AFL-TC: Transforming Fuzzer Test Inputs for
Test-Comp (Competition Contribution)

Thomas Lemberger™ and Henrik Wachowitz*

LMU Munich, Munich, Germany

Abstract. AFL-TC is a tool chain that integrates AFL++ into the environ-
ment of Test-Comp. Coverage-guided greybox fuzzers like AFL++ produce
raw binary data that is given to programs as input on stdin, without any
knowledge of how this data is interpreted. In contrast to that, Test-Comp
requires structured XML descriptions of test cases that list a sequence of
individual input values, which are read whenever the program calls an
input function. Previous adaptations of fuzzers used tool-specific modifica-
tions for Test-Comp. Now, AFL-TC demonstrates a flexible solution that
decouples the test generation from the Test-Comp format: AFL-TC first
runs AFL++ (or any other tester that produces binary input for stdin),
then replays each input with a test harness that (a) records how the test
input is interpreted by the program and (b) outputs the recording as cor-
responding XML elements. To provide test cases early, AFL-TC employs
a monitor that triggers a transformation whenever new test files are dis-
covered. AFL-TC participated in both Test-Comp categories Cover-Error
and Cover-Branches. It placed 6" overall, 4®" among active participants,
and best in the sub-category C.coverage-branches.Arrays.

1 Test-Generation Approach

AFL++ [1] is a prominent coverage-guided greybox fuzzer for C. So far, two vari-
ants of AFL++ participated in Test-Comp: FairFuzz [2, 3] in 2019 and cerruzz [4]
in 2024. However, the original AFL++ remained to be evaluated in Test-Comp. We
change this with AFL-to-Test-Case (AFL-TC), a tool chain that combines AFLt+
with the tool FUZz-TO-TC [5]. FUZZ-TO-TC transforms binary test inputs—as pro-
duced by AFL++ and other fuzzers—into structured Test-Comp test cases.

Each test case produced by AFL++ is a file with raw binary content that is
provided to the program under test via standard input. How the program reads
this binary content into concrete input values is not visible from the outside.
As first example, given the binary input in hex notation in Fig. 1, a program
could read the first four bytes as an integer n and then read the next n bytes
as a sequence of char values. This interpretation of input values is not evident
from the binary content itself. As second example, consider the program in Fig. 2.
Through the special Test-Comp input method __VERIFIER_nondet_int(), the

* Jury member


https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-4768-4054

int main() {

int x = __VERIFIER_nondet_int();

if (x '=0) {
reach_error();

<?xml version="1.0" [...] 7>
<!DOCTYPE testcase [...]>
<testcase>

<input type="int">-1</input>

</testcase>

Fig.2: C program with
reachable error

Fig. 3: Test-Comp test case
produced by FUZZ-TO-TC by
executing Fig. 2 with Fig. 1

Fig. 1: Binary input
generated by AFL++,
in hex notation

program receives a signed 32-bit integer and stores it in variable x. If x # 0, it
calls the error function reach_error(). When AFL++ runs on this program, it
does generate the error-triggering binary input in Fig. 1 (shown in hex notation).
But the program only reads the first four bytes ff ff ff ff and interprets them as
the value —1. The remaining bytes of the generated input are superfluous.

In contrast to the raw binary format produced by AFL++, test cases in Test-
Comp are represented by an XML file that describes the sequence of concrete
input values in the order they are supposed to be read by the program. Whenever
the program execution calls an input method, the method returns precisely the
next value from the sequence.

To receive structured XML test cases from AFL++, AFL-TC executes a tool
chain that consists of three steps: (1) Run AFL++ on the program under test to
generate inputs in the default binary format of AFL++; (2) watch for new tests in
the relevant output directories of AFL++; (3) whenever a new test is discovered,
transform it to the Test-Comp format. Figure 3 shows the Test-Comp test case
that this tool chain produces for Fig. 2 (by transforming Fig. 1).

To run AFL++ on Test-Comp benchmark tasks, AFL-TC compiles each pro-
gram under test against a test harness that defines the Test-Comp-specific input
methods. Each method (a) reads the number of bytes that match its expected
return type from standard input, (b) casts the read bytes to the expected return
type, and (c) returns that value. For the test transformation this harness is
extended to output the expected XML element for a value before returning it.
This dual-mode behavior is controlled by a compile-time macro. The original test
harness without XML output originates from FairFuzz [3].

For the category Cover-Error, AFL-TC monitors only the crash directory of
AFL++, and only keeps tests whose execution actually call the error function.
For the category Cover-Branches, AFL-TC monitors both the crash and queue
directories and keeps all generated tests.

2 Software Architecture

Figure 4 shows the workflow of AFL-TC. First, AFL-TC passes the program P
and the test harness H to the AFL++ compiler afl-clang-1to (and, as fallback,
afl-gcc-fast). This creates an AFL-instrumented binary. Next, AFL-TC starts
an AFL++ run on the AFL-instrumented executable to generate binary test files.



Binary Test Inputs

Compiler
(enables harness
XML output)

Test Harness

=

Fig. 4: Workflow of AFL-TC

AFL#++ writes newly created tests to an output directory queue/. Tests that trigger
a program crash are then moved to a separate directory crash/. While AFL++
runs, AFL-TC enters a loop to monitor these output directories. For test goal
coverage-error (Test-Comp category Cover-Error), it watches only the directory
crash/. For test goal coverage-branches (Test-Comp category Cover-Branches),
it watches both directories. Whenever the monitor discovers a new test file it
passes the currently existing tests to FUZZ-TO-TC for transformation.

FUZZ-TO-TC is a standalone Go tool. It receives the coverage goal, a directory
with test cases to transform, the program under test as source code, the machine
model to compile the program for, and, for metadata generation, the name of the
original test generator (here: AFL++). FUZZ-TO-TC first compiles the program
against our test harness with enabled XML output and then runs the resulting
executable once for each binary test case, using that test case as program input.
For each execution, FUZZ-TO-TC captures the produced XML output and saves
it as a Test-Comp-conforming test case. For coverage-error tasks, FUZZ-TO-TC
only saves test cases that actually reach the error function during execution.
FUZZ-TO-TC also creates a necessary metadata file for the test suite. To avoid
duplicate tests when FUZZ-TO-TC is run multiple times, it saves each test case
under the name of the SHA1 hash of its contents.

3 Strengths and Weaknesses

Strengths. AFL-TC is a tool chain that adapts AFL++ for Test-Comp, but the
framework behind AFL-TC can be used with other binary-format fuzzers. The test-
generation harness and FUZZ-TO-TC are tool-agnostic. AFL++ itself uses coverage-
guided greybox fuzzing, which reaches broad code coverage fast [1] and has found
many bugs in real-world software [6]. In Test-Comp 2026, AFL-TC reaches the 6
place overall and 4" among active participants [7]. It outperforms crTruzz [4], a
derivative of AFL++, justifying the participation of the original AFL++ to improve
the comparability of participants’ performance. AFL-TC reached the highest
score among participants in sub-category C.coverage-branches.Arrays.

Weaknesses. Greybox fuzzing struggles with complex input constraints that
require specific byte sequences. Tasks where reaching the target requires navigating



a complex series of branches (e.g., tasks from XCSP) are challenging for AFL-TC.
Unlike symbolic-execution tools, AFL-TC does not reason about program paths
on a semantic level, limiting its effectiveness on programs that require precise
input sequences. We use the CmpLog instrumentation [8] to mitigate this issue.
This instrumentation enables the tracing of comparison operations and better
steering of mutators towards branches that are not covered yet [9].

AFL++ is not built for low CPU time usage. It runs as many threads and
iterations as possible, consuming significant CPU resources. In the Test-Comp
scenario, where CPU time per task is strictly limited, this leads to frequent
timeouts. It also restricts the strategies we can use for test-case generation. For
example, it is too resource-intensive in Test-Comp to start with deterministic
test-input mutations, the default in AFL++. Instead, we directly rely on random
mutations to achieve a broad exploration of the program fast.

4 Tool Setup and Configuration

AFL-TC is available open source [10]. The version used in Test-Comp is archived
at Zenodo [11]. Installation is possible via FM-WECK [12] or manual setup. When
fuzzing 32-bit programs on a 64-bit system, the gcc-multilib package is required.
In manual setup, the tool requires an installation of AFL++. Our Test-Comp
archive contains pre-compiled binaries of AFL++ for x64 Linux systems. To run
the tools with newer versions of AFL++ or on other architectures, we recommend
the official Docker container [13] that is provided by the AFL++ team.

Installation. To install AFL-TC via FM-WECK into directory afltc/, run:
fm-weck install afltc:testcomp26 -d afltc

Use. AFL-TC takes as input a C program (<program>), the machine model
(<arch>) to compile the program under test for, and a coverage goal (<spec>).
The command-line to run AFL-TC is:

afl-tc <program> <arch> <spec>

This produces a Test-Comp-conforming test suite in directory output. Supported
machine models are 32bit and 64bit.

Configuration. The concrete AFL++ compilation and fuzzing can be customized
by editing the commands afl-clang-1lto, afl-gcc-fast, and afl-fuzz in the
shell script bin/afl-tc. By default, the fuzzing runs with fixed seed 42 (-s 42)
for reproducibility; uses the CmpLog instrumentation [8] (AFL_LLVM_CMPLOG=1)
to better handle comparison operands; and lets AFL++ decide on a time limit per
run automatically (-t1000+).

5 Software Project and Contributors

The underlying fuzzer AFL++ is maintained by Andrea Fioraldi, Dominik Maier,
Heiko Eiftfeldt, and Marcel Heuse. AFL-TC and FUZZ-TO-TC are maintained by
Thomas Lemberger and Henrik Wachowitz at LMU Munich.



Data-Availability Statement. AFL-TC is available open source under the
Apache-2.0 license at gitlab.com/sosy-lab /software/test-to-witness. The version
of AFL-TC that was used in Test-Comp 2026 is archived at https://doi.org/
10.5281/zenodo.18060896. All results and artifacts from Test-Comp 2026 are
available in the competition report [7]. AFL++ is available open source under the
Apache-2.0 license at github.com/AFLplusplus/AFLplusplus.

Funding. This work is supported by the Deutsche Forschungsgemeinschaft (DFG)
~ ConVeY (378803395) and IdeFix (496588242).

References

10.

11.

12.

13.

. Fioraldi, A., Maier, D., Eifeldt, H., Heuse, M.: AFL+-+: Combining incremental

steps of fuzzing research. In: Proc. WOOT. USENIX Association (2020)

Lemieux, C., Sen, K.: FairFuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In: Proc. ASE. pp. 475-485. ACM (2018). https://doi.org/
10.1145/3238147.3238176

. Lemieux, C., Sen, K.: FAIRFuzz-TC: A fuzzer targeting rare branches (competition

contribution). Int. J. Softw. Tools Technol. Transf. 23(6), 863-866 (December 2021).
https://doi.org/10.1007/s10009-020-00569-w

Krishnan, S., George, S.S., Medicherla, R.K., Divakaran, S.: Gitlab repository of
cetfuzz. https://gitlab.com/Sarathkrishnan/cetfuzz, accessed: 2026-01-22
Beyer, D., Lemberger, T., Wachowitz, H.: Testing in formal verification via witness
generation (empirical evaluation). In: Proc. FASE. LNCS, Springer (2026)
Zalewski, M.: American Fuzzy Lop. https://1lcamtuf.coredump.cx/afl/, accessed:
2026-01-30

Beyer, D.: Evaluating tools for automatic software testing: Test-Comp 2026. In:
Proc. FASE. LNCS 16504, Springer (2026)

Repository, A.G.: CmpLog instrumentation. https://github.com/AFLplusplus/
AFLplusplus/blob/68b492b2c7725816068718ef9437b72b40e67519/instrumentation/
README . cmplog.md, accessed: 2026-01-30

Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: Redqueen: Fuzzing
with input-to-state correspondence. In: Symposium on Network and Distributed
System Security (NDSS) (2019). https://doi.org/10.14722/ndss.2019.23371
Lemberger, T., Wachowitz, H.: AFL-TC: Test-to-witness translation for afl+-.
https://gitlab.com/sosy-lab/software/test-to-witness, accessed: 2026-01-22
Lemberger, T., Wachowitz, H.: AFL-TC competition participation Test-Comp 2026
(archive). Zenodo (2025). https://doi.org/10.5281/zenodo. 18060896

Beyer, D., Wachowitz, H.: FM-WEcK: Containerized execution of formal-methods
tools. In: Proc. FM. pp. 39-47. LNCS 14934, Springer (2024). https://doi.org/10.
1007/978-3-031-71177-0_3

Heuse, M., Eifsfeldt, H., Fioraldi, A., Maier, D., Zalewski, M.: AFL++ docker image.
https://hub.docker.com/r/aflplusplus/aflplusplus, accessed: 2026-01-30


https://gitlab.com/sosy-lab/software/test-to-witness
https://doi.org/10.5281/zenodo.18060896
https://doi.org/10.5281/zenodo.18060896
https://github.com/AFLplusplus/AFLplusplus
https://gepris.dfg.de/gepris/projekt/378803395
https://gepris.dfg.de/gepris/projekt/496588242
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1007/s10009-020-00569-w
https://doi.org/10.1007/s10009-020-00569-w
https://gitlab.com/Sarathkrishnan/cetfuzz
https://lcamtuf.coredump.cx/afl/
https://github.com/AFLplusplus/AFLplusplus/blob/68b492b2c7725816068718ef9437b72b40e67519/instrumentation/README.cmplog.md
https://github.com/AFLplusplus/AFLplusplus/blob/68b492b2c7725816068718ef9437b72b40e67519/instrumentation/README.cmplog.md
https://github.com/AFLplusplus/AFLplusplus/blob/68b492b2c7725816068718ef9437b72b40e67519/instrumentation/README.cmplog.md
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.14722/ndss.2019.23371
https://gitlab.com/sosy-lab/software/test-to-witness
https://doi.org/10.5281/zenodo.18060896
https://doi.org/10.5281/zenodo.18060896
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-71177-0_3
https://hub.docker.com/r/aflplusplus/aflplusplus

	AFL-TC: Transforming Fuzzer Test Inputs for Test-Comp (Competition Contribution)

