
CPAchecker 4.0 as Witness Validator
(Competition Contribution)

Dirk Beyer and Marian Lingsch-Rosenfeld⋆

http://cpachecker.sosy-lab.org

LMU Munich, Munich, Germany

Abstract. CPAchecker is a tool for software verification, witness vali-
dation, and test-case generation, based on the concept of configurable
program analysis. One of its main applications is to validate correctness
and violation witnesses in versions 1.0 and 2.0. The witness validation is
achieved by strengthening a selection of verification algorithms using the
information from the witness. Due to the modular approach of CPAchecker,
extending its verification analyses for witness validation can be easily done.
Similar to CPAchecker’s verification approach, witness validation uses a
selection of analyses dependent on the witness type, the specification,
and program features. To validate correctness witnesses, CPAchecker uses
k -induction and predicate abstraction to verify that the invariants from
the witness hold and the correctness of the program can be proven. To
validate violation witnesses, CPAchecker uses predicate abstraction, value
analysis, SMGs, and BDDs. CPAchecker’s many verification algorithms
make it a versatile and successful tool for witness validation.

1 Software Architecture

CPAchecker [13] is a tool for automatic software verification, witness validation,
and test-case generation. It is possible for it to cover these different use-cases
due to its modular architecture, based on the concept of Configurable Program
Analysis (CPA) [12]. Each CPA represents information relevant to an analysis,
for example an abstract domain, control-flow information, or an automaton, and
can be combined with other CPAs in a modular manner. Exchanging information
with other CPAs is done through a well-defined interface called the strengthen-
ing operator, which is used to incorporate information from one abstract state
into the another. This modular approach allows any analysis, of which many ex-
ist [2, 4, 5, 7, 8, 15, 16], to be used for witness validation. The information from the
witness can be encoded as a CPA, simplifying the adaptation of existing analyses
for witness validation. One major challenge for witness validation is relating the
input program to its internal representation as a control-flow automaton (CFA).
In particular, this challenge occurs when validating witnesses in version 2.0, which
are defined purely on the input program [1]. CPAchecker analyses such witnesses
by transparently keeping track of the abstract-syntax-tree elements generated
during parsing and their correspondence to the CFA nodes and edges.
⋆ Jury member

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-8172-3184
http://cpachecker.sosy-lab.org


2 Dirk Beyer and Marian Lingsch-Rosenfeld

Correctness

Violation

Witness Type? Property? Program
Features?

Reach. Safety

No Overflow

Termination

No Data Race

Mem. Safety

Reach. Safety

No Overflow

Recursion

Other

Concurrency

Recursion

Other

PredAbs with BAM [24]

Predicate Abstraction [14, 25]

k-induction [7]

PredAbs with BAM [24]

BDDs [17]

Predicate Abstraction [14, 25]

Val [16] + SMG [23]

Val [16] + PredAbs [14, 25]

Predicate Abstraction [14, 25]

Fig. 1: Algorithm selection based on the witness type, property, and program

2 Validation Approach

When participating as a verifier, CPAchecker uses different verification algo-
rithms [3, 6], since each has specific strengths and supports different properties. To
validate witnesses, we choose only the most mature analyses and adapt the selec-
tion process to consider the witness type (violation or correctness), specification,
and program features for the selected analyses. Figure 1 shows the selection pro-
cess. The chosen verification algorithm is strengthened with the information from
the witness. The analyses and how they interact with the witness are described
in the following sections for all validation categories.

2.1 Correctness Witnesses

Validation of correctness witnesses is based on strengthening the chosen analysis
using the invariants provided by the witness. Additionally, the invariants are
added as proof-goals in order to validate their correctness.
Reachability Safety. CPAchecker uses one of its best-performing and mature
analyses for reachability safety, k -Induction [7] augmented with invariants from
the witness. First the invariants are matched to their corresponding nodes of the
control-flow automaton (CFA). For witnesses 1.0 we do this by a reachability
analysis only dependent on the control-flow. For witnesses 2.0 we directly match the
location of invariants to their corresponding CFA nodes. Afterwards, k -Induction
first verifies that the invariants are correct and then uses them to prove the safety
property, while increasing k as necessary. This means that all invariants in the
witness need to be k-inductive for some k in order to be validated.
No Overflow. To validate witnesses for proofs showing the absence of overflows,
CPAchecker uses predicate abstraction [14]. The information in the witness is
encoded using an invariant-injection automaton, which is traversed simultaneously
to the state-space exploration and strengthens the analysis. Recursive programs are



CPAchecker 4.0 as Witness Validator 3

handled by block-abstraction memoization (BAM) [9, 10, 24, 26], which summarizes
the input-output behavior of recursive functions.

2.2 Violation Witnesses

Due to the modular nature of CPAchecker, any analysis, except for the validation
of non-termination witnesses (see below), can easily be combined with an automa-
ton, represented as a CPA, that restricts the state space and strengthens the
analysis with assumptions. The automaton is based on the witness and guides the
analysis towards the violation by exploring it simultaneously to the state-space.
We restrict the state space by avoiding any transition that does not match the
witness. For example, if the then branch is desired by the witness, then the
analysis stops the exploration of the else branch. We strengthen the analysis by
adding the assumptions to the abstract state. The assumptions are added through
a common interface, the strengthening operator [8], which each analysis needs to
implement to successfully make use of the information.
Termination. To validate a non-termination witness, we need to show that (1) the
stem of the witness can reach the recurrence condition and that (2) whenever
a state fulfills the recurrence condition, it returns to a state at the loop-head
fulfilling the recurrence condition. Both of these checks are expressed as reachability
analyses performed by predicate abstraction [14].
No Data Race. To validate a witness showing that there is a data race, we use
an analysis based on value analysis [16] and predicate abstraction [14]. The value
analysis uses the assumptions in the witness to determine additional concrete
values to be tracked. The predicate abstraction adds the assumptions to the path
formula to compute what predicates are valid in the successor state. The same
strengthening is done whenever information from the witness needs to be added
to either the value analysis or predicate abstraction for any other property.
Memory Safety. For memory safety, a combination of value analysis and symbolic
memory graphs (SMGs) is used to explore the state-space while keeping track of
the memory structure. In this case, the assumptions in the witness are used to
strengthen the abstract state of the value analysis.
Reachability Safety. Predicate abstraction [14] is used to validate violation
witnesses for reachability safety. It is aided by BAM [10, 24, 26] for tasks with
recursive functions. The assumptions inside the witness are used to strengthen
the predicate abstract state. If the task contains concurrency, an analysis based
on BDDs [11, 18] is used, which currently ignores the assumptions in the witness.
No Overflow. To validate no-overflow violation witnesses, predicate abstrac-
tion [14] is used. The assumptions are used to strengthen the predicate abstract
state. To handle tasks with recursion we add BAM [10, 24, 26].

3 Strengths and Weaknesses

CPAchecker validator performed well in SV-COMP 2025 [19], consistently rank-
ing in the top three in almost all categories with a well-defined witness format, the
only exceptions being validation of handcrafted violation witnesses in version 2.0,



4 Dirk Beyer and Marian Lingsch-Rosenfeld

validation of software-systems correctness witnesses in version 1.0, and validation
of reach-safety and no-overflow violation witnesses in version 1.0. In particular,
it is one of the only three validators participating in all categories for which
a witness format exists, together with UAutomizer and MetaVal. In general,
CPAchecker performed similarly when validating witnesses in version 1.0 and
in version 2.0, since both are encoded in the same manner as a CPA to combine
them with the verification analyses.

Notably CPAchecker performed best in the validation of correctness witnesses,
but lagged behind other tools when validating violation witnesses. This is due to
CPAchecker using primarily the predicate analysis for validation, which is better
in finding proofs than bugs. In general, since the analyses used for validation are
the same as for verification, only strengthened with the witnesses, they have the
same strengths and weaknesses.

We do not use the parallel portfolio of different analyses that boosts
CPAchecker 4.0 as a verifier, we rather select one mature analyses, in order to
increase the confidence in the validation result. In the future, a portfolio of other
mature analyses could be used, improving the performance without compromising
the confidence in the results.

4 Setup and Configuration

CPAchecker validator in version 4.0 [20] was used in SV-COMP 2025. It runs on
any system with a Java 17 compatible runtime environment, though its default
SMT solver MathSAT5 [22] is bundled only for Linux. For platforms other than
GNU/Linux, we recommend using the provided container image [21]. To validate
a witness using CPAchecker, execute the following command:

bin/cpachecker --witnessValidation --benchmark --heap 10000M
--timelimit limit --32 --witness witness.{yml,graphml}
--spec property.prp program.i

SV-COMP uses a timelimit of 900 s for correctness witnesses and 90 s for violation
witnesses, though it will work with other/no time limits. Replace --32 by --64
for programs that assume a 64-bit memory model. More information on how to
run CPAchecker is available on its website https://cpachecker.sosy-lab.org
and tutorial paper [2].

5 Project and Contributors

CPAchecker validator builds upon existing verification algorithms with additional
support for handling witnesses. The success of CPAchecker is the result of
contributions from over 100 developers, primarily from institutions such as LMU
Munich, TU Darmstadt, University of Paderborn, University of Passau, TU Prague,
University of Oldenburg, TU Vienna, ISP RAS, and numerous other universities
and research institutes. We extend our utmost gratitude to all contributors
to CPAchecker which made it possible to have such a successful validator.
A complete list of contributors and further details about the project can be found
at https://cpachecker.sosy-lab.org.

https://mathsat.fbk.eu
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org


CPAchecker 4.0 as Witness Validator 5

Data-Availability Statement. The tool is available at https://cpachecker.
sosy-lab.org and the version used in SV-COMP 2025 is archived at Zenodo [20].

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY) and 496588242 (IdeFix).

References

1. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Software
verification witnesses 2.0. In: Proc. SPIN. pp. 184–203. LNCS 14624, Springer (2024).
https://doi.org/10.1007/978-3-031-66149-5_11

2. Baier, D., Beyer, D., Chien, P.C., Jakobs, M.C., Jankola, M., Kettl, M., Lee, N.Z.,
Lemberger, T., Lingsch-Rosenfeld, M., Wachowitz, H., Wendler, P.: Software verifi-
cation with CPAchecker 3.0: Tutorial and user guide. In: Proc. FM. pp. 543–570.
LNCS 14934, Springer (2024). https://doi.org/10.1007/978-3-031-71177-0_30

3. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger, T.,
Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker 2.3
with strategy selection (competition contribution). In: Proc. TACAS (3). pp. 359–364.
LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_21

4. Beyer, D., Chien, P.C., Jankola, M., Lee, N.Z.: A transferability study of
interpolation-based hardware model checking for software verification. Proc. ACM
Softw. Eng. 1(FSE) (2024). https://doi.org/10.1145/3660797

5. Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis
to boost program verification. In: Proc. ASE. pp. 2050–2053. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00213

6. Beyer, D., Dangl, M.: Strategy selection for software verification based on
boolean features: A simple but effective approach. In: Proc. ISoLA. pp. 144–159.
LNCS 11245, Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11.
https://www.sosy-lab.org/research/pub/2018-ISoLA.Strategy_Selection_
for_Software_Verification_Based_on_Boolean_Features.pdf

7. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_42

8. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software veri-
fication. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

9. Beyer, D., Friedberger, K.: Domain-independent multi-threaded software model
checking. In: Proc. ASE. pp. 634–644. ACM (2018). https://doi.org/10.1145/
3238147.3238195

10. Beyer, D., Friedberger, K.: Domain-independent interprocedural program analysis
using block-abstraction memoization. In: Proc. ESEC/FSE. pp. 50–62. ACM (2020).
https://doi.org/10.1145/3368089.3409718

11. Beyer, D., Friedberger, K.: Violation witnesses and result validation for multi-
threaded programs. In: Proc. ISoLA (1). pp. 449–470. LNCS 12476, Springer (2020).
https://doi.org/10.1007/978-3-030-61362-4_26

12. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3_51

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/496588242
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1007/978-3-031-71177-0_30
https://doi.org/10.1007/978-3-031-71177-0_30
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1145/3660797
https://doi.org/10.1145/3660797
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://www.sosy-lab.org/research/pub/2018-ISoLA.Strategy_Selection_for_Software_Verification_Based_on_Boolean_Features.pdf
https://www.sosy-lab.org/research/pub/2018-ISoLA.Strategy_Selection_for_Software_Verification_Based_on_Boolean_Features.pdf
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51


6 Dirk Beyer and Marian Lingsch-Rosenfeld

13. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

14. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010). https://dl.acm.
org/doi/10.5555/1998496.1998532

15. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. J. Autom. Reasoning 69 (2025). https:
//doi.org/10.1007/s10817-024-09702-9, preprint: https://doi.org/10.48550/
arXiv.2208.05046

16. Beyer, D., Löwe, S.: Explicit-state software model checking based on
CEGAR and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793,
Springer (2013). https://doi.org/10.1007/978-3-642-37057-1_11. https:
//www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_
Model_Checking_Based_on_CEGAR_and_Interpolation.pdf

17. Beyer, D., Stahlbauer, A.: BDD-based software model checking with CPAchecker.
In: Proc. MEMICS. pp. 1–11. LNCS 7721, Springer (2013). https://doi.
org/10.1007/978-3-642-36046-6_1. https://www.sosy-lab.org/research/pub/
2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf

18. Beyer, D., Stahlbauer, A.: BDD-based software verification: Applications to event-
condition-action systems. Int. J. Softw. Tools Technol. Transfer 16(5), 507–518
(2014). https://doi.org/10.1007/s10009-014-0334-1

19. Beyer, D., Strejček, J.: Report on SV-COMP 2025. In: Proc. TACAS. LNCS ,
Springer (2025)

20. Beyer, D., Wendler, P.: CPAchecker release 4.0. Zenodo (2024). https://doi.
org/10.5281/zenodo.14203369

21. Beyer, D., Wendler, P.: CPAchecker release 4.0 (image). Zenodo (2024). https:
//doi.org/10.5281/zenodo.14209310

22. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_7

23. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list
manipulation. In: Proc. SAS. pp. 215–237. LNCS 7935, Springer (2013). https:
//doi.org/10.1007/978-3-642-38856-9_13

24. Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 912–915.
LNCS 9636, Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

25. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

26. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization.
In: Proc. ICFEM. pp. 332–347. LNCS 7635, Springer (2012). https://doi.org/10.
1007/978-3-642-34281-3_24

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://dl.acm.org/doi/10.5555/1998496.1998532
https://dl.acm.org/doi/10.5555/1998496.1998532
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://www.sosy-lab.org/research/pub/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf
https://www.sosy-lab.org/research/pub/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.5281/zenodo.14203369
https://doi.org/10.5281/zenodo.14203369
https://doi.org/10.5281/zenodo.14203369
https://doi.org/10.5281/zenodo.14203369
https://doi.org/10.5281/zenodo.14209310
https://doi.org/10.5281/zenodo.14209310
https://doi.org/10.5281/zenodo.14209310
https://doi.org/10.5281/zenodo.14209310
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24

	 CPAchecker 4.0 as Witness Validator 

