator ⊎, in order to produce the transformed
program P ′. We use the CFA construction of CPAchecker [3] because it supports
a wide variety of C features. For a new specification, the user needs to formalize
the transformation as an instrumentation automaton and construct a Java object
for it inside CPAchecker, marked by the blue dashed arrow in Fig. 2 from φ
to A. The specification can be program-specific or general for a large group of
programs. We formalize the automata for three example specifications in Sect. 5.

Instrumentation Automata. An instrumentation automaton specifies how a
program needs to be instrumented in order to make the original specification
explicit using assertions. It is inspired by the observer automata of the BLAST
query language [4]. They allow syntactic pattern matching on a given C program,
followed by an action or assertion. To enable the transformation of more complex
properties, we additionally match over the structure of the CFA. This makes it
possible to match loops that are not immediately apparent from the program’s
syntax, like gotos.

An instrumentation automaton (IA) is a tuple (Q, q0,Var , δ, α) that consists of
a set Q of states, an initial state q0, a set Var of automaton variables, a transition
relation δ ⊆ Q × PATTERNS × Ops × {A,B} × Q, and a state-annotation
function α. A transition (q, ρ, op,X, p) from a state q to a state p specifies:

• A pattern ρ ∈ PATTERNS describes which C expression from a CFA edge is
matched. The pattern .∗ matches any symbols on the CFA edge. Furthermore,
loop conditions and their negations can be matched with the special patterns
cond and !cond, while the pattern true matches any operation. Moreover,
the pattern can also contain capturing groups, and the matching results are

3 In practice, CPAchecker constructs a set of CFAs, one per function. For presentation
purposes, and without loss of generality, we use only one CFA in this paper.

https://gitlab.com/sosy-lab/software/transver
https://gitlab.com/sosy-lab/software/transver
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assigned to match identifiers $x0, $x1, . . . , which can be further used like
variables in the instrumented operation op. Given a C operation opC from a
CFA edge, match(ρ, opC) implies that ρ matches opC and vars(ρ, opC) is the
map of match identifiers $x0, $x1, . . . to the operands of opC . For example,
ρ ≡ .∗$x0+$x1; matches opC ≡ x+4, and vars(ρ, opC ) = {x0 → x, x1 → 4}.

• An operation op ∈ Ops is a statement that can read and write to IA variables
from Var , but can only read values from the match identifiers and program vari-
ables from the CFA. Moreover, it can refer to the match identifiers $x0, $x1, . . .
that occur in ρ, which sub(op,m) replaces with their mapped expressions
from m ≡ vars(ρ, opC). E.g., for the operation op given by sum = x0 + x1;
with sum ∈ Var , then sub(op, {x0 → x, x1 → 4}) results in sum = x+ 4;.

• The symbol X ∈ {A,B} specifies whether the instrumented operation should
be placed before (B) or after (A) the matched edge in the CFA.

The state-annotation function α : Q → {true, false, loop_head , init} assigns to
every state of the instrumentation automaton a predicate L → {true, false}. The
location predicates true(l) and false(l) hold for all locations and no location,
respectively, loop_head(l) holds for program locations l at the beginning of a
loop, and init(l) holds for the initial program location l.

Sequentialization Operator. The sequentialization operator ⊗ takes the opera-
tions from an IA and places them in the indicated locations in an input CFA. The
operator implicitly traverses both the CFA and IA in parallel (on-the-fly reduced
product). During the traversal, it processes pairs of CFA locations and automaton
states (l, q), and pairs of a CFA edge e = (l, opC , l′) and an automaton transition
t = (q, ρ, op, X, p). First, it checks whether l matches q with the predicate from
the state-annotation function α(q) and whether ρ matches opC . Afterwards, it
instantiates the operation op, substituting the match identifiers from ρ. Lastly, it
creates a new edge before or after e, depending on X. If there is no more match
for e, the algorithm inserts the original edge e from the input CFA.

The sequentialization operator is implemented as Alg. 1. The algorithm starts
with the initialization step, which traverses the CFA and collects additional
information about the program that can then be used to construct mulitple
concrete instrumentation automata from the input instrumentation automaton
for a given program. For example, a transformation for termination initializes
one automaton, cf. Fig. 6, per loop in the CFA, collects all the variables used
in the respective loop, and initializes one ghost variable for each. Initializing
multiple automata is an optimization that users can choose to implement when
initializing their defined automaton. Moreover, initialize_automata also returns
a location from the CFA for each automaton, labeled as the initial location for
the sequentialization. This optimization is used to skip parts of the CFA that are
irrelevant. For example, it is used by the automaton for termination reduction to
monitor one loop per automaton.

Line 2 initializes the sets of locations and the edges of the output CFA. Line 3
instantiates the set waitlist to contain the initial pair of program location and
IA state, for each initialized IA from line 1. The while loop starting in line 4
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Algorithm 1 Sequentialization operator ⊗
Input: a CFA C = (L, l0, G), an IA A = (Q, q0,Var , δ, α)
Output: CFA C′ = (L′, l′0, G

′)
1: (A0, l

0
init), . . . , (Ak, l

k
init)← initialize_automata(C,A);

2: L′, G′ ← {l0}, {};
3: waitlist, finished← {(l0init, q

0
0), . . . , (l

k
init, q

k
0 )}, {};

4: while waitlist ̸= ∅ do
5: (l, qi)← waitlist.pop();
6: if ((l, qi) ∈ finished) then
7: continue;
8: finished.add((l, qi));
9: waitlist← waitlist ∪ succ((l, qi));

10: if ¬αi(qi)(l) ∨ succ_IA((l, qi)) = {} then
11: G′ ← G′ ∪ {(l, ·, ·) ∈ G};
12: else
13: G′ ← G′ ∪ new_edges((l, qi));
14: L′ ← L′ ∪ {lnew | lnew /∈ L′ ∧ ∃l′ :

(
(l′, op, lnew) ∈ G′ ∨ (lnew, op, l′) ∈ G′)};

15: return (L′, l′0, G
′);

traverses both the input CFA and the IA in parallel. States and all the other
components from automaton Ai, for 0 ≤ i ≤ k, are marked with i in superscript.

In every iteration, it works with a pair (l, qi) that was not yet processed. The
order in which the pairs are processed is not specified. Therefore, users must ensure
that the transformation given by their IA does not depend on the exploration
order of the waitlist. The algorithm then computes the successors of (l, qi) as seen
in line 9, if it was not yet processed. Function succ is defined as follows in Eq. (2).

succ_IA((l, qi)) = {(l, pi) | ∃(l, opC , ·) ∈ G,

∃(qi, ρ, ·, ·, pi) ∈ δi : match(ρ, opC)}
(1)

succ((l, qi)) =


{(l′, qi) | ∃(l, ·, l′) ∈ G} if ¬αi(qi)(l)

{(l′, qi) | ∃(l, ·, l′) ∈ G} if succ_IA((l, qi)) = {}
succ_IA((l, qi)) otherwise

(2)

To compute the successors using Eq. (2), we consider three cases. In the first
case, the annotation of the state does not hold for the location, and in the second,
none of the outgoing edges from qi matches an outgoing edge from l. Therefore,
the algorithm progresses only in the CFA and creates new pairs of qi with all the
successors of l. In the third case, the annotation αi(qi)(l) holds, and there are
transitions from qi with a pattern that matches some edge from l. This results in
progressing only with the IA and pairing all IA successors of the transitions that
matched some edge starting at l, as defined by function succ_IA in Eq. (1).

The condition in line 10 guards the addition of new edges into the resulting
CFA. If no outgoing edge is matched or the state annotation does not hold for
the location, the algorithm adds all the edges from the input CFA C. Otherwise,
the function new_edges defined in Eq. (4) computes all edges that instrument
the original program.
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π = x ≤ 136 ∨ looped = 0

q0 init

q1

loop_head

q2

loop_head

q3

false

true | int looped = 0; | B

cond | looped = 1; | A

!cond | assert(π); | A

(a) Instrumentation automaton

l0 start

lq00l3

l4

l6

lq16

l7

l8

lq26

l10

int looped = 0;

unsigned int x = 0;

assert(x ≥ 0);

int y = 1;

[x < 127]

looped = 1;x = x+ y;

y = y + 1;

[x ≥ 127]

assert(π)

(b) CFA after sequentialization

Fig. 3: Example instrumentation automaton (left) and the example CFA from Fig. 1
after sequentialization with it (right); dashed lines and locations indicate instru-
mented new CFA edges and locations

The function new_edges uses the predicate SO (Substituted Operation) pre-
sented in Eq. (3). The predicate is true if the operation opAi is an instantiated op-
eration from a transition in an IA in which the match identifiers $x0, $x1, . . . were
substituted by the match results (expressions) from opC . For example, let us as-
sume CFA edge (l, y = z+42; , l′) and an IA transition (q, .∗$x1+$x2, assert(x1 >
x2), B, q′), then it is the case that SO(q, y = z+42; , assert(z > 42), B) evaluates
to true. The function new_edges uses the predicate SO to get the operations
with replaced variables based on the pattern ρ, in the previous example, it is
assert(z > 42). The function places the new operation after (A) or before (B)
the edge (separated by location lnew) in the original CFA C. Lastly, the algorithm
adds the new locations into C ′ in line 14.

SO(qi, opC , opAi , X) =

∃(qi, ρ, opAi , X, ·) ∈ δi : match(ρ, opC) ∧ opAi = sub(opAi , vars(ρ, opC))
(3)

new_edges((l, qi)) =⋃
(x,y,X)∈
{(Ai,C,B),
(C,Ai,A)}

{
(l, opx, lnew), (lnew, opy, l′) | (l, opC , l′) ∈ G ∧ SO(qi, opC , opAi , X)

}
(4)

Example 1. Consider the program from Fig. 1 and the property "If the execu-
tion of a program does at least one iteration of the loop, the value of x will
always be at most 136". The property can be formalized as the instrumentation
automaton in Fig. 3a. Applying the sequentialization operator to the IA in
Fig. 3a and the CFA in Fig. 1 results in the CFA in Fig. 3b. The function
initialize_automata returns the same IA as there is nothing to be instanti-
ated in this example. It then initializes waitlist with the only pair (l0, q0).
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π+ = ¬
(
(x1 > 0 ∧ x0 > INT_MAX− x1) ∨ (x1 < 0 ∧ x0 < INT_MIN− x1)

)
q0

true

. ∗ $x0 + $x1; | assert(π+); | B−, /, ∗, . . .

Fig. 5: Example instrumentation automaton for the no-overflow property

The most important explored pairs are (l0, q0), (l6, q1), and (l6, q2), as they are
the only pairs for which the annotation α holds. For example, let us focus on the
CFA edge (l6, [x < 127], l7) and the IA transition from q1 to q2. The predicate
SO(q1, [x < 127], looped = 1;A) is satisfied because the edge matches pattern
cond, thus new_edges((l6, q1)) = {(l6, [x < 127], lq16 ), (lq16 , looped = 1; , l7)}.

int main(void) {
int looped = 0; //
unsigned int x = 0;
assert(x >= 0);
int y = 1;

while (x < 127) {
looped = 1; //
x = x + y;
y = y + 1;

}
assert(x <= 136 || looped == 0); //

}

Fig. 4: Instrumented program; lines
marked with // are inserted operations

Instrumentation Operator. The in-
strumentation operator ⊎ uses the out-
put CFA from the sequentialization
operator and the original program as
inputs. It iterates through every state-
ment of the program and in case there
are some newly inserted operations
in the corresponding CFA location, it
adds them before or after the opera-
tion in the original program based on
their order in the input CFA.

Example 2. Applying the instrumentation operator ⊎ to the CFA in Fig. 3b
and the original program in Fig. 1 (left) results in the program in Fig. 4.

5 Specifications as Instrumentation Automata
To study the performance of reachability analyzers when applied to different
specifications, we focus our experiments on the transformation of no-overflow,
termination, and memory cleanup (as defined in SV-COMP [9]) to reachability. This
section shows how to formalize the specifications as instrumentation automata.

No-Overflow. According to SV-COMP, the specification no-overflow is violated
by a given program if there exists an execution of the program that contains
an operation with a signed-integer value that does not fit into the type of the
signed integer. The motivation for this specification is that programs should be
well-defined, and an overflow of signed integers is an undefined behavior according
to the C99 standard [60]. To simplify the presentation, let us assume that a
program consists only of signed-integer variables. In our implementation, we track
the types of the variables and the expressions on the edges of the CFA, and
instrument only the operations with signed-integer results. As explained in Sect. 3
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q2

opT ≡ if(nondet() ∧ saved = 0){ x′
0 = x0; . . . ;x

′
n = xn; saved = 1; }

π = (saved = 1)⇒ (x′
0 ̸= x0 ∨ x′

1 ̸= x1 ∨ · · · ∨ x′
n ̸= xn)

loop_head

q0

init

cond | assert(π); opT ; | A

true | int saved = 0; int x′
0, . . . , int x′

n; | B

Fig. 6: Example instrumentation automaton for the termination property

complex arithmetic expressions are decomposed into multiple CFA edges, each
containing one operation. Figure 5 shows the IA corresponding to the no-overflow
specification. We display only the transition for addition since the transitions for
the other operations are analogous. The automaton matches every operation and
adds the corresponding condition as an assert before the operation. For example,
before an addition, if x1 is positive, then the result of x0+x1 should not be larger
than INT_MAX, and if x1 is negative, then the result of x0 + x1 should not be
smaller than INT_MIN. The operations together with the necessary conditions to
prevent the overflows can be found listed online [61].

Termination. Figure 6 shows the instrumentation automaton for the termination
property. It is based on a transformation of liveness properties to safety properties
for finite systems [62]. To find an infinite execution, the instrumentation monitors
the visited states of the execution. If a program state is encountered twice during
the execution of a loop, a non-terminating execution has been found. As a
preprocessing step, our implementation traverses the whole CFA and initializes an
automaton for each loop. For every loop, it collects all variables that are in scope
and initializes their shadow copies x′

0, . . . , x
′
n. Each time the loop-head is visited,

the instrumented program can make a non-deterministic choice to save the state
if no state has been saved before. This is performed by the operation opT . An
assertion ensures that if the state was saved previously then the current state is
different. A violation of the assertion means that the execution encountered the
same state twice, and hence, it can repeat the loop infinitely often. Note that the
transformation is complete but not sound, because dynamic structures like linked
lists can have unbounded executions without visiting the same state twice.

Memory Cleanup. We assume in this transformation that all memory-allocation
functions are called directly and not through a function pointer. Figure 7 shows
an IA for this property. It non-deterministically decides to track the pointer being
allocated and checks if the tracked pointer has been deallocated when the program
terminates. The transition from q0 to q1 initializes the tracking of the pointer.
In Fig. 7, we draw only one self-loop in q1 but it actually represents four distinct
edges, one for each of the lines above the arrow. The result of every memory-
allocating function such as malloc and calloc is non-deterministically assigned
to the tracking pointer ptr. For realloc, we first check if the pointer being
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q0

init

q1

true

q2

true
true | void* ptr ; | B

$x0 = realloc($x1, $x2); | if (ptr == $x1) then {ptr = $x0; } | B
$x0 = malloc($x1); | if (nondet()) then {ptr = $x0; } | B
$x0 = calloc($x1); | if (nondet()) then {ptr = $x0; } | B

free($x0); | if (ptr == $x0) then {ptr = NULL; } | B

return .∗; | assert(!ptr); | B
abort(); | assert(!ptr); | B

Fig. 7: Example instrumentation automaton for the memory-cleanup property

reallocated is the same as the one being tracked. If it is, we update the tracking
pointer. When freeing memory by using free, we have to check if the pointer is
the one currently being tracked. If it is, we set it to null, i.e., we are currently not
tracking any pointer. Finally, when exiting the program, demonstrated through
the state q2, we check if the tracking pointer is null. If not, then there exists at
least one execution such that the pointer is not deallocated.

6 Evaluation
The evaluation of our approach addresses the following research questions:

RQ1 (Modularity): Do transformations enable verifiers that only support
reachability to verify properties for which they do not have integrated support?
RQ 2 (Effectiveness): Are state-of-the-art reachability verifiers combined with
transformations effective compared to state-of-the-art verifiers with integrated
specification support?
RQ3 (Efficiency): Are state-of-the-art reachability verifiers combined with
transformations efficient compared to state-of-the-art verifiers with integrated
specification support?
RQ 4 (Degradation): Is there a performance difference between a verifier using
a program transformation on the input program instead of during the analysis?

The proposed research questions divide the evaluation into three parts to pro-
vide answers for our initial motivation. First, RQ 1 shows that verifiers supporting
only reachability can be adapted to verify other properties without additional
engineering effort. Second, RQ2 and RQ3 evaluate if the fine-tuned reachabil-
ity analyses of the best-performing verifiers can be as effective and efficient as
state-of-the-art verifiers with integrated specification support. This supports a
clear separation of concerns: Boosting the performance of the reachability analy-
sis improves the performance on multiple specifications. Finally, RQ4 evaluates
whether encoding the transformation as a C program results in a performance
loss compared to encoding it directly within the verification algorithm.

Transformations for no-overflow and termination do not put any additional
requirements on the reachability analyzer. For memory cleanup, the verifiers need
to handle memory allocation and deallocation correctly, even after the transfor-
mation. The verifiers used as reachability analyzers in RQ 1 do not participate in
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Table 2: Verifiers used in the experiments

Verifier Version reachability no-overflow memory cleanup termination

2ls [67] [68] ✓ ✗ ✗ ✓

CPAchecker [69] [70] ✓ ✓ ✓ ✓

CPA-BAM-SMG [71] [71] ✓ ✓ ✓ ✓

CPV [72] [73] ✓ ✗ ✗ ✗

EmergenTheta [12] [74] ✓ ✗ ✗ ✗

PredatorHP [75] [76] ✓ ✗ ✓ ✗

Symbiotic [52] [77] ✓ ✓ ✓ ✓

Theta [13] [78] ✓ ✗ ✗ ✗

UAutomizer [79] [80] ✓ ✓ ✓ ✓

UTaipan [81] [82] ✓ ✓ ✗ ✗

the memory-safety category of SV-COMP, hence, we assume they do not model
memory with sufficient precision. Therefore, we answer only RQ2 and RQ3 for
memory cleanup. We also exclude memory cleanup from RQ4 since there is no
internal transformation for memory cleanup inside CPAchecker. We do not
include the time for the transformation in the comparison as it is negligible.

Benchmark Set. To answer the proposed research questions, we use a subset
with 2529 tasks for no-overflow, a subset with 779 tasks for termination, and the
full set with 41 tasks4 for memory cleanup of the SV-Benchmarks collection at
its SV-COMP 2025 version [63], the largest dataset of C programs with known
verification verdicts for several properties. The chosen subsets of the benchmark
set do not include programs containing dynamic data structures and arrays for
property termination, and do not include programs with recursive function calls
for property no-overflow. These programs were not included in the evaluation
because our current implementation does not support these program features. If
the expected verdict for a verification task is true (property holds), we call it a
proof, if it is false (property does not hold), we call it an alarm.

Verifiers Evaluated. Table 2 lists all evaluated verifiers together with their sup-
ported properties. We selected sound5 and open-source6 verifiers that participated
in SV-COMP 2024.7 We add -R to the name of a verifier when used to verify a
transformed program (for reachability). For program transformation, we used
version 1.0.1 of TransVer, which uses CPAchecker at commit 66247485.

Benchmark Environment. For conducting our evaluation, we use BenchExec
to ensure reliable benchmarking [83]. All benchmarks are performed on machines
with an Intel Xeon E5-1230 CPU (4 physical cores with 2 processing units each),
33GB of RAM, and running Ubuntu 24.04 as operating system. Each verification
task is limited to 900 s of CPU time, 15GB of memory, and 1 physical core
4 We excluded the tasks in Juliet.set because they were not used in SV-COMP 2024.
5 Proton [64] won the termination category, but applies unsound approximations.
6 VeriAbsL [65] and VeriAbs [66], 1st and 2nd place in the reachability category, are not

open-source.
7 We used the 2025 version of CPV, because the 2024 version is based on cgroups v1.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp25
https://gitlab.com/sosy-lab/software/transver/-/tags/1.0.1
https://gitlab.com/sosy-lab/software/transver
https://gitlab.com/sosy-lab/software/cpachecker/-/tree/662474855f4bb809dca6cfca720dc947a2c6aef1
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Fig. 8: RQ1 (Modularity): Quantile plots comparing reachability verifiers (without
integrated support for the properties) on the transformed programs with the
third-best verifier (with integrated support of the properties) in the respective
SV-COMP 2024 category on the original programs

(2 processing units). The limits for time and memory are the same as used in
SV-COMP 2024, but the competition used 2 physical cores (4 processing units).

6.1 RQ1: Modularity

Since TransVer produces C programs, it directly allows any verifier for C pro-
grams that supports reachability to also analyze other specifications. We con-
sider three verifiers that supported only reachability in SV-COMP 2024, namely
CPV, Theta, and EmergenTheta. Figures 8a and 8b compare these verifiers
with the third-best verifier of SV-COMP 2024 in the categories no-overflow and
termination, respectively.

For no-overflow, CPV-R was only 317 tasks behind CPAchecker, and for
termination, CPV-R was only 94 tasks behind 2ls. The verifiers supporting only
reachability could solve roughly two-thirds of the tasks on average that the third-
best performing verifier could solve in the respective category. Notable is that
CPV was 5th, Theta was 18th, and EmergenTheta was 20th for reachability
in SV-COMP 2024 [9]. This indicates that reachability approaches can be useful
for verifying different specifications even if they are outperformed on reachability
tasks.

TransVer makes it possible for reachability verifiers to analyze specifications
for which they do not have integrated support.

6.2 RQ2: Effectiveness

To answer RQ2 and RQ3, we compare the results for two groups of verifiers:
(a) the two best verifiers in the overall category in SV-COMP 2024, CPAchecker
and UAutomizer, on the transformed programs, and (b) the best verifiers in
SV-COMP 2024 in the respective category with integrated support for the property
(cf. [9, Table 10], also Table 2) on the original tasks.

https://gitlab.com/sosy-lab/software/transver
https://gitlab.com/sosy-lab/software/transver
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Table 3: RQ2 (Effectiveness): Results for 2529 transformed no-overflow tasks

Results (#Tasks) CPAchecker UAutomizer UTaipan CPAchecker-R UAutomizer-R

Correct 2 529 1 396 1 852 1 856 1 583 1 731
Proofs 2 034 1 046 1 450 1 456 1 197 1 376
Alarms 495 350 402 400 386 355

Incorrect 1 0 0 2 1
Proofs 0 0 0 2 1
Alarms 1 0 0 0 0

Table 4: RQ2 (Effectiveness): Results for 779 transformed termination tasks

Results (#Tasks) 2ls UAutomizer CPAchecker-R UAutomizer-R

Correct 779 541 411 396 515
Proofs 384 224 268 118 294
Alarms 395 317 143 278 221

No-Overflow. Table 3 shows that UTaipan and UAutomizer were able to provide
1856 (73%) and 1852 (73%) correct results, respectively. UAutomizer-R solved
1731 (68%) tasks correctly. CPAchecker-R was able to find 151 more proofs and
36 more alarms than CPAchecker with its integrated no-overflow analysis. We
inspected all incorrect results and concluded that they were not caused by our
transformation, since the other reachability analyzers were able to solve them
correctly. It is expected that reachability and no-overflow algorithms are concep-
tually similar as they are both safety properties. However, the transformation
allows us to use other algorithms for reachability which leads to an increase of the
performance for CPAchecker. In this particular case, the difference is likely due
to the overflow analysis of CPAchecker being based on predicate abstraction [84]
and the reachability analysis being a portfolio approach including k-Induction,
predicate analysis, and value analysis. With TransVer, we can leverage the
strength of the portfolio for no-overflow tasks.

Termination. Table 4 shows the results for termination. UAutomizer-R performs
better than the termination analysis of UAutomizer. It was able to solve 515 (66%)
of the tasks, and provide 26 more proofs and 78 more alarms than UAutomizer
with its integrated termination analysis. In contrast to no-overflow, where the
performance gain could be attributed to the used algorithms, the difference in
the performance for termination is more likely due to the conceptual differences
between the verification approaches, because the algorithms developed to analyze
termination are usually different from the algorithms for reachability. Thanks to
the transformation framework, we had identified 17 tasks with undefined behavior
in the form of signed-integer overflows. They were excluded in SV-COMP 2025.8

8 Since the termination behavior is not defined in this case, we removed them
from the comparison and from SV-Benchmarks: https://gitlab.com/sosy-lab/
benchmarking/sv-benchmarks/-/merge_requests/1543

https://gitlab.com/sosy-lab/software/transver
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1543
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1543
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Table 5: RQ2 (Effectiveness): Results for 41 transformed memory-cleanup tasks

Results(#Tasks) PredatorHP Symbiotic CPA-BAM-SMG CPAchecker-R UAutomizer-R

Correct 41 35 39 34 33 23
proofs 2 1 2 1 0 0
alarms 39 34 37 33 33 23

Memory Cleanup. Table 5 shows the results of the comparison of the verifiers
on the transformed memory-cleanup tasks. The results show no large discrepancy
between the different verifiers. However, it is notable that CPAchecker-R could
solve almost as many tasks as CPA-BAM-SMG in this case and that it is close to
the performance of PredatorHP which specializes in memory analysis.

Threats to Validity. As mentioned in paragraph “Benchmark Set”, the benchmark
set we used contains only a subset of the programs from SV-COMP, and hence,
the evaluation on the full dataset could provide a different result.

The experiments show that the combination of the transformations and reach-
ability verifier can outperform state-of-the-art verifiers for the other specifica-
tions. For all the properties, we can see that the best performing verifiers are
verifiers with integrated support of the property.

6.3 RQ3: Efficiency
To report the results on efficiency, we show quantile plots for the correct results
of the three considered specifications in Fig. 9.

No-Overflow. Figure 9a shows that while CPAchecker-R can solve more tasks
than CPAchecker, it uses a bit more CPU time overall. This can be explained
by the configuration of CPAchecker: the integrated no-overflow support is based
on predicate analysis only, while, thanks to the flexibility gained by the transfor-
mation, we now use CPAchecker’s sequential portfolio of reachability analyses
for CPAchecker-R.

Termination. Figure 9b shows that UAutomizer-R on the transformed programs
is more efficient than UAutomizer on the original tasks, solving more tasks in
less CPU time overall.

Memory Cleanup. The plot shows that there is no large difference in efficiency
between the verifiers, besides about 10 seconds of JVM startup time for UAu-
tomizer and CPAchecker. The efficiency is expected to be slightly worse on
transformed programs, because the transformation introduces a non-deterministic
choice for each allocation, making the programs more difficult to verify.

CPAchecker-R tends to be less efficient compared to state-of-the-art verifiers
with integrated support of the specifications. For UAutomizer, there is a
significant improvement of the efficiency for the termination specification.
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Fig. 9: RQ3 (Efficiency): Results for verifiers on original and transformed tasks

6.4 RQ4: No Degradation
Some of the verifiers internally transform various properties to reachability. They
usually do it by instrumenting their intermediate representation of an input
program or by reflecting the assertion checks in their analyzing algorithm. There
are two algorithms in CPAchecker applying the latter. Figure 10 shows the
CPU time in seconds for correctly solved tasks by both approaches, using the
transformed programs versus using the internal transformation of the property.

For termination (+), both approaches used bounded model checking [85] as
the reachability algorithm. It usually solves the task very quickly or does not
solve it at all. We can see that for a lot of the tasks, there is a difference between
1-20 seconds if we represent the specification in the input program which is not
too much in relation to the 900 seconds time limit. There were many cases where
the reachability analysis was faster than the integrated analysis. This is probably
due to a better-tuned BMC implementation for reachability.

For no-overflow (×), both approaches used predicate abstraction [84] as the
reachability algorithm. The number of tasks solved by both approaches is much
larger than for termination. For most of the tasks, there is no clear overhead in
either direction, though there are a few outliers in both directions.

There is no clear degradation of efficiency using the external transformation
for no-overflow. For termination, there is a slow-down in some cases, which is
balanced by a speed-up in more other cases. In sum, the modular transformation
outside the verifier does not lead to a general degradation of the performance.
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Fig. 10: RQ4 (No degradation): CPU time of program transformation using internal
(CPAchecker) vs. external (TransVer + CPAchecker-R) transformation

7 Conclusion
Developing a verifier for software verification is challenging and requires a large
engineering effort. The effort is even larger for supporting various specifications.
Verification tools sometimes use internal transformations to mitigate the develop-
ment time. However, these transformations are usually not modular and have to be
developed and maintained separately for every verifier, and for each specification.
Our contribution is to offer a new modular framework, implemented in TransVer,
which separates the concerns of a high-performance reachability algorithm from
supporting other specifications. We demonstrated how the framework works by
implementing the transformations for three interesting specifications.

We showed that the construction of new verifiers as a composition of an off-the-
shelf transformation and a following off-the-shelf reachability analysis is usually
also efficient and effective, and can compete with (and sometimes outperform)
state-of-the-art verifiers for no-overflow and termination analysis. Furthermore,
the experiments demonstrate that our approach can enable verifiers like CPV
or Theta to be competitive in the verification of properties for which they did
not have integrated support so far. There was no significant general performance
regression on transformed programs compared to using internal transformations.

Data-Availability Statement. A reproduction package containing all data and
verifiers used for the experiments is available [86].

Funding Statement. This project was funded by the Deutsche Forschungsge-
meinschaft (DFG) — 378803395 (ConVeY) and the Free State of Bavaria.
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