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Abstract. We present an approach to theory exploration, i.e., a lemma
synthesis procedure which discovers algebraic laws over recursive func-
tions over Algebraic Data Types (ADTs). The approach, LemmaCalc,
builds on, adapts and extends program calculation techniques known
from optimization of functional programs (fusion and accumulator re-
moval). Our approach avoids exponential search space of term enumer-
ation (SyGuS) that can render state-of-the-art techniques prohibitively
expensive or even useless on large theories with more than a handful of
function symbols. In this paper we describe how this approach can be
realized and contribute a robust implementation. The evaluation shows
that different methods have complementary strengths and that each can
produce lemmas not found by the other, but LemmaCalc scales much
better to larger theories.

1 Introduction

Algebraic Data Types (ADTs) like applicative lists and trees enable formal mod-
eling of programs in proof assistants like Isabelle/HOL [36] and automatic in-
duction provers, e.g. [52,54,19,29,14,10,38,20,40,31,26]. Equational reasoning and
induction are the techniques of choice when proving properties about recursively-
defined functions over ADTs, usually relying on a set of lemmas that explain what
happens if these functions interact with each other. While the libraries of proof
assistants usually come with a large amount of lemmas for built-in functions,
setting this up for application-specific definitions may incur a significant part of
the effort of the verification. A widely-used strategy to achieve a higher-degree of
automation are goal-directed proof methods [6], which derive auxiliary lemmas
from stuck proofs with the help of generalization heuristics.

Theory exploration is an alternative and complementary direction, aiming
to discover lemmas bottom-up from a set of given definitions. State-of-the-art
methods [9,42] rely on exhaustive search over millions of candidate formulas
in a combinatorial search space by enumeration akin to syntax-guided synthe-
sis (SyGuS) [1]. In SyGuS, usually a vast majority of candidates are either
wrong or redundant. Thus, significant efforts in the existing tools, including the
state-of-the-art approach TheSy [42], are invested in filtering candidate lem-
mas using deductive, counterexample-based, or observational-equivalence-based
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techniques. Yet, theory exploration in general remains expensive. Furthermore,
existing enumeration-based methods generate lemmas that follow no particular
pattern or shape and it may be questionable how useful such lemmas are in
practice in the context of interactive proofs (i.e., what constitutes progress or
simplification of proof goals) and with respect to proof automation (e.g., whether
lemmas fit well with proof techniques without introducing matching loops).

Contribution: The key idea behind and advantage of LemmaCalc over search-
space enumeration is that it embraces calculational techniques based on un-
fold/fold transformations of recursive functions [7] to guide the search for solu-
tions as well as the underlying induction proof at the same time. In contrast to
working at the term/formula level, these approaches transform the definitions of
functions themselves, by algorithmically rearranging a given computation into
a new form. We emphasize that the effectiveness of LemmaCalc stems from
the combination of two transformations which to the best of our knowledge is
novel: For this work we adapt fusion [32] (resp. supercompilation [49], deforesta-
tion [50], Sect. 4) and accumulator removal by a technique similar to context
shift [16] (Sect. 5) to our setting, crucially integrating deduction steps in strate-
gic places. While we have found this combination to be effective our synthesis
loop (Sect. 6) may accommodate other transformations too, such as [17,30,27].

Evaluation and Results: We have implemented the approach as an automated
tool that takes SMT-LIB files with recursive functions over algebraic data types
as input and discovers lemmas that are valid by construction. The evaluation is
based on three theories within ADTs: Peano natural numbers, lists, and trees
(Sect. 7). To highlight the effect of the combinatorial search space, as an example
a naive enumerator would check 320K candidates over 18 list functions and 1M
candidates over just 8 functions over natural numbers. When this enumerator as
well as state-of-the-art tool TheSy [42] would take several hours to cover their
large but sparse search spaces, LemmaCalc consistently covers its smaller but
targeted search space in a few seconds. Regarding strengths of lemmas found,
there is high variability and no single approach is best. Using the method of com-
parison from [42] (described in Sect. 7), the proportion of lemmas generated by
one method and implied by those discovered by another method ranges between
∼10% to 100%.

Use and Outlook: We find that LemmaCalc is an effective and efficient method
for lemma synthesis that offers a complementary alternative to enumeration-
based methods. We envision that the techniques proposed here are particularly
suited for larger computer formalizations, e.g. of software systems or mechanized
foundations, in which user-defined theories are built on top of already-present
libraries. In this scenario, enumeration may be prohibitively expensive, whereas
LemmaCalc not only scales better but is well-suited to an incremental workflow.

Data Availability. The implementation of LemmaCalc, the benchmarks, the
experimental setup, and instructions to repeat the evaluation are available as an
artifact for Linux on Zenodo: https://doi.org/10.5281/zenodo.16932462
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2 Overview

At a high-level, our approach takes a set of functions {f, g, . . . }, performs a
series of program transformations that rearrange a given computation into new
synthetic functions and then relates them among each other and back to the
functions originally given. The generated equational lemmas have the form

fusion: f(x, g(y)) = fg(x, y) (1)

accumulator removal: f(x, a) = e?
(
f ′(x), x′, a

)
(2)

where f ′ and fg are synthetic recursive functions (i.e., fg is not just the com-
position of f and g), and e? is instantiated as an expression. Without loss of
generality, to keep the presentation concise, we formalize fusion of g into the last
parameter of f and removal of the last accumulator parameter a of f , noting
that our tool of course implements the general case.

Lemmas over an original function f can be extracted by recognizing synthetic
functions in three possible ways: 1) as the identity function on some argument
xi ∈ x, 2) as being equivalent to a recursion-free expression c over a subset x′

variables, x′ ⊆ x, or 3) as being structurally α-equivalent to another function h
after permuting its arguments (via some π). That is:

replacements: f(x) = xi f(x) = c(x′) f(x) = h(π(x)) (3)

The role of fusion and accumulator removal is thus to explore different ways
to express similar computations, whereas the role of replacements is to discover
correspondences that can finally be turned into lemmas.

Running Example: The list ADT is defined over [] (“nil”—base constructor) and
:: (“cons”—inductive constructor). Throughout the paper, we illustrate the ap-
proach on three recursive functions over lists: ++ (“append”), and length, defined
in the next two rows, respectively:

[] ++ ys := ys (x :: xs) ++ ys := x :: (xs ++ ys)

length([]) := 0 length(x :: xs) := length(xs) + 1

In the rest of the section, we illustrate that it is critical to combine the respective
transformations in LemmaCalc to leverage their full potential. Of the many
lemmas discovered for this theory, we now describe how to calculate

length(xs ++ ys) = length(xs) + length(ys) (4)

The first transformation, fusion, merges the recursive traversal in f with that
of g by eliminating the intermediate data structure produced by g and consumed
by f into a new synthetic function fg .

Example 1. Fusing functions f = length and g = ++ e.g. by the approach of [18]
or [37], calculates the following definition for synthetic function fg = length++.
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Starting from the left-hand side of the desired equation, length(xs ++ ys), we
discern the two cases of the definition of g,

length++([], ys) = length([] ++ ys)

= length(ys)

length++(x :: xs, ys) = length((x :: xs) ++ ys) = length(x :: (xs ++ ys))

= length(xs ++ ys) + 1 = length++(xs, ys) + 1

for which length(xs ++ys) = length++(xs, ys) by construction. Note, the difference
in definitions of length++ and length is underlined: the entire base case and
additional parameter ys, which is passed unchanged to the recursive call. ■

Fusion tends to regularize the way in which computations are laid out. Com-
plementary, accumulator removal, “straightens” the computations but in a
different form, by relating functions with accumulators and those without them
(we regard ys in Ex. 1 as an accumulator, too). Recall (2): removal of accumula-
tor a in f(x, a) gives a synthetic function f ′ that mirrors f and an expression e?
over the outputs of f ′, a, and x′ ⊆ x. Removing accumulators is useful both
for original and synthetic functions. Specifically, fused functions fg(_, y) tend to
retain some of the arguments y of g as accumulators such as ys in Ex. 1:

Example 2. Removing accumulator ys from length++ yields f ′ as length′++

length′++([]) := 0 (5)
length′++(x :: xs) := length′++(xs) + 1

so that length++(xs, ys) = length′++(xs) + length(ys) (6)

where the underlined part is the base case expression from Ex. 1 and e? in (2)
is instantiated by +. This solution can be found algorithmically as described in
Sect. 5 by relying on neutral elements like 0 to replace base case expressions like
in (5) and use the respective operator like + in the solution for e?. As it turns out,
length′++ is structurally equivalent to length and we can apply a corresponding
replacement schema—here the third case in (3)—to Eq. (6) to conclude Eq. (4)
as a lemma found by the approach. ■

3 Preliminaries

In this work, we rely on a first-order, many-sorted functional specification lan-
guage, which includes inductive algebraic data types (ADTs) like lists and trees.
A typed n-ary function f : t1, . . . , tn → t is presented as a

function definition f(p1) := e1 if φ1 · · · f(pm) := em if φm

comprised of a set of m cases, each with pattern pi = p1, . . . , pn, a boolean
expression as guard φi and the right-hand side ei, for each 0 < i ≤ m. A case
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is recursive if the right-hand side ei or the guard φi contains calls to f . We call
functions f and g supplied by the user original whereas intermediate definitions
that are generated algorithmically are called synthetic, typically denoted with a
prime (e.g. f ′) or pairs of names (e.g. length++ used in the previous section).

Notation and Conventions. We require that all case-distinctions are expressed at
the top-level using guards, i.e., explicit if-then-else and case-of expressions have
been transformed away (this is always possible). This means that the grammar
for expressions e and e′ just consists of variables x, and the applications of
function symbols f, f ′, and g and constructor symbols c and d, patterns p and
q contain no defined functions, and values v are (possibly nested) constructor
terms, where v can again have constructors but no variables. That is

expressions e, e′ := x | c(e) | f(e) as well as
patterns p, q := x | c(p) and values v := c(v)

By free(e) we denote the set of free variables of e. A substitution σ is a mapping
from variables to expressions, writing σ(e) for applying it to e. Oriented left-
to-right, equations from the definitions as well as the lemmas discovered can be
interpreted as conditional rewrite rules. Let Γ be a set of definitional equations
and lemmas, we write Γ ⊢ e ⇝ e′ if expression e can be rewritten to e′ by
applying a finite number of definitions and lemmas in Γ while showing that the
respective side-conditions follow from Γ . Rewriting is assumed to be soundly
implemented, i.e, all models of Γ validate e = e′.

Assumptions & Scope. We rely on the following assumptions on the original
functions, which are typical for definitions in inductive theorem provers,3 and
all synthetic functions generated by our constructions will retain these proper-
ties. All functions are terminating under strict evaluation, i.e., each function f is
equipped with a corresponding well-founded order ≺f that connects arguments
to recursive calls, i.e., for a recursive case f(p) := e

(
f(e)

)
if φ of the definition

of f satisfies ∀x. φ =⇒ e ≺f p where x = free(p) are the variables in scope.
Constructions in this paper are justified by induction on these orders. We re-
quire that the patterns together with guards disjointly partition the entire set of
possible arguments, i.e., functions are total, and the order of matching cases is
irrelevant. That is, we can represent the definition as a consistent set of logical
axioms and define transformations case-by-case.

The approach presented in this paper as well as our implementation assumes
that there are no nested recursive calls and there are no mutually recursive
definitions. We assume that there are no recursive calls in guards and that the
bodies of definitions are quantifier-free. Finally, our approach is essentially first-
order, but we support the SMT-LIB style functional arrays as parameters to
“higher-order” functions like map, filter. Lifting these limitations future is work.
3 Isabelle/HOL ensures these properties even if some aspects are transparent to the

user, by inferring termination orders, by translating sequential pattern matches into
disjoint, parallel ones, and by replacing underspecification by a constant undefined.
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Theory Exploration. The underlying idea is to generate lemmas bottom-up from
a set of definitions instead of taking these from intermediate proof goals.

Definition 1 (Theory Exploration). Given a set F of typed functions and
predicates f : t1, . . . , tn → t ∈ F , and given a set ∆ of axioms which define the
functions, compute a set Λ of lemmas, so that ∆ |= Λ, i.e., each model for the F
that satisfies all axioms ∆ is also a model of each lemma in Λ.

We emphasize that this definition on its own only guarantees correctness of the
lemmas found, but not their utility, which may be tricky to characterize. In
practice, theory exploration methods apply heuristics to filter out trivial and
redundant lemmas, an aspect that becomes relevant in the evaluation.

Given function definitions, known lemmas Γ about them, and a proof oracle
that semi-decides Γ ⊢ φ, theory exploration can thus be formulated to find a
valid φ? from a search space Σ(x, bool) of candidate formulas:

theory exploration Γ ⊢ φ? where φ? ∈ Σ(x, bool) (7)

We can impose a certain form for φ? to restrict the search space. For instance,
our baseline enumerator considers candidates for f(x, g(y)) = rhs? specifically
to match the shape of lemmas generated by our approach (Sect. 2) to measure
its effectiveness in relation to the search space.

Baseline: Enumerative Synthesis. Given a set F of typed functions/predicates
f : t1, . . . , tn → t ∈ F we can define the search space Σd(x, t) of terms of type t
over typed variables x up to depth d recursively. The terms of depth 0 are just
the variables of matching type, whereas in the recursive case, for each function f
from F we enumerate possible arguments of smaller depth.

Σ0(x, t) = {xi ∈ x | xi : t} (8)
Σd(x, t) = { f(e1, . . . , en) | f : t1, . . . , tn → t ∈ F and

ei ∈ Σdi
(x, ti) for di < d, i = 1, . . . , n }

Empirically, it is a good strategy to limit the number of occurrences o of each
variable. For the theories considered in this paper, choosing o = 2 or o = 3 cuts
down the search space significantly while still retaining all “reasonable” lemmas
(i.e., those that one would use in practice, see also Sects. C and 7).

Σo
d(x, t) = { e ∈ Σd(x, t) | each xi ∈ x occurs max. o-times in e }

4 Fusion

Fusion of two functions f and g aims to compute a synthetic function fg such
that f(x, g(y)) = fg(x, y)) is valid by construction. We first introduce the notion
of a fused form that guarantees that each recursive call of f over a recursive one
of g has been merged into a joint recursive call to fg . The intuition is that fused
form captures when elimination of the intermediate result of g is possible.
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Algorithm 1: Algorithm Fuse(Γ, f, g). Without loss of generality, g is
fused into the last argument of f .

Input: Γ , set of definitions and known lemmas, including{
f(pfi , q

f
i ) := efi if φf

i

}
i=1,...,m

⊆ Γ and{
g(pgj ) := egj if φg

j

}
j=1,...,n

⊆ Γ

Output: Φ with def. of fg and lemma f(x, g(y)) = fg(x, y)

1 Φ← { f(x, g(y)) = fg(x, y) }
2 for j ← 1, . . . , n cases in the definition of g do unfold g

3 Γfg ← Γ ∪ { y ≺g pgj =⇒ f(x, g(y)) = fg(x, y) }

4 if Γ ⊢ f(x, egj )⇝ e′ and e′ is in fused form wrt. f and g then fold fg?
5 Φ← Φ ∪ { fg(x, pgj ) := e′ if φg

j }
6 else
7 for i← 1, . . . ,m cases of f do unfold f

8 assert free(pfi ) ∩ free(pgj ) = ∅ (possibly rename)

9 if Γ ⊢ egj ⇝ e′ and ∃ σ. qfi
σ≡ e′ and Γfg ⊢ σ(efi )⇝ e′′ so that e′′ is

in fused form wrt. f and g then fold fg?
10 let p← σ(pfi , p

g
j ) and φ← σ(φf

i ∧ φg
j )

11 Φ← Φ ∪ { fg(p) := e′′ if φ }
12 else if qfi ⊥ e′ then
13 (case i of f cannot match result of case j of g)
14 continue
15 else
16 (indeterminate or blocked due to missing lemma)
17 Φ← ∅ and fail

Definition 2 (Fused form). An expression e is in fused form with respect to f
and g if g does not occur nested in any argument of f anywhere in e.

Definition 3 (Pattern Unification and Refutation). Assuming that free
variables of p are disjoint to those of e, we write p

σ≡ e when substitution σ is the
most general unifier of pattern p and expression e [41, Def. 5.9]. We write p⊥ e
when there can be no such unifier, i.e., the pattern match is “refuted”.

p
σ≡ e ⇐⇒

(
∃ σ. σ(p) = σ(e)

)
∧
(
∀ σ′. σ′(p) = σ′(e) ⇒ ∃ σ′′. σ′ = σ′′ ◦ σ

)
p⊥ e ⇐⇒

(
∀ σ. σ(p) ̸= σ(e)

)
The fusion algorithm, Alg. 1, is realized as an unfold/fold transformation [7].

Conceptually, it lets fg(x, y) := f(x, g(y)) and then transforms the right-hand
side into the fused form. Algorithmically, it pairs each defining j-th case of g
with each i-th case of f , by analyzing how the result returned by g via body
expression egj can be matched by pattern qf of the fused argument position. The
case analyses correspond to “unfolds”, cf. line 3 for g and line 7 for f (we discuss
the optimization in line 4 shortly). Line 9 checks whether the pairing is feasible
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by computing the most general unifier (cf. Def. 3) between g’s result and f ’s
pattern, and if so, adds a corresponding defining case for fg .

The main concern is that the expression e′′, which is ultimately used in the
definition of fg (line 11), is in the fused form wrt. f and g. To achieve this we can
make use of folding that collapses joined recursive calls f(_, g(_)) into recursive
fg-calls (applied in lines 4 or 11). Technically, it is realized by a fold rule, added
to the set of known facts Γ in line 3 (we discuss its premise below).

Our presentation makes explicit the way in which fusion is intertwined with
the application of definitions and facts already known by rewriting wrt. Γ . A key
optimization is in line 4, which avoids unfolding f altogether when the case of g
is non-recursive as in Ex. 1 where the base case wraps eg = ys directly by
f = length. It applies to tail-recursive cases of g, too, which are immediately
folded in line 4 by the additional rule in Γfg , and when lemmas help to eliminate g
altogether. In practice, this optimization crucially retains the structure needed
to recognize fused functions and their derivatives in terms of original ones.

Premise y ≺g pgj of the fold rule in line 3 ensures that recursive fg calls
respect the termination order ≺g of g despite the rewriting steps in lines 4 and 9
(cf. Sect. B.1). In the evaluation, this premise is always satisfied.

Example 3. Alg. 1 works analogously to the calculations in Ex. 1, but instead of
induction on a single argument it works alongside the cases of the inner function g
(here the two notions coincide). Unfolding ++, we have one base case (j = 1) and
one recursive case (j = 2), and to illustrate wrt. the above calculation we have
pg1 = [], ys and pg2 = x :: xs, ys.

In the base case, moreover eg1 is ys concretely so that f(eg1) is length(ys),
which is already in fused form (line 4), leading to the base case of length++ as
shown above and in Ex. 1. Note, if we were to unfold length as well in this
situation, we would instead get two cases, as e′ being ys unifies with both pat-
terns [] and x::xs of length in line 9. Apart from destroying the correspondence
between length++ and length it turns that argument into a non-accumulator and
thus prevents progress later on.

In the recursive case eg2 = x :: (xs ++ ys) and length(eg2) = length(xs ++ ys)+1
by definition. We make use of the fold rule (line 4), which here is

xs ≺++ (x :: xs) =⇒ length(xs ++ ys) = length++(xs, ys)

in which the premise holds so that e′′ = length++(xs, ys)+1 in fused form becomes
the right-hand side of the recursive case. ■

Ex. 7 in Sect. A further details how Alg. 1 relies on known lemmas from Γ
to make progress in line 9 to achieve fused form.

5 Accumulator Removal

Accumulator removal aims to express f(x, u) as e?(f ′(x), x′, u) for a synthetic
function f ′ that in comparison to f lacks accumulator u (Def. 4). Expression e?
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compensates for the absence of u in the computation of f ′, such that the def-
inition of f ′ and e? must be found hand-in-hand. This e? may depend on the
accumulator and the “static” subset x′ of the remaining arguments (Def. 5).

To make the recursive calls in the body of a function explicit, we denote each
i-th case f(pi, u) := ei if φi of f as a decomposition into a “body” expression bi
that makes k recursive calls with regular arguments eji and computes the new
value for the accumulator using expressions aji (u).

ei = bi
(
f
(
e1i , a

1
i (u)

)
, . . . , f(eki , a

k
i (u)

) )
(9)

Definition 4 (Accumulator). A parameter is an accumulator of f if 1) it is
matched by a variable u in each pattern, 2) it specifies the values aji for the same
argument position of recursive calls in recursive cases, 3) it does not occur in
guards φi or elsewhere in any recursive body bi (u may be used in base cases).

Definition 5 (Static Parameter and Expressions). A parameter is called
static if it is passed by identity only, aji (u) = u, A subexpression of a function
definition is static if it depends on static parameters only.

Static subexpressions retain their value when lifted out of the recursion to the
top-level. As an example, ys of length++ in Sect. 2 is static.

Alg. 2 shows our algorithm for accumulator removal. It generates f ′ case-by-
case from the definition of f by matching its recursive structure, but by allowing
different body expressions b′i. Note patterns pi and guards φ are kept to preserve
the recursive traversal, so that arguments match the i-th case of f exactly iff
they match the i-th case of f ′. For that reason, the removed accumulator may
not occur in guards in the first place (cf. Def. 4). The algorithm is effectively
a straight-forward translation of an inductive proof of the desired lemma. Note
that it is conceptually analogous to Giesl’s context transformations [16], but it
is formulated in a more straight-forward way.

The algorithm is presented nondeterministically here. The key first choice
occurs in line 7, where a solution for critical base cases is chosen, i.e., those base
cases which refer to the accumulator u, cf. length++([], ys) = length(ys) for ys
from Ex. 1. The heuristic we adopt is to pick bi in f ′(p) = bi to be the neutral
element c of a binary function/operator ⊕. We shift the entire original body bi
out of the function as part of e?, noting that references to static parameters xs
within bi retain their meaning over the shift. For Ex. 2, the correct choice is ⊕
as + with neutral element c = 0 and therefore e?(y) = y + length(u), however,
our implementation tries other combinations like × and 1 and backtracks when
line 14 is hit (this is the only place where we use trial and error).

The second key choice is in line 10, where we pick a body b′i for other all other
(base and recursive) cases from the search space Σd(z, tr) of expressions of f ’s
return type over the variable in scope z (recall its inductive definition in (8)).
The condition checked in line 13 ensures that the choice is compatible with any
(prior) choice of e?, i.e., that e? commutes from inside recursion all the way to
the top-level of the lemma to be synthesized.
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Algorithm 2: Algorithm RemoveAcc(Γ, f), presented without loss of
generality with the accumulator as the last argument of f .

Input: Γ , set of definitions and known lemmas
Input: definition of f : t, tu → tr as

{
f(pi, u) := ei if φi

}
i=1,...,m

⊆ Γ

Output: Φ with of the definition of f ′ and f(x, u) = e?(f ′(x), x′, u)

1 Φ← { f(x, u) = e?(f ′(x), x′, u) }
2 for i← 1, . . . , n (cases in the definition of f) do
3 let z = free(pi) be the free variables in pi
4 let x′ : t

′ be the static arguments in pi
5 let bi

(
f
(
e1i , a

1
i (u)

)
, . . . , f(eki , a

k
i (u)

) )
= ei (cf. (9))

6 if k = 0 (base case) and u ∈ free(bi) and free(bi) \ u ⊆ x′ then
7 choose binary ⊕ with neutral element c from Γ ⊢ ∀z. c⊕ z = z

8 b′i ← c and e?(y, x′, u)← y ⊕ bi
9 else

10 choose b′i ∈ Σd(z, tr) (such as bi if u ̸∈ free(bi))

11 lhs ← bi
(
e?
(
y1, x′, a1

i (u)
)
, . . . , e?

(
yk, x′, ak

i (u)
) )

12 rhs ← e?
(
b′i
(
y1, . . . , yk

)
, x′, u

)
13 if not Γ ⊢ ∀ y, z, u. φi =⇒ lhs = rhs then
14 fail
15 Φ← Φ ∪ { f ′(pi) := b′i

(
f(e1i ), . . . , f(e

k
i )

)
if φi }

Example 4. To continue Ex. 2 for the accumulator removal of f = length++ works
with the sketch for f ′ = length′++

length′++([]) := b1

length′++(x :: xs) := b2(x, xs, length
′
++(xs))

so that length++(xs, ys) = e?(length′++(xs), ys)

and finds instances for b1, b2, and e? as follows.
The base-case condition length(ys) = e?(b′1, ys) is solved by choosing c and

⊕ as left-neutral element 0 of +, i.e., we have ∀z. 0+z = z. For bi = length(ys),
we therefore instantiate b′1 = 0 and e?(zs, ys) = zs+length(ys). For the recursive
case, we (heuristically) preserve b′2 = b2 = _+1. The condition checked in line 13
is valid: ∀m, ys.(m+ length(ys)) + 1 = (m+ 1) + length(ys)). ■

Example 5. Associativity of ++ is discovered by fusing (xs ++ ys) ++ zs into a
synthetic function +++(xs, ys, zs) and then by removing its last argument. The
correct choices are b′1 = c = [] as right-neutral element of ⊕ = ++ and canonically
b′2 = b2 = _::_ as the original function body of the outer _ ++ zs. ■

Example 6 (Reversing Lists). We show how accumulator removal is key to the
classic lemma reverse(reverse(xs)) = xs in our approach

reverse([]) = [] reverse(x :: xs) = reverse(xs) ++ (x :: [])

10



Because reverse has no accumulators, we start with fusion, which fails initially
for reverse(reverse(_)) as we cannot match ++ in the body of the inner g =
reverse (there is no unifier nor can we refute the match). However, from fusing ++

into reverse we get:

reverse++([], ys) = reverse(ys)

reverse++(x :: xs, ys) = reverse++(xs, ys) ++ (x :: [])

This function has an accumulator that can be removed, again with ⊕ = ++ but
now with c = [] as its left-neutral element, resulting in reverse(xs ++ ys) =
reverse(ys) ++ f ′(xs) and it turns out that f ′ ≡ reverse. This lemma unblocks
fusion of reverse(reverse(_)) via the shortcut in line 4 of Alg. 1. The fused
function reverse-reverse can subsequently be recognized as the identity function
after some simplifications. ■

Another classic example is the tail-recursive function qreverse, shown in Ex. 8
in Sect. A. It requires a more complex choice for b′i in line 10 of Alg. 2 and is not
discovered by our implementation, but is in generally in reach of our approach.

6 Main Algorithm

Alg. 3 saturates a database Γ of definitions and discovered lemmas by repeat-
edly applying the transformation on original as well as synthetic functions. Al-
gorithms Fuse (cf. Sect. 4) and RemoveAcc (cf. Sect. 5) return an equation
of the corresponding shape as shown above if they succeed, together with the
defining equations of the respective synthetic functions.

Algorithm 3: Lemma synthesis by saturation using fusion, accumulator
removal, and recognition of structurally similar functions.

Input: Set ∆ of definitions of the original functions
Output: Set Λ of lemmas discovered over ∆

1 Γ ← ∆

2 repeat
3 Γ ← Γ ∪ Fuse(Γ, f, g) for pairs of functions f , g
4 Γ ← Γ ∪RemoveAcc(Γ, f) for f with accumulator
5 Γ ← Γ [f(x) 7→ rhs] for replacements f(x) = rhs

6 Λ← Extract(Γ ) \∆

The three steps (fusion, accumulator removal, conditional lemmas) may ben-
efit from the accumulated set of lemmas Γ , as shown in Ex. 7 for fusion. Our
algorithm retries failed steps as long as new information can be gained. Intermit-
tently, the algorithm applies replacement lemmas (3) eagerly. This de-duplicates
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the effort and avoids vacuously fused forms (cf. Sect. 4). Replacement is oriented
to keep original functions if possible. The final step of the algorithm is to extract
useful lemmas from Γ :

Extract(Γ ) =
{
φ′′ | for lemma φ ∈ Γ where

Γ ⊢ φ⇝ φ′ and recover(Γ ) ⊢ φ′ ⇝ φ′′

and φ′′ uses original functions only
}

where recover(Γ ) = { fg(x, y) = f(x, g(y) | f(x, g(y) = fg(x, y) ∈ Γ } recovers
fused functions in terms of their original sources; done in a separate step to avoid
rewrite loops between the symmetric rules in Γ and recover(Γ ).

Lemma 1 (Soundness of Transformations). Both transformations Fuse
and RemoveAcc produce valid lemmas, and new synthetic functions satisfy
all assumptions of Sect. 3 (the proofs are in Sect. B). ⊓⊔

Theorem 1 (Soundness of Alg. 3). All lemmas computed are valid wrt. the
original definitions ∆ |= Λ. ⊓⊔

Final remark: As we are relying on rewriting as our main technique to apply
definitions and lemmas, we briefly address the question of potentially looping
rewrite rules. A general technique to detect and avoid nontermination is [11].
Alternatively, one can represent Γ as an E-graph [12,35,51], which can accom-
modate cyclic expressions and is therefore more robust against this issue. In our
experiments, however, the only cases for rewrite loops come from lemmas pro-
duced by accumulator removal at some intermediate stages and it was sufficient
to not use these lemmas as long as they still contain synthetic functions.

7 Evaluation

We implemented LemmaCalc in a fully automated tool and evaluated it on
three theories within ADTs. We used the Z3 SMT solver (v4.12.4) [34] as the
proof oracle to decide entailments Γ ⊢ φ. The goal of this evaluation is to
substantiate that LemmaCalc is a practical and effective procedure for theory
exploration and to understand its strengths and limitations:

– RQ1: What is the relative explanatory strength of the sets of lemmas gen-
erated by the different methods?

– RQ2: What is the impact of the search space on lemma synthesis time?

Experimental Setup. We compare LemmaCalc with two alternatives:

– Enum: Our own enumerative generator, based on (7) in Sect. 3, which solves
for e? in equational lemmas f(_, g(_)) = e? without preconditions

– TheSy, a state-of-the-art enumerative lemma generator [42] using E-graphs.
TheSy in contrast to our baseline can discover conditional lemmas.
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We had originally intended to compare against HipSpec [9], too, but that was
not possible due to technical issues with its installation.

The baseline enumerator (Enum) is included because it provides (approxi-
mate) ground truth on the lemmas that can possibly discovered by LemmaCalc
using fusion and removal of accumulators. In our experience on the benchmarks,
deeply nested lemmas are usually redundant. Thus, Enum explores a search space
up to depth d = 3 and maximal variable occurrence o = 2 in (7), which is suffi-
cient to cover all lemmas found by LemmaCalc. Solver timeout was configured
to 1000ms per query for the baseline evaluator.

As the search space is huge, before proof attempts, Enum relies on a ground
evaluator to exhaustively search for counterexamples to lemma candidates of a
small size. It makes a large effect when false formulas are filtered out—much
faster and more reliable than using Z3. To discover any non-trivial lemma, we
enrich the proof oracle by an induction preprocessing step that in turn tries all
potential induction variables. For example, ∀n : nat. P (n) is passed as P (0) ∧
(∀n : nat. P (n) =⇒ P (n+ 1)) to the proof oracle.

All methods runs multiple rounds of lemma discovery so that proofs that had
failed earlier can benefit from lemmas discovered later (Examples 6 and 7).

The evaluation is based on three theories, over Peano arithmetic, and over
functional lists and trees, respectively. In addition to the full theories (nat, list,
and tree below), we consider eight benchmarks with a subset of functions that
together make up some interesting lemmas. As shown in Table 1, a full theory
gets from 5 to 18 functions, from which our baseline enumerator generates ∼1.5M
candidates in total, of which roughly ∼0.01% are true lemmas only (we comment
on the run times below). Some details on the benchmarks are in Sect. C. Ex-
periments were run on a Lenovo T470 Thinkpad with 4x Intel(R) Core(TM)
i5-7440HQ CPU @ 2.80GHz and 32 GB main memory.

Method of Comparison. A benchmark consists of a set of definitions ∆, from
which a lemma synthesis method generates a set Λ of lemmas so that ∆ |= Λ.
For RQ1 we are interested in a comparison in terms of relative explanatory
strength of these sets Λ as discussed in depth in [42].

Definition 6 (Subsumption). For a set of lemmas ΛA generated by one
method, the subset of ΛA that is “subsumed” by ΛB is S(ΛA, ΛB) = {φ ∈ ΛA |
∆,ΛB ⊢ φ} where Γ ⊢ φ denotes that φ is provable by an oracle given facts Γ .

The ratio |S(ΛA, ΛB)|/|ΛA| can therefore be understood as a proxy for the pro-
portion of the knowledge that can be gained from ΛA that can also be gained
from ΛB [42]. In practice, however, the generated sets of lemmas tend to con-
tain some trivial lemmas (e.g. that follow from ∆ without induction) and some
redundancies (e.g. lemmas that are implied from the others). These aspects are
not adequately captured by subsumption alone. To give an example of an effect
that we have observed, if method A discovers commutativity of + on numbers
but method B does not, then ΛA from Def. 6 contains two equivalent lemmas
φ(a+b) and φ(b+a) for each suitable φ, a, and b. Moreover, many of the bench-
marks contain functional and predicate symbols from the background theory,
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e.g., +, <, ≤, ¬, but we do not want to count lemmas over just these as part of
more complex benchmarks. Therefore, for each set of lemmas Λ generated with
respect to a given ∆, where F0 are the background functions, we define

– L(Λ) = {φ ∈ Λ | F0 ⊂ funs(φ)} is the relevant set of lemmas generated by
the tool, the remaining ones B(Λ) = Λ \L(Λ) are the “background” lemmas.

– N (Λ) = {φ ∈ L(Λ) | ∆,B(Λ) ̸⊢ φ} is the “non-trivial” subset of the non-
background lemmas. Note, we choose to exclude also those consequences
that are made true by the background lemmas (such as consequences of
commutativity of + as discussed above).

– R(Λ) ⊆ L(Λ) with ∆,R(Λ) ⊢ L(Λ)\R(Λ) is a “reduced” set of lemmas after
removing some redundant ones. 4

For any benchmark, for each lemma synthesis method A, we report the cardi-
nalities of L(ΛA) ⊇ N (ΛA) ⊇ R(ΛA), as well as the respective subsumptions for
all other methods B, namely S(L(ΛA), ΛB) ⊇ S(N (ΛA), ΛB) ⊇ S(R(ΛA), ΛB).
Solver timeout was configured to 100ms per query in the comparison to keep
evaluation times tractable.

RQ1: What is the relative explanatory strength of the sets of lemmas generated?
This comparison is shown in Fig. 1—note that the range for the y-axis varies
across the benchmarks to aid readability.

As an example, on benchmark append, the structural method finds 9 lemmas
in L, of which 4 are redundant (i.e. just in N and filtered out by R) whereas
the other 5 are in the reduced set, and there are no trivial lemmas. Enumeration
and TheSy cover 3 of the 4 redundant and 4 resp of the 5 reduced lemmas
each. Enum misses distributivity of count over ++, this lemma is part of the final
“unknown” lemmas despite having a straight-forward inductive proof. We conjec-
ture that the solver enters a matching loop due to presence of commutativity of
addition and therefore times out. On the other hand, the three lemmas uniquely
found by Enum are enabled due to this commutativity in the first place. Such
effects are likely to be present in other benchmarks, too. TheSy moreover misses
associativity of ++ for unknown reasons.

Overall, the performance of all methods is usually in the same order of mag-
nitude, but the specific results differ widely across the benchmarks. In abso-
lute terms, methods based on enumeration may be seen to to outperform Lem-
maCalc, as represented by the relatively larger first bar in the respective col-
umn, noticeable e.g., on benchmark length. This is expected as they cover a much
larger space. However, calculational techniques can cover a significant proportion
of that space, and also generate lemmas not found by the other approaches.

On benchmarks filter and remove, most resp. all interesting lemmas are
conditional equations, recall that these cannot be generated by LemmaCalc
and Enum. On filter, the lemmas not found by our methods are for example
related to filtering twice with the same predicate (e.g., duplicate occurrence of
a variable, a limitation of Alg. 1).
4 Note this set is not unique. In the evaluation we used a greedy incremental algorithm.
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Fig. 1. Experiments for the full theories (top row) and individual benchmarks. The first
bar in each group represents the number of lemmas found by the approach listed on the
x-axis below (i.e., plain L, N , R). The subsequent bars represent the proportion sub-
sumed by other approaches (Def. 6), each again partitioned wrt. the classification. Four
additional higher-order lemmas mentioning map(succ,_) are omitted from TheSy’s re-
sult in list as they were not supported by the toolchain.

On benchmarks length and reverse, our methods miss out on lemmas for
the functions qlength and qreverse, which both make use of an accumulator.
As described in Ex. 8, it requires to find a nontrivial instance for the body
of the synthetic function during accumulator removal, which our current im-
plementation does not try, but which is generally in scope of the method. On
both benchmarks, TheSy generates a lot of redundancy, because the functions
involved can be related in many different ways (e.g., variations of Examples 1
and 2 and variants modulo properties of addition).

Regarding the full theories, benchmark tree is tractable for all methods,
leading to similar results. Benchmark nat shows that the enumeration-based
methods can make good use of their significantly longer running time (recall:
many hours vs a few seconds for LemmaCalc). Specifically, our methods fail to
produce most lemmas involving multiplication (such as distributivity wrt. ad-
dition, commutativity, associativity). Similarly, LemmaCalc does not discover
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commutativity of addition—the algorithmic limitation is that the critical helper
lemma m + (n + 1) = (m + n) + 1 is not calculated (it is too specific for our
fusion algorithm), and the limitation of the implementation is that it enters a
rewrite loop if this lemma is assumed as an additional fact in the theory.

RQ2: What is the impact of the size of the search space? Statistics on the size
of the search space are given in Table 1. It varies not only with the number of
functions in the theory, but also strongly depends on how many possible com-
binations there are. Of the candidates generated, a few hundreds are typically
valid, and about 10% of those are of interest (i.e., need induction). The rela-
tively low number of unknowns gives an upper bound on how many results were
missed—by manual inspection most of these are in fact not valid.

LemmaCalc covers these theories very quickly, taking 1s–5s on all bench-
marks except for list, where it takes 14s. By design, it scales more gracefully to
larger theories (e.g., fusion takes square effort in the number of functions).

On the full theories, our baseline enumerator may take a significant amount of
time. The exact time strongly depends on the effectiveness of the counterexample
check. For example an earlier version of the implementation lacked support for
conditional cases in functions, relying on the solver more heavily instead, so
that run times on some benchmarks were tenfold to what is reported here. The
timeout used for the solver plays an important factor, too. For example, the
1000ms per query in the experiment may be marginally better than 100ms only,
and Z3 even exceeds this timeout significantly in many occasions (some queries
time out after ≫10s only). Therefore the numbers shown should be a rough
indication only what it takes to cover the search space.

We have aborted the run of TheSy after 26h resp. 21h on the nat and list

benchmarks, and while TheSy terminates on some benchmarks within a minute,
it stalls on others, e.g., on the remove benchmark, it produces lemmas until 13
minutes and then remains unproductive for many hours without any output
(similar on map and runlength). Benchmark remove may suggest some internal
implementation issue, that may have affected TheSy’s performance on list.

Even if the run times shown are not to be taken as precise measures, it
showcases that LemmaCalc in comparison to enumeration-based techniques is
reliably quick, i.e., it can be incorporated into proof assistants and automated
proof methods with little overhead while providing a similar benefit (cf. Fig. 1).

8 Related Work.

Calculational techniques for developing recursive functions go far back, notably
to [7], which introduced the idea of unfold/fold transformations. An investigation
of the theory of lists is provided by [2]. It already states many laws from a more
general perspective. Follow-up work shows how to calculate such laws on pen
and paper [3]. Program optimization using fusion-like techniques similarly have
a long history [49,23] with various specialized approaches already developed, e.g.,
[48,50,53]. An approach that uses known lemmas to unblock fusion is discussed as
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“warm-up rules” in [18]. General categorial notions that classify functions by their
recursion schemes are based on a “zoo of morphisms” [32,24]. In comparison, [37]
argues for a more direct approach that avoids fitting definitions into a particular
shape, our algorithm in Sect. 4 is similar.

Fusion has been proposed as a building block for theorem proving before,
e.g., [28,22,21]. Notably, Sonnex [45] demonstrates an effective implementation of
these ideas and discusses many insights that underpin his procedure. In this work,
the discovery of fold-functions—a limited form of synthesis—takes a similar role
of accumulator removal in our work, in the sense that it unlocks proof steps that
are out of scope of fusion. However, Sonnex does not consider theory exploration
and its associated concerns in the absence of given proof goals as we do.

Accumulator transformations have been investigated in [16,27,30,16] with the
goal of eliminating tail-recursion for ease of proof. Of these, the context manip-
ulation techniques in [16] are very similar to our algorithm; our presentation
is arguably more straight-forward and seems to encompass all four techniques
mentioned. The deaccumulation technique in [17] employs a decomposition that
is ultimately similar to the notion of “structured hylomorphisms” [25]. We leave
it for future work to try these ideas.

Theory exploration has previously been approached by various techniques,
e.g. [9,42], which utilize a conjecture generator based on testing and an induction
principle enumerator. It constructs equations from a given set of functions and
variables up to a certain depth, and a theorem prover is used at the backend to
find the actually valid lemmas. Both approaches can be seen as instances of a
more general approach called Syntax-Guided Synthesis (SyGuS) [1], that enjoys
multiple applications in program verification and synthesis, [47,15,39] to name a
few. A common drawback of these solutions is the exponentially-growing search
space. RoughSpec [13] is an approach to overcome this problem by searching
lemmas that fit particular patterns like distributivity. Another possibility to
prune the search space is to rely on e-graphs [12,51], which is used by TheSy [42]
and in also in Ruler [35]. FitSpec [4] represents an approach to filter redundant
property-based tests, which could be applied to detect redundant conjectures.

When given a specific property to prove, theorem provers [26,8,46,52,54,43]
are powered by various lemma discovery techniques that generate them by utiliz-
ing proof failures. Specifically, all of the above except [52,43] generalize a failure
by replacing a common subterm by a fresh variable. AdtInd [52] instead uses
syntax-guided enumeration [1] to enlarge and diversify the set of possible lem-
mas. Sivaraman et al. [43] uses a data-driven approach to finding lemmas: the
goal itself gets an expression replaced by a hole. The synthesis specification is
then formulated using input-output examples: valuations of the goal’s variables
are the inputs, and the valuations of the hole’s original expressions are the out-
puts. Further data-driven approaches are [33,5] and the classic QuickCheck [44]
which rely on testing only.
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9 Conclusion

We have presented LemmaCalc, an approach for the synthesis of equational
laws of recursive functions over algebraic data types. The approach is based
on a novel combination of two program transformations. Key enabling factor
is to integrate these in a procedure that chains facts discovered so far into the
synthesis of subsequent lemmas. We have demonstrated that this approach to
calculating lemmas is effective and efficient for many simple but non-trivial cases,
and that it scales well to larger theories.

In contrast to enumeration-based methods, the lemmas generated by Lem-
maCalc, specifically with fusion and accumulator removal, often to match those
a human engineer would specify by hand. Even though our calculations can work
with intermediate synthetic functions that are not representable in the original
theory, they rely on pre-existing building blocks (recursion structure, patterns,
sub-expressions). This is key to taming the search space and also to limit redun-
dancy in the discovered lemmas (cf. Sect. 7).

The lemmas discovered by approach in the evaluation and experiments are all
good rewrite rules, i.e., we have not observed that they introduce cycles/matching
loops (cf. Sect. 6), but we do not have a formal guarantee for this. We are not
really sure yet how to define a more formal measure of utility of lemmas. Our in-
tuition is that answering such a question leads to deep theoretical considerations
such as working modulo some form of “canonicalization” (perhaps in the style of
unified recursion schemes [24]), which gives a principled account of redundancy.

The approach presented is a suitable base for incorporating further transfor-
mations. While in its current form, LemmaCalc is somewhat restricted insofar
that more complex lemmas than those shown in Sect. 7 are not necessarily in
reach, which currently precludes us from conducting more “realistic” case studies.
In the future, we want to investigate the potential of more elaborate decompo-
sition of functions such as more principled approaches to function decomposi-
tion [25,17,30,27,24] to unlock more lemmas.

Finally, the current implementation is fairly robust but it also has some ad-
ditional limitations beyond those mentioned in Sect. 3, such as not chaining on
fusion with synthetic functions, not generating lemmas with duplicate variables,
and not trying out more candidates during accumulator removal. Support for
higher order is another feature of interest, as well as extending the approach to
mutually recursive functions. Adding these involves significant additional engi-
neering effort but it would enlarge the search space of LemmaCalc significantly,
leading to larger execution times, too. As an outlook, it appears promising to
combine enumeration with calculational techniques in a principled way to lever-
age the respective strengths.
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We show two further examples, Ex. 7 for fusion, and Ex. 8 for accumulator
removal.
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Example 7 (Binary Trees). The data type for binary trees over type Elem is

data Tree = leaf | node(left : Tree, value : Elem, right : Tree)

Function elems over binary trees computes a list containing its elements by pre-
order traversal and function size(t) counts the number of nodes.

size(leaf) := 0 size(node(l, x, r)) := size(l) + size(r) + 1 (10)
elems(leaf) := [] elems(node(l, x, r)) := x :: (elems(l) ++ elems(r)) (11)

Goal is to fuse length_elems with length_elems(t) = length(elems(t)), expect-
ing that it will turn out to be equivalent to size.

We take apart the two cases in (11) corresponding to line 2 in Alg. 1. For the
base case, eg0 = [] and Γ ⊢ length([]) ⇝ 0 in line 4 of Alg. 1 by the definition
of length that is part of Γ , so that length_elems(leaf) := 0.

In the recursive case, eg1 = e′ = x::(elems(l)++elems(r)). Pattern match of the
base case of length is refuted by []⊥e′ (line 10 of Alg. 1). For pattern y::ys of the
recursive case of length we get a unifier σ with σ(y) = x and σ(ys) = elems(l)++
elems(r). We then look at σ(length(ys) + 1) = length(elems(l) ++ elems(r)) + 1.
It is not possible to immediately apply the fold rule that collapses occurrences
of length(elems(_)) because of the intermediate occurrence of function ++. In-
stead, we need lemma (4) to unblock the situation which is done by the sec-
ond use of rewriting in line 9 as length(elems(l) ++ elems(r)) + 1 ⇝ e′′ with
e′′ = length_elems(l)) + length_elems(r)) + 1, which is now in fused form and
can be used as the right-hand side of the case length_elems(node(l, x, r)) :=
length_elems(l) + length_elems(r) + 1. This indeed gives us a definition that
is equivalent to size. From this, we can extract length(elems(t)) = size(t). ■

Example 8 (Reversing Lists using an Accumulator). Function reverse is inef-
ficient (quadratic runtime). Function qreverse, defined below, avoids this by
introducing an accumulator us

qreverse([], us) = us qreverse(x :: xs, us) = qreverse(xs, x :: us)

Algorithm RemoveAcc for the accumulator us calculates

qreverse′([]) = b′1 qreverse′(x :: xs) = b′2(x, xs, qreverse
′(xs)

The solution is b1 = [] as right-neutral of ++, as well as b′2(x, xs, ys) = ys ++ (x ::
[]), which produces qreverse′ = reverse, i.e., removing the accomulator from
qreverse yields again the more inefficient version so that qreverse(xs, us) =
reverse(xs) ++ us. Note that the choice b′2 is not the canonical choice, as we
have b2(ys) = ys from reverse in line 10 of Alg. 2; our implementation therefore
currently misses this result. ■

B Soundness Proofs

We are working with typed functions f : t1, . . . , tn → t, defined by cases

function definition f(p1) := e1 if φ1 · · · f(pm) := em if φm
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Recall the assumptions placed on function definitions namely that functions
terminate, and that cases match are mutually disjoint and together complete. We
formalize these conditions below and prove that the synthetic functions produced
by the transformations preserve these. Furthermore, we prove that all generated
lemmas are valid.

Definition 7 (Termination). A function f is terminating if and only if there
is a corresponding well-founded order ≺f that connects arguments to recursive
calls, i.e., for each recursive case f(pi) := ei

(
f(e)

)
if φi of the definition of f

satisfies ∀x. e ≺f pi where x = free(pi) are the variables in scope.

Definition 8. Let Vt = {v | v : t} be the carrier set of values v of type t.

We fix a set of definitions ∆. We write ∆ |= φ or just φ holds if formula φ
semantically follows from ∆.

Definition 9. Let Jp if φK = { v | ∃ σ. σ(p) = v ∧ ∆ |= σ(φ) } be the set of
values v that match pattern p via some substitution σ so that the guard φ holds.

Definition 10 (Pattern Disjointness). The patterns p1, . . . , pm of func-
tion f are disjoint if Jpi if φiK ∩ Jpj if φjK = ∅ for all 1 ≤ i < j < m.

Definition 11 (Pattern Completeness). The patterns p1, . . . , pm of func-
tion f are complete if Vt1 × · · · × Vtn =

⋃
i=1,...,mJpi if φiK.

We remark that the ⊇ direction always holds by type-correctness, therefore it
will be sufficient to demonstrate the ⊆ direction.

Lemma 2. (A1 ∩A2)× (B1 ∩B2) = (A1 ×B1) ∩ (A2 ×B2).

Lemma 3. For A1 ⊆ A2 and B1 ⊆ B2 we have A2∩B2 = ∅ =⇒ A1∩B1 = ∅.

Lemma 4. If free(φ) ⊆ free(p) and free(ψ) ⊆ free(q) then matches of p, q over
disjoint variables free(p) ∩ free(q) = ∅ can be split into a cross-product for the
individual matches Jp, q if φ ∧ ψK = Jp if φK × Jq if ψK.

Lemma 5. Substitution narrows down pattern matches Jσ(p) if σ(φ)K ⊆ Jp if φK.

Lemma 6 (f-Induction). With a well-founded order ≺f of a terminating
function f : t→ t that satisfies Def. 11 we can prove any property P (z) over z : t
by induction:5 ∧

i=1,...,m

∀ x. P (e) ∧ φi =⇒ P (pi)

 =⇒
(
∀ z. P (z)

)
5 (induction z rule: f.induct) in Isabelle/HOL.
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B.1 Properties of Fuse (Alg. 1 in Sect. 4)

Lemma 7 (Termination of fg). All recursive fg calls are introduced by a fold
rule y ≺g p

g
j =⇒ f(x, g(y)) = fg(x, y) (line 3). Therefore, ≺fg = ≺g witnesses

termination of fg. ⊓⊔

Lemma 8 (Pattern Disjointness of fg). We prove disjointness of two cases
(i, j) ̸= (i′, j′) both generated by line 9, the other combinations wrt. line 4 are
analogous. If i ̸= i′, then from pattern disjointness of f

Jpfi ifφ
f
i K ∩ Jpfi′ifφ

f
i′K = ∅

∅×A=∅
=⇒

(Jpfi ifφ
f
i K ∩ Jpfi′ifφ

f
i′K)× (Jpgjifφ

g
j′K ∩ Jpgjifφ

g
j′K) = ∅

Lemma 2⇐⇒

(Jpfi ifφ
f
i K × Jpgjifφ

g
j′K) ∩ (Jpfi′ifφ

f
i′K × Jpgjifφ

g
j′K) = ∅

Lemma 4⇐⇒

Jpfi , p
g
j if φf

i ∧ φg
j K ∩ Jpfi′ , p

g
j′ if φf

i′ ∧ φ
g
j′K = ∅

Lemmas 3 and 5
=⇒

Jσ(pfi , p
g
j ) if σ(φf

i ∧ φg
j )K ∩ Jσ(pfi′ , p

g
j′) if σ(φf

i′ ∧ φ
g
j′)K = ∅

The argument for i = i′ and j ̸= j′ is analogous via pattern disjointness of g. ⊓⊔

Lemma 9. If e = e′ and v = σ(e) then v = σ(e′).

Proof. Congruence of substitution with respect to semantic equality e = e′.

Lemma 10 (Pattern Completeness of fg). Let g : tg → t and f : tf , tg → t′,
and assume that fusion successfully computed a definition of fg. We prove pattern
completeness of fg.

Proof. in the light of the remark below Def. 11 it suffices that each arbitrary
v ∈ V

t
f and w ∈ Vtg is covered by some case in set ∆ returned by Alg. 1.

By pattern completeness of g, there is a case j of g with w ∈ Jpgj if φg
j K, and

by Def. 9 there is a substitution τg over free(pgj ) with

τg(pgj ) = w and τg(φg
j ) holds (12)

If case j of g can be processed by line 4, we have Jx, pgj if φg
j K = V

t
f ×Jpgj if φg

j K.
Otherwise, by pattern completeness of f , there is a case i of f that matches the
result egj of g instantiated with τg, i.e., v, τg(egj ) ∈ Jpfi , q

f if φiK and by Def. 9
there is a substitution τf over free(pfj , q

f ) with

τf (pfi , q
f
i ) = v, τg(egj ) and τf (φf

i ) holds (13)
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Note, τf and τg are over disjoint variables by the condition in line 8 of Alg. 1.
Therefore, we can freely switch between τ = (τf ∪τg) and the more specific sub-
stitutions for expressions over variables of either f or g exclusively. In particular
both (12) and (13) hold for τ , too, and we have τ(qfi ) = τ(egj ).

At this point we have to justify that we actually satisfy the test in line 9, but
it is the only possibility: Having a unifier τ contradicts the test for refutation
in line 12 and having fused fg successfully in the first place rules out line 16.
Therefore, there exists the consituents of line 9, in particular e′ with e′ = egj (by
soundness of rewriting) and the most general unifier σ. Def. 3 splits τ = τ ′ ◦ σ
for some τ ′, which can be partitioned into the respective sets of variables again,
so that τf = τ ′f ◦ σ and so that τg = τ ′g ◦ σ.

It remains to be shown that v, w ∈ Jp if φK for p and φ constructed by
line 10. The substitution that witnesses Def. 9 is given as τ ′:

τ ′(p) = τ ′(σ(pfi , p
g
j ))

= τ ′(σ(pfi ), τ
′(σ(pgj ))

= τ ′f (σ(p
f
i ), τ

′
g(σ(p

g
j )) = v, w

The reasoning for the guard is analogous.

Lemma 11. Fusion lemma fg(x, y) = f(x, g(y)) holds.

Proof. By induction over ≺fg (cf. Lemma 6 via Lemma 7) and by taking apart
the definitional cases of fg . Note that we may assume the respective guard of fg .
By equational reasoning and assuming φg

j , for line 4 we have

fg(x, pgj )
def. fg
= e′

Γfg valid
= f(x, egj )

def. g
= f(x, g(pgj ))

For line 9, assuming σ(φf
i ∧ φg

j ) we have

fg(σ(pfi , p
g
j ))

def. fg
= e′

Γfg valid
= σ(efi )

def. f
= f(σ(pfi ), σ(q

f
i ))

def. 3
= f(σ(pfi ), e

′)

Γ valid
= f(σ(pfi ), e

g
j )

def. g
= f(σ(pfi ), g(σ(p

g
j )))

Steps justified by validity of Γ rely on rewriting to produce valid equations
because Γ contains definitions and valid lemmas only. Γfg is valid, because its
additional rule is just the inductive hypothesis. The step marked def. 3 holds
because unification produces syntactically identical expressions. Steps by the
respective definitions of f and g specialize the respective pattern variables, and
of course one has to ensure that the respective guard follows from that of fg .

B.2 Properties of RemoveAcc (Alg. 2 in Sect. 5)

Lemma 12 (Termination). f ′ terminates by the well-founded order ≺f ′ de-
fined as the least fixpoint of the set of implications over all i, j, where i indexes
defining cases and j indexes recursive calls of that case

∀ x.
(
∀ u. e, aji (u) ≺f ′ pi, u

)
=⇒ e ≺f ′ pi
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Proof. where x = free(pi). Since ≺f ′ is a least fixpoint, it is well-founded. It
remains to show that it covers all recursive calls in f ′, which is apparent from
the construction.

Lemma 13 (Pattern Completeness and Disjointness). Because the accu-
mulator u : tu is always matched as a variable and because it cannot occur in
guards φi we have Jpi, u if φiK = Jpi if φiK × Vtu from Lemmas 2 and 4. ⊓⊔

Lemma 14. Lemma f(x, u) = e?(f ′(x), x′, u) holds.

Proof. By f -induction over ≺f (cf: Lemma 6). The base case follows from the
condition in line 7. Instantiating the condition in line 13 with y = f(y1), . . . , f(yk)
proves the correspondence in the recursive case by the inductive hypothesis.

C Benchmarks

Table 1. Statistics on benchmark theories used in the comparison. Here |F | is the
number of functions. The number of candidates is Σf(x,g(y))|S2

3(x, y, tf )|, where tf
is the respective result type of f , i.e., potential right-hand sides to equations (7) of
depth d = 3 and max o = 2 occurrences of each variable. true: proved by Z3 from
axioms/prior lemmas, |Λ|: lemmas proved by induction+Z3 (i.e., including background
lemmas), ?: candidates with unknown status. Time is shown in hours:minutes:seconds.
For TheSy, we report the time of the last lemma found. For those benchmarks on
which the tool did not terminate, we give a rough indication when it was cancelled.
Note, except for nat, TheSy stopped reporting lemmas long before. †: Interrupted
during the second round of lemma checking when the backend solver got stuck without
honoring the timeout per query. In comparison, LemmaCalc takes 14s on list

and 1s–5s on all other benchmarks.

baseline enumerator statistics TheSy

benchmark |F | candidates true |Λ| ? time last killed

nat 8 1 131 799 501 32 1759 6:50:00 26:38:14 >26h
list 18 319 019 408 32 522 1:48:22 10:55:14 >21h
tree 11 123 178 130 20 38 11:25 16:47

append 5 15 058 133 22 5 02:03 04:32
filter 6 398 2 5 16 02:11 00:02
length 5 7 066 558 12 1 01:59 00:00
map 8 34 726 103 13 35 07:18 37:33 >11h
remove 7 32 302 117 14 13 22:11 13:01 >11h
reverse 4 127 926 427 22 1 03:29 00:02
rotate 6 12 784 124 20 43 08:50 6:54:22 >11h
runlength 7 68 311 182 23 847 †1:12:12 00:40 >11h

The additional functions present in the respective benchmarks are listed below:
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– append: add, snoc, ++, length, count
– filter: not, length, filter, all, ex, countif
– length: length, length◦, qlength(tail-recursive)
– map: leq, lt, length, map, take, drop
– remove: not, add, sub, length, contains, remove, count
– reverse: reverse, reverse◦, qreverse(tail-recursive)
– rotate: leq, add, append, length, reverse, rotate
– runlength: add, mul, ++, sum, sumruns, decode, is_runs

Function not is the logical negation. Functions/predicates add, sub, mul, leq, lt
are structurally recursive definitions over natural numbers for +, −, ∗, ≤, and <.
Function filter keeps elements that satisfy a given predicate, countif counts
them, and all/ex test if all/some element satisfies a given predicate. Function
rotate reverses a prefix of a given list. Benchmark runlength implements the
decoder for a sequence of runs, given as a pair of lists that record elements resp.
the number of their occurrence in a run.6 A critical lemma connects sum over the
decoded sequence to sumruns that works on the coded one.

6 https://en.wikipedia.org/wiki/Run-length_encoding
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