Testing in Formal Verification via Witness
Generation (Empirical Evaluation)

Dirk Beyer™, Thomas Lemberger™ , and Henrik Wachowitz

LMU Munich, Munich, Germany

Abstract. Despite potential synergies, the communities surrounding
formal software verifiers and automatic test generators have developed
different formats to describe a path to an error. Test generators export
a test case whose execution makes the error observable, while verifiers
produce a violation witness, an abstract description of the error path.
Previous work transformed violation witnesses into test cases and evaluated
their effectiveness, and other work found that test generators are more
effective in bug finding than formal verifiers. While there are hybrid
approaches to formal verification that utilize testing, there is no empirical
evaluation of the usefulness of the off-the-shelf use of test generators in
formal verification. We change that by transforming test cases to violation
witnesses. This allows the use of test generators for finding counterexamples
in verification scenarios like the Competition on Software Verification (SV-
COMP), both directly and as parts of bigger verification systems. In a
large empirical evaluation we examine the potential improvements this
use of test generators can add to formal verifiers.

1 Introduction

Automated formal software verification and test generation are two complementary
approaches to ensure software quality. Formal verification aims to either find
program errors or prove their absence, while test generation focuses on finding
error-triggering inputs. Despite potential synergies, the communities surrounding
verifiers and test generators have developed different formats to describe a path to
a found error. Test generators export a test case whose execution makes the error
observable, while verifiers produce a wviolation witness, an abstract description
of the error path. Previous work [1, 2] turned violation witnesses into test cases,
and many other works [3,4,5,6,7,8,9,10,11] showed that the adaption of formal
techniques can improve the effectiveness of test generation. By now, participants
of Test-Comp use formal methods extensively [12]. But the application of test
generation may be valuable for formal verification, as well: A previous study [12]
on SV-COMP [13] and Test-Comp [14] indicates that current test generators are
more effective in bug finding than formal verifiers. Still only two [11, 15] SV-COMP
participants use dynamic approaches for automated software verification.

This paper closes the gap: We evaluate the off-the-shelf use of test generators in
formal verification on the largest available benchmark set for software verification,

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-4768-4054

2 D. Beyer, T. Lemberger, and H. Wachowitz

False
k
P
v Vlolatlon
Test-to-Witness Witness
ﬁ/ Test Suite Unkown
®

Specification

Program

Test Generator

Fig. 1: Integrating test generators in the ecosystem of formal software verification

SV-Benchmarks [16], in the well-established ecosystem of SV-COMP [17]. To make
this possible, test generators need to speak the same language as verifiers, i.e.,
provide violation witnesses instead of test cases. Our approach, Test-to-Witness,
performs this transformation for test generators. Figure 1 shows the overall idea:
We couple an off-the-shelf tester with Test-to-Witness to create, from the generated
test suite, a violation witness; as long as the test suite contains at least one test
case that triggers the error. This tool-chain can then be used in the ecosystem of
formal software verification—we use it to evaluate potential gains.

We base Test-to-Witness on the uniform test-suite format of Test-Comp [18]
to support a wide range of test generators. Unfortunately, no standalone fuzzer
participated in the latest editions of Test-Comp [14, 18,19, 20, 21, 22]. To include
fuzzers in our evaluation, we introduce AFL-TO-TEST-CASE (AFL-TC), which
transforms the tests produced by AFL-ruzz [23,24] into test cases in the Test-
Comp format. From there we can apply Test-to-Witness. Our work answers the
following research questions:

RQ 1 Can test cases be reliably transformed into violation witnesses?
FEvaluation design: We use Test-to-Witness to generate violation witnesses
from the existing test suites created in Test-Comp 2025.We check that the
created witnesses can also be understood and confirmed by witness validators
that participate in SV-COMP.

RQ 2 Does the standalone use of test generators yield competitive
results in the falsification category of SV-COMP?

FEvaluation design: The violation witnesses created in RQ 1 represent the
results in error finding of Test-Comp 2025 participants in the SV-COMP
setting. We directly compare this to the results of SV-COMP 2025.

RQ 3 What is the impact on overall efficiency if we combine test gen-
erators with formal verifiers?

Evaluation design: We compare the consumption of CPU time per verifica-
tion task between the parallel portfolios and the corresponding standalone
formal verifiers.

RQ 4 Does it improve the overall effectiveness if we combine test
generators with formal verifiers?

Evaluation design: We create pairwise parallel-portfolio combinations of six test
generators and six formal verifiers, and compare the number of solved tasks
between the parallel portfolios and the standalone formal verifiers.

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 3

This extensive evaluation shows that the addition of test generators to formal
verifiers can offer a significant increase in their bug-finding capabilities.

Related Work. Our work belongs into the ecosystem of automatic tools for
verifying and testing software programs. A list of actively participating and well-
maintained tools is available in the competition reports for SV-COMP [17] and
Test-Comp [18]. Information and literature about most of the openly available
verifiers and testers that participate in the competitions can be found online at
https://fm-tools.sosy-1lab.org/.

There are several surveys that describe the technology of tools for software test-
ing (25, 26,27, 28,29, 30, 31] and software verification [32, 33, 34, 35]. Modern soft-
ware testers and verifiers usually combine different techniques [36, 37, 38].

Another line of work is to use verification witnesses and test suites as exchange
between different tools. For example, WiTNESS2TEST takes as input a program and
a violation witness and produces a test case that leads the program execution to
the specification violation. The approach that we propose in this paper works in
the opposite direction: It uses a program and a test case, runs the (instrumented)
program and produces a witness that can be used for further analysis, such as
visualization. There are several works concerned with explaining the results of
software analysis [39,40,41,42,43, 44, 45].

2 Background

Program Representation. For the sake of presentation' we consider imperative,
sequential programs over integers. A program P = (L,/y, E) consists of its
program locations L, the initial program location ¢y € L, and a set of program
edges E C L x Ops x L. Each program edge (¢,0p,¢') € F represents a control-
flow transition from program location £ to ¢’ by evaluating operation op € Ops.
We consider three types of program operations: expression assignments, input
assignments, and assumptions. An expression assignment = < expr assigns the
value of expression expr to program variable x. Expression expr is an arithmetic
expression over integers. An input assignment x < o receives an integer value
from outside the program (e.g. sensor inputs, user inputs) and assigns it to
program variable z. An assumption [p] evaluates the Boolean expression p over
program variables. Control-flow continues only if p evaluates to true. A program
state ¢ : X +— Z is a mapping from variables to their assigned integer value.

An execution [P] = ({o, co) 2% (£1,¢1) ... ==
a sequence where each step (¢;_1,¢;—1) ity (¢;, ¢;) corresponds to a program
edge (¢;—1,0pi—1,¢;) € E, and the program state ¢; is the result of applying
operation op;_1 to program state c;_1.

(m, cm) of program P is

Test Case. A test case t = (vp,...,v,—1) is a vector of input values v;. The
length n of a test case t = (vg,...,v,—1) is its number of input values. During
program execution, whenever an input assignment x < o is evaluated, variable x
is assigned the next input value from the test case.

! Our implementation works on C programs.

https://fm-tools.sosy-lab.org/

4 D. Beyer, T. Lemberger, and H. Wachowitz

- segment: - segment:
- waypoint: - waypoint:

<testcase> action: "follow” action: "follow”
<input>1</input> location: location:
<input>0</input> file_name: "prog.c" file_name: "prog.c”
<input>0</input> line: 5 line: 14
</testcase> column: 35 column: 5

. . type: "function_return” type: "target”
Fig. 2: Test case in XML constraint:
format that describes format: "acsl_expression”
the test vector <1a070> value: "\\result == 0"

Fig. 3: Segments of a violation witness

Test-Comp requires participants to produce test cases in XML format. Each
test case is a separate XML file with a sequence of <input> elements. Figure 2
shows the test case in XML format for test vector (1,0,0). A Test-Comp test
suite is a collection of test cases together with a metadata file. A test suite is
successful if it contains at least one test case that induces a program execution
that reaches a call to reach_error().

Competitions. Competitions are a scientific method for comparative evaluation,
in which participants submit their tools together with instructions how to execute
them, and an organizer executes all experiments under the same conditions. The
competition on software verification SV-COMP annually evaluates verifiers, which
take as input a program and a safety or liveness specification and produce as
output a result true (together with a correctness witness), false (together with a
violation witness), or unknown (if the verifier cannot determine the result). The
competition on software testing Test-Comp annually evaluates testers, which take
as input a program and a coverage specification and produce as output a test
suite. SV-COMP validates the quality of a reported verification result through
witness validation: A verifier only receives points for a correct verification result
if it also produced a witness that can be validated.

Both SV-COMP and Test-Comp use the SV-Benchmarks collection of verifica-
tion and test tasks, which is the largest and most diverse benchmark set of testing
and verification tasks for the languages C and Java. The benchmark set contains
verification tasks for properties such as reachability, memory safety, termination,
no-overflows, and no-data-races, which are used by SV-COMP. Test-Comp uses
tasks with coverage specification cover-branches and cover-error. Tasks with
coverage specification cover-error must fulfill the following conditions: (a) the
program contains at least one call to an input method __VERIFIER_nondet_X,
(b) the program always terminates, (c) the program compiles successfully, and
(d) the program has a reachability property with expected verdict false (i.e., it
can reach a call to function reach_error). In consequence, the tasks that are used
in Test-Comp with coverage specification cover-error are a subset of the tasks
that are used in SV-COMP for reachability verification.

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 5

Violation Witnesses 2.0. A decade ago, violation witnesses [46] were introduced
in the area of software verification and adopted by SV-COMP. Later, witnesses
for correctness [47], non-termination, and other properties were introduced. While
the first generation of witnesses were based on an XML format, the more recent
witnesses in version 2.0 [48] are based on the YAML format. In this paper we
use violation witnesses in version 2.0. Their aim is to support validation of the
verification verdict false; that is, there is a path through the program that
violates a safety specification.

A violation witness describes a set of program executions, of which at least
one must reach a violation of the specification. The set of executions is described
as a sequence of segments (cf. Fig. 3). Each segment consists of at least one way-
point follow and multiple optional waypoints avoid. Each waypoint is anchored to
a program location (line number and column), and can hold assumptions over pro-
gram variables, describe branching decisions or function-return values, or signal a
function entry. The last segment of a violation witness contains a waypoint target,
which indicates that the violation of the specification is reached. Figure 3 shows
two example segments: The first segment contains a waypoint follow of type
function_return that matches some function call at line 15, column 33 of file
prog.c. This function call’s constraint \\result == @ expresses that the call’s
return value must be 0 for the path to be valid. The second segment contains a
waypoint follow of type target. This claims that the path should reach line 8,
column 5 of file prog.c, where a specification violation occurs.

A validator for violation witnesses can re-play the described paths to show that
one of the paths is feasible and indeed violates the specification. For a described
path to be feasible, there must be a program execution that passes all waypoints,
satisfies all assumptions along the way, and reaches the target. There is broad
support for witness format version 2.0, but only two validators in SV-COMP 2025
support function-return assumptions: CPAcHECKER and WITCH.

3 Test-to-Witness

Consider the example program in Fig. 4, and two test cases that both trigger the
error at fs: tc; = (0,0) and tce = (1,0, 0). Program execution with test case tcy
introduces the first input value 0 at £g and the second input value 0 at £15, while
program execution with test case tco introduces the first input value 1 at £g, but
then assigns the second input value at ¢7 before the third input value 0 is assigned
at ¢15. This shows the key challenge in converting a test case to a violation witness:
the test case lists the sequence of input values to give to a program execution,
but it has no information on where in the program an input value is used. This
information is strictly necessary to describe waypoints in witnesses. Because the
control flow of two program executions can lead to a different order of calls to
input methods, pattern matching on the program code is not sufficient. Instead,
it is necessary to consider the program semantics to reliably match which input
method consumes which input value. Input methods within loops (as induced
by £9) may also create test cases of dynamic length.

6 D. Beyer, T. Lemberger, and H. Wachowitz

1 extern int __VERIFIER_nondet_int(void);
2 extern char __VERIFIER_nondet_char(void);
3 void reach_error() {/* .. */};

4 int main() {

5 char a = __VERIFIER_nondet_char();

6 if (@) {

7 int b = __VERIFIER_nondet_int();

8 while (b) {

9 b = __VERIFIER_nondet_int();

10 }

11 }

12 int ¢ = __VERIFIER_nondet_int();

13 if (lc) {

14 reach_error();

15 }

16}

AN
Test Harness

Instrumentation

AN
I TS no, try next testcase

Test Suite

target
method
called?

Program N el Violation
bl Witness

Instrumented Program

Execution

Fig. 5: Workflow of Test-to-Witness

Test-to-Witness solves this issue through a projection of the program execution
trace: Given a program P and a test case t = (vg,...,v,—_1), Test-to-Witness
executes P with ¢ to obtain a finite execution trace [Py = (fo, co) —2 (£1,¢1) ...
for t. To receive a violation witness from this trace, Test-to-Witness projects [P]
onto input operations op; = w; < o and the valuation c;(w;):

vs = <(£i1vci1 (wh))v (£i2’0i2 (wiz))’ R (gilwcik (wlk))>

where {i1,14g,...,ir} = {j | op;_1 = w; <= o} and i1 < iy < ... < ix. Sequence vs
describes that at program location ¢;,, variable w;, is assigned the test input
value ¢;, (w;;) = t;,. Each tuple in vs is then translated to its corresponding seg-
ment in the violation witness, specifying the program location through source-code
line and column, and the input value to assume as constraint. A formalization of the
segments can be found in the SV-COMP witness format specification [49].

Our implementation of Test-to-Witness works on C programs. It realizes the
projection through a program instrumentation that, when executed with a test

0N oG A W N

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 7

extern int __VERIFIER_nondet_int();
extern char __VERIFIER_nondet_char();
void reach_error() {/* .. */};
int __VERIFIER_nondet_int_log(int line, int column) {
int val = __VERIFIER_nondet_int();
/* .. print violation-witness segment for line, column,
with assumption '\result = {val}' */
return val;
}
char __VERIFIER_nondet_char_log(int line, int column) {
char val = __VERIFIER_nondet_char();
/* .. print violation-witness segment for line, column,
with assumption '\result = {val}' %/
return val;
}
void reach_error_log(int line, int column) {
/* .. print violation-witness segment with target waypoint
for line, column %/
reach_error();

int main() {

char a = __VERIFIER_nondet_char_log(5, 35);
if (a) {
int b = __VERIFIER_nondet_int_log(7, 35);
while (b) {
b = __VERIFIER_nondet_int_log(9, 33);
}
}
int ¢ = __VERIFIER_nondet_int_log(12, 33);
if (lc)
{
reach_error_log(14, 5);
}

}

Fig. 6: Instrumented version of control-flow-example.c

case, directly writes a violation witness with the correct location information.
Figure 5 shows this workflow. Test-to-Witness first instruments the program P
and compiles it against a test harness. To represent input assignments, it relies on
the SV-COMP convention of using input methods __VERIFIER_nondet_X, where X
is the type of the returned value. It considers calls to method reach_error(void)
as specification violations. This property can be reduced to other reachability
properties, like failing assertions.

After compilation, Test-to-Witness executes the resulting binary with all test
cases of the test suite until one test case reaches the target method. If this happens,
the violation witness produced by this execution is returned.

Program Instrumentation. For each input method, Test-to-Witness defines a
new variant that (1) receives its call location in the program file as two parameters
line and column, (2) calls the original input method and stores the returned
value in a local variable val, (3) prints a fragment of the violation witness that
describes that the return value of the input method must be equal to val, and
(4) returns val to the caller. For each target method, Test-to-Witness defines
a variant that first prints the fragment of the violation witness and then calls
the original target method. Figure 6 shows these method definitions for Fig. 4 in
lines 4-34. Test-to-Witness then replaces all calls to input methods and target
methods with the new variants, passing the appropriate line and column numbers

8 D. Beyer, T. Lemberger, and H. Wachowitz

Violation
Witness

Test Generator Test-to-Witness

Program

@
Specification i .

Violation
Witness

Formal Verifier

Fig. 7: Architecture of our Parallel Portfolio

for each original call site. To match the specific waypoint of violation witnesses,
the column number is the position of the closing parenthesis of the original method
call for input methods, and the position of the first character of the method call
for target methods. Last, Test-to-Witness creates a test harness that defines the
original input methods so that they parse input values from standard input, and
compiles the instrumented program against this harness. Because the resulting
binary parses input values from standard input, the same binary can be used to
execute all available test cases.

Execution with Test Cases. Test-to-Witness executes the compiled binary with
each test case of the test suite until one execution reaches the target method. To not
be blocked by slow test executions, Test-to-Witness executes multiple test cases in
parallel. Each execution’s produced violation witness is captured to a separate file.
As soon as one execution reaches the target method, Test-to-Witness terminates
all other executions and returns the corresponding violation witness.

Testers as Falsifiers. Figure 1 shows how any off-the-shelf tester can be used with
Test-to-Witness to produce violation witnesses for formal verification. Similar to a
formal verifier, the tester receives the program P under analysis and a specification
©.2 Once started, the tester tries to find a test case that violates the specification.
Testers consider the given specification to various degrees: Some testers stop as
soon as a test case is found that matches the test-goal specification [50, 51], while
others generate test cases for internally implemented coverage criteria [52], or
fully randomly [23,53]. For the latter we can monitor the generated test cases
continuously and still stop the tool as soon as one covering test case is found.

Parallel Portfolio. Testers can only find specification violations, but not proof
the absence of violations. Because of this, the use of testers in formal verification
is mostly useful in combination with a formal verifier. For this we propose a

2 We do not show a possible translation of a verification specification to a test goal
specification, as this is not the focus of this paper. In our context this was merely
matching existing verification specifications to test goals.

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 9

parallel-portfolio approach (Fig. 7), where a tester runs concurrently to a formal
verifier. Whenever the tester produces a test case, Test-to-Witness tries to convert
the test case into a witness. If the conversion is successful, the portfolio terminates
and returns the witness generated by Test-to-Witness. If the conversion fails,
the portfolio continues. The two most common reasons for failure are: (1) the
tester was aborted before it could find a violating test case and (2) the test case
does not lead to a violation of the property; it is a false positive. We implement
the parallel portfolio in the cooperative verification framework CoVeriTeam [54].
CoVeriTeam provides unified interfaces for both testers and formal verifiers, and
allows to specify the specific tools to use through the command line. This enables
us to plug-and-play different combinations of testers and verifiers easily.

AFL-TC. To enable the use of AFL-ruzz with Test-to-Witness, we implement
AFL-TC, a tool chain that runs AFL-ruzz in parallel with a monitor process. It
continuously monitors the test cases generated by AFL-ruzz. Whenever a test case
is produced that triggers a program crash, the monitor invokes Test-to-Witness to
transform the test case to a violation witness. If this transformation is successful,
the monitor terminates AFL-ruzz and returns the violation witness.

4 Evaluation

We answer the following research questions with an experimental evaluation:

RQ 1 Transformation: Can test cases be reliably transformed into violation
witnesses?

RQ 2 Viability: Are the standalone use of Test-Comp test generators competi-
tive in the falsification category of SV-COMP?

RQ 3 Efficiency: Does the combination of Test-Comp test generators with
verifiers improve the overall efficiency?

RQ 4 Effectiveness: Does the combination of Test-Comp test generators with
verifiers improve the overall effectiveness?

Tool Versions. We use verification tasks from SV-Benchmarks [55] in the version
used for SV-COMP 2025 [17]. We use Test-to-Witness revision ¢9d2a32. For the
portfolio, we use CoVeriTeam [54] revision 0408chd. For reliable resource measure-
ment, we use BENCHEXEC [56] b07c314d. All experiments were executed on ma-
chines equipped with one Intel Xeon E3-1230 v5 (3.4 GHz, 8 processing units) and
33 GB of RAM, running Ubuntu 24.04 LTS 64 bit and GNU/Linux 6.8.0.

RQ 1: Can test cases be reliably transformed into violation witnesses?

We let Test-to-Witness transform test suites that were produced in Test-Comp 2025
into violation witnesses. We consider each test suite that was produced in the
cover-error category and that contains at least one test case where TESTCOV [57]
confirmed in Test-Comp that its execution calls the error function.

This selection consists of 10935 test suites that were produced by 18 testers.
We run Test-to-Witness on all test suites, with a timeout of 5min per test suite.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp25
https://gitlab.com/sosy-lab/software/test-to-witness/-/tree/c9d2a32
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/0408cbd
https://github.com/sosy-lab/benchexec/tree/b07c314d

10 D. Beyer, T. Lemberger, and H. Wachowitz

Table 1: Summary of test cases that were transformed to violation witnesses
Total Tasks Converted Avg. Time (s) Median Time (s)

10935 10897 0.77 0.16
100 3
g 105
=]
[
O 14
0.1+
0 2000 4000 6000 8000 10000

Transformed Test-Suites

Fig. 8: Quantile plot of transformation times for test cases to violation witnesses

Table 1 shows that 10897 (= 99.6 %) test suites were transformed successfully
within the given time limit. The quantile plot in Fig. 8 shows the distribution of
transformation times that Test-to-Witness requires to transform the test suites
into violation witnesses. The x-axis shows the number of test suites that can be
transformed within the CPU time that is given on the y-axis. For example, the
graph shows that 8069 test suites (= 74 %) are transformed by Test-to-Witness
with a run time of 0.2 or less, and 10490 test suites (=~ 96 %) are transformed
within 1s or less. This shows that the time required to transform a test suite into
a violation witness is usually so low that it is negligible.

Next we explore the impact that the size of a test suite has on the transforma-
tion time. Figure 9 shows the distribution of test-suite sizes on the left plot. The
x-axis shows the size of the test suite and the y-axis is the number of test suites
that have at least x amount of test cases. The median size of a test suite is 1, but
we also observe significant outliers.

The scatter plot on the right side of Fig. 9 shows the effect of test-suite size
on transformation time. The x-axis shows the size of a test suite and the y-axis
shows the CPU time that the transformation takes. We observe a trend that the
transformation of larger test suites consumes more CPU time. We expect this,
since Test-to-Witness executes test cases in parallel until one is found that reaches
the error location. We look at two example test suites whose transformation takes
long: The test suite created by TRACERX-WP for the task 1ist-2.yml takes 78s
to transform. The suite consists of 20774 test cases. Each individual test case
only takes a few milliseconds to execute, but the cumulative time for all test
cases quickly adds up, especially since Test-to-Witness runs as many test-cases in
parallel as there are CPU cores available.

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 11

p=0.00 n=10933
300

10000
100 5

8000

size)

i

V1 6000 oy §

0

§ oo
]

CPU time (s)

4000

| ek
] L
e, £
2000 4 : I 2 ’
0 0.1 | "

ol
T T - T T T r T - T T T
10° 10! 10% 103 10* 10° 10° 10! 102 10% 10* 10°
Suite size (log scale) Suite size (# testcases, log scale)

suites

Fig. 9: Distribution of test-suite sizes Fig. 10: Effect of test-suite size on trans-
formation time (in CPU time)

But also test suites with few test cases can take a long time to transform: The
test suite created by KLgEF for task btor2c-lazyMod.unsafe_buggy_ridecore.yml
consists of a single test case, but takes 110s to transform. The compilation of the
instrumented program dominates this transformation time. Executing the test
case itself takes less than 1s.

We evaluate the quality of the generated violation witnesses by running the
two SV-COMP validators on them that support function-return constraints:
CPAcueckER and WitcH. We run both validators with a timeout of 90s per
witness, which is the limit for violation-witness validation in SV-COMP.

Table 2 shows, for each test generator, the number of test suites created
by that test generator (# Suites), the number of witnesses that are successfully
transformed into violation witnesses (# Converted), the number of witnesses that
are confirmed by at least one validator (# Confirmed), and the percentage of con-
sidered test suites that are successfully transformed and confirmed (% Confirmed).
In total, 9739 (= 89 %) of the 10935 test suites are successfully transformed and
subsequently confirmed by a validator.

From these results we conclude that test cases can be reliably transformed
into violation witnesses. Almost all test suites can be transformed within 1s
of CPU time, and almost 90 % of the generated witnesses are confirmed by at
least one of the two validators. The extremely efficient transformation makes the
approach feasible for real-time integration into test-to-verification-workflows such
as the portfolio presented in Sect. 3.

RQ 2: Does the standalone use of Test-Comp test generators yield
competitive results in the falsification category of SV-COMP?

Since the benchmark set of Test-Comp is a subset of the benchmark set of SV-
COMP, we can compare the results of test generators in Test-Comp to the results of
verifiers in SV-COMP. We achieve this by comparing the validated test-generator
results from Test-Comp 2025 to the verifier results of SV-COMP 2025. We define
a validated test-generator result as a test suite that was successfully transformed
into violation witnesses and then confirmed by at least one validator—this is
the criterion that a tester as falsifier would need to fulfill to score points in SV-

12 D. Beyer, T. Lemberger, and H. Wachowitz

Table 2: Transformed and validated violation witnesses from test cases

Tester # Suites # Converted # Confirmed % Confirmed
cetfuzz 320 317 313 98
esbmc-incr 948 948 772 81
esbmc-kind 948 948 770 81
fdse 628 626 589 94
fizzer 612 608 589 96
fusebmc 979 978 826 84
fusebmc-ia 951 950 844 89
hybridtiger 428 423 421 98
klee 889 887 759 85
kleef 998 995 841 84
owic 230 227 227 99
prtest 295 290 240 81
rizzer 550 549 503 92
symbiotic 586 584 581 99
tracerx 420 419 391 93
tracerx-wp 402 400 360 90
utestgen 317 314 311 98
wasp-c 434 434 402 93
Total 10935 10897 9739 89

COMP. To enable a fair comparison, we add the CPU time that Test-to-Witness
takes to transform the test suites into violation witnesses to the time the test
generator initially needed to generate the test suite in Test-Comp 2025. We restrict
ourselves to the ReachSafety category of tasks, where we only consider tasks with
an expected verdict of false; since test generators cannot find proofs.

On the entire benchmark set of tasks with an expected verdict of false, test
generators are not competitive with verifiers. The best verifier solves 1943 tasks,
while the best test generator only solves 848 tasks. We discussed in Sect. 2 that
not all tasks with an expected verdict of false qualify for test generation. The
ReachSafety category of SV-COMP 2025 contains 2929 tasks with an expected
verdict of false. But out of those, Test-Comp 2025 restricts its benchmark set
to the 1074 tasks that qualify for test generation. We consider the results of
verifiers and test generators on this subset. Figure 11 shows the quantile plot of
correctly found alarms per tester and verifier. We highlight some verifiers and
test generators: CPAcHECKER and SyMmBIoTIC as the two best performing verifiers
in the Falsification category, and UAuTromizEr as the overall winner of SV-
COMP 2025; FuSEBMC and KLEEF as the two best performing test generators in
the cover-error category of Test-Comp 2025. The quantile plot shows that these
test generators outperform the verifiers. FUSEBMC, the winner of the cover-error
category, is able to find 832 alarms within the time limit of 900 s, while the winning
verifier of the Falsification and ReachSafety category, CPACHECKER, finds only
706 alarms within the time limit. To get a better understanding of the potential
improvements that are possible through tool combinations, we include the virtual

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 13

1000 7 el -3

100 5

=
S
L

CPU time (s)

0.14

2(’)0 460 6(’)0 8(’)0 10'74
Solved Tasks (Quantile)
SV-COMP Verifiers —— Test-Comp Testers kleef
CPAchecker ——— Fizzer ——— Virtual Best Verifier
Symbiotic FuseBMC —— Virtual Best Test Generator

UAutomizer

Fig. 11: Quantile plot of correctly found alarms per tester and verifier, limited to
the 1074 tasks that are suitable for test generation

best verifier and the virtual best test generator in Fig. 11. The virtual best verifier
picks from all verifiers the fastest solving time per task; the virtual best test
generator picks from all test generators the fastest time per task.

The results show that, if we level the playing field by restricting the benchmark
set to tasks that are suitable for test generators, test generators yield competitive
results in the falsification category of SV-COMP. When we create a virtual best
tester and a virtual best solver, we observe only a thin advantage of test generators
over verifiers.

RQ 3: Does the combination of test generators with verifiers improve
the overall efficiency? We study the impact that combining test generators

with formal verifiers has on the overall efficiency of verification. For this, we create
a set of portfolio solvers that consist of one test generator and one verifier each,
as described in Sect. 3.

We select a representative set of verifiers based on their performance in SV-
COMP 2025: We select CPAcHECKER as the best tool in the Falsification
and ReachSafety categories, SymBIoTic, and BuBaAK as the runner ups in the
Falsification category, as well as CPV, and EsBmc-kIND as the runner ups in
the ReachSafety category. Additionally we select UAuToMizER as it is the overall
winner of SV-COMP 2025. We select representative test generators based on their

14 D. Beyer, T. Lemberger, and H. Wachowitz

performance in Test-Comp 2025: We select FUSEBMC, KLEEF, and SYMBIOTIC as
the top three test generators of the cover-error category. We also select Fizzer
as the third place in the overall ranking of Test-Comp 2025. Finally, we select
PRTEST as a simple baseline tester that uses black-box random testing.

We run all combinations on the ReachSafety tasks contained in the SV-
Benchmarks repository [16]. We limit each portfolio to a CPU time limit of 900s,
a memory limit of 15 GB and 4 CPU cores. The scatter plots in Fig. 12 show the
CPU time consumption for tasks that both the combination of verifier and test
generator as well as the reference alone solved correctly. The figure is structured
in rows and columns, where each row represents a verifier and each column a test
generator. For space reasons, we omit the test generators SymsioTic and Fizzer
from the plots. The full plot is archived on Zenodo: 10.5281/zenodo.18312562.
Each subplot has the same structure: the x-axis shows the CPU time needed by
the reference verifier alone, while the y-axis shows the CPU time needed by the
portfolio combination of verifier and test generator. Points below the diagonal
line indicate that the portfolio combination was faster than the verifier alone,
while points above the diagonal line indicate that the verifier alone was faster.
The subplots also contain the number of considered tasks (N), and the P-Value
of a Wilcoxon signed-rank test (p) [58], testing the one-sided hypothesis that
the portfolio is slower than the reference. Orange dots indicate tasks that the
reference was not able to solve, but that the portfolio was able to solve. Green
dots indicate tasks that the portfolio was not able to solve, but that the reference
was able to solve. Both orange and green dots are ignored for the statistical test.
We only consider tasks that both variants solved correctly.

The addition of test generators does not improve the efficiency of verification,
overall. In all considered combinations, the p-value is 0, indicating that the
portfolios use significantly more CPU time than the verifiers alone. However, we
can see an overall trend that the increase in CPU time is moderate. There are few
outliers where the portfolio is significantly slower than the verifier alone. But we
can still see improvements in the efficiency on individual tasks: fuzzing-based test
generators such as AFL-TC can find violations quickly for some tasks, showing
potential, e.g., in the combination with UAuTtoMizer, CPACHECKER, and CPV.
The portfolios with PRTEsT also show potential: they have faster tasks along
the 10s line of the y-axis. This speeds up multiple tasks for every verifier, that
originally takes hundreds of seconds to solve (points far right on the x-axis).

In summary, the addition of test generators to verifiers does not improve the
overall efficiency. However, the increase in CPU time is moderate and does not
constitute a practical limitation: in real-world usage, a moderate overhead in CPU
time is acceptable when it leads to finding more bugs.

RQ 4: Does the combination of test generators with verifiers improve
the overall effectiveness?

To check whether the addition of test generators to verifiers can increase the
overall effectiveness, we analyze whether the combination can solve more tasks
than the verifier alone. We use the same portfolio combinations as in RQ 3.

https://doi.org/10.5281/zenodo.18312562

Testing in Formal Verification via Witness Generation (Empirical Evaluation)

Symbiotic CPV UAutomizer CPAchecker

Bubaak

ESBMC-Kind

bubaak-prtest symbiotic-prtest cpv-prtest uautomizer-prtest cpachecker-prtest

esbme-kind-prtest

PRTest

FuseBMC

AFL-TC

Kleef

15

9008 =5 60 n=doz0 p=0.00 n=8753 = p=0.00 n=8749 =000 n=8796
© 4
g) £l =
2 = x 8
1005 4 2 ¥ = = 4
% & sk 5 E
Bl = " =
105 4 £4 R EE
g & &
g &
5
1s T T T T T T T T J
1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s
Reference Reference Reference Reference
9008 =5 60 nmtors p=0.00 n=1469 p=0.00 n=4513 =000 n=4525
]
g Q o
8 * -1 8 i
1005 % EE = g
£ A% g B % T
g bz ok E & E B
El 3 wikoiinaiiki 3
10s 4 33 =9 =
E 3 8
3
1s T T T T T T T T
1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s
Reference Reference Reference Reference
9008 77 =550 n=o062 p=0.00 n=5607 p=0.00 n=5631 Tp=0.00 n=5743
1005 4 £ o 4 & w4
2 2 g
4 2 g o 3
2 ¥ 2
Q 2 2
105 24 S & R
|5 H
1s T T T T T T T T
1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s
Reference Reference Reference Reference
9005 7, = — - = — — e
p=0.00 n=4030 p=0.00 n=3072 #' p=0.00 n=3083 r$ p=0.00 n=4012 o
%
9 B %
E 2 E :
4 4 t 4 < 4
100s 2 = e~} 4
= E £
£ 5 2 2 3
2 s som B]
105 5 24 EE! o £ 4 o
] z 7
=
5
1s T T T T T T T T
1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s
Reference Reference Reference Reference
900 37— Go r=soss p=0.00 n=5037 »=0.00 n=5036 p=0.00 n=5065 =
Fo
o > x . {2&
g X Q ; w A&
100s 4 2 4 ¥ EE g4 R
2 i 2
Z ~ 3 5
x % 4 E k] %
f E o ok M = . g %
10s 4 21 EE| B i ¥ = 4
El ¥ < = 4
2 oo
1s T T T T T T T T
1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s
Reference Reference Reference Reference
900 325 66 n=osse p=0.00 n=9162 =000 n=0232 p=0.00 n=9213
E i~ o . -
x 2 E 2 "y E X
1005 5 il 24 = 4 =
o =t 9 £
X 9 g =
- x g 5 5 .
= & - & %
4 D 4 ! %
108 E _.E fipuse ¥ ;,_,; 3
] 8 8
8
1s T T T T T T T T
1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s 1s 10s 100s 900s
Reference Reference Reference Reference

Fig. 12: Scatter plot of different verifier-test-generator-combinations

16 D. Beyer, T. Lemberger, and H. Wachowitz

CPAchecker UAutomizer
900 A E
= =
~ 100 5 >
£ £
E=) E=)
=)]
a8 A~
O 10 O]
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Solved Tasks (Quantile) Solved Tasks (Quantile)
Bubaak
900 A E
= =
= 100 4 <
£ E
=] =]
5 5
10 4 E
2000 4000 6000 8000 0 2000 4000 6000 8000
Solved Tasks (Quantile) Solved Tasks (Quantile)
Symbiotic ESBMC-Kind
900 o E
© ©
- =100 § o 7
£ E
=] i)
=] o
=% o
© 104 ©
2000 4000 6000 8000 0 2000 4000 6000 8000

Solved Tasks (Quantile)

= reference fusebme

prtest —— kleef

Solved Tasks (Quantile)

symbiotic afltc

—— fizzer

Fig. 13: Quantile plot of different verifier-test-generator combinations (number of
solved tasks per configuration, out of 15310 total tasks)

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 17

Table 3: Summary of gains and losses of verifier-test-generator-combinations;
Uniquely solved (Unq) tasks are tasks that only the portfolio solved, not the
reference; Timeouts (TO) and memory outs (MO) are tasks that the reference
solved, but the portfolio did not due to timeout or memory out.

Verifier PRTEST Fizzer FuSEBMC AFL-TC SYMBIOTIC KLEEF
Ung TO MO Ung TO MO Unqg TO MO Unqg TO MO Unqg TO MO Ung TO MO

CPAcuecker 125 33 0 114 331 1 166 198 2 214 204 0 298 99 92 405 142 15
UAvromizer 222 21 12 153 149 40 702 172 18 457 122 23 679 27 75 893 84 48
CPV 360 6 0 372 643 0 746 460 1 631 458 0 770 56 244 774 321 3

SYMBIOTIC 82 1 3 92 132 0 233 64 2 222 54 0 33 23 57 410 21 5
BUBAAK 152 9 1 100 144 0 353 65 0 291 65 0 223 20 189 372 29 5
Essmo-kInp 93 8 0 69 248 0 48 197 4 133 140 0 140 41 144 95 148 2

Figure 13 shows the results of all portfolio combinations. For each portfolio
we also provide as reference a run of the verifier on its own, giving it the full
time limit and memory limit. We observe that verifiers that excel in proving the
absence of errors, such as UAuTtoMizer and CPV, benefit more from the addition
of test generators in the portfolio than verifiers that are already proficient in
bug-finding (according to SV-COMP results), like CPAcHECKER and EsBMC-KIND.
The portfolio combinations can, in some cases, end up solving less tasks than
the verifier alone, indicated by the plot line ending further to the left than the
reference line. But each verifier, when paired with an appropriate test generator,
can improve their effectiveness, even when staying within the same CPU-time
and memory limits given by SV-COMP.

We take a closer look at the gains and losses of the portfolio combinations in
Table 3. One observation is that even adding plain random testing (PRTEsT) yields
new uniquely solved tasks for all verifiers. The portfolios with more elaborate
test generators have more potential for uniquely solved tasks, but also incur
more losses due to timeouts and out-of-memory errors. These timeouts occur
because in the CPU time limit is shared between the two tools in the portfolio,
leaving less CPU time for each individual tool. In a practical setting, one could
counteract these timeouts by increasing the overall CPU time limit of the portfolio.
We also observe that most verifiers are not inhibited by out-of-memory errors
when combined with test generators. Only UAuromizer suffers from a significant
amount of out-of-memory errors when combined with test generators.

Another observation from Table 3 is that static-analysis based test generators
such as KrLeer and SymBioric also yield new uniquely solved tasks for most
verifiers—tools which are static analyzers themselves. As an example, both KLEEF
and CPAcHECKER implement a form of symbolic execution, yet their combination
is able to solve 405 more tasks than CPAcHECKER alone. Even the portfolio of
SyMBIOTIC in verifier configuration with SymBioTIC in test generator configuration
is able to solve new tasks when compared to just Symsioric (verifier) alone.

From the results we conclude that the addition of test generators to verifiers
can significantly improve the overall effectiveness. All considered verifiers are able
to solve more tasks when combined with an appropriate test generator. Most

18 D. Beyer, T. Lemberger, and H. Wachowitz

tasks that are not solved by the portfolio are due to timeouts, which can be
counteracted by increasing the overall CPU time limit of the portfolio.

Threats to Validity. The validity of drawn conclusions is always limited: We con-
sider the internal, external, and construct validity of the presented results.

Internal Validity. We evaluate combinations of tools rather than combinations
of techniques in isolation, which means that observed effects may be due to specific
implementations in the tools rather than the underlying techniques themselves.
Many test generators use hybrid approaches [12], which prevents us from draw-
ing conclusions about which specific techniques work well together. However,
to minimize internal validity threats, we conduct our experiments on the same
infrastructure as the official SV-COMP and Test-Comp competitions, ensuring con-
sistency with the competition setting. We use BENCHEXEC [56] for reliable resource
measurements, which minimizes measurement errors and variability.

Eaxternal Validity. Our evaluation is limited to the C programming language and
the benchmark sets from SV-COMP and Test-Comp. However, these represent the
largest publicly available benchmark set of verification tasks for C programs. Both
competitions are highly concerned with precise measurements and reproducibility,
lending credibility to our results. The tools we selected are proven to be good
representatives of their kind, as they perform well in the respective competitions.
Thus, while results may not generalize to other programming languages or entirely
different domains, our findings are representative of the state-of-the-art in formal
verification and testing for C.

Construct Validity. We design our experiments to evaluate whether test gen-
erators can improve verification. We measure effectiveness in terms of correctly
solved tasks and efficiency in terms of CPU time, which are standard metrics in
the software verification community and used by SV-COMP and Test-Comp. For
witness validation, we use the two active SV-COMP validators that support the
required witness features, ensuring that our results reflect the actual acceptance
criteria of the competition.

5 Conclusion

We presented Test-to-Witness, a tool to convert test cases into violation witnesses.
Our extensive evaluation shows that the transformation of test suites is feasible
and efficient. We provided evidence that even the combination of a simple plain
random tester with any state-of-the-art verifier can improve the effectiveness
of bug-finding capabilities in formal verification significantly. Our experiments
suggest that especially tools that focus heavily on proving programs correct
benefit from a pairing with a test generator. We also show that a portfolio
approach, with a small negative impact on efficiency, can improve effectiveness of
all considered verifiers.

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 19

Data Availability. Test-to-Witness and AFL-TC are publicly available via our
supplementary web page https://www.sosy-1lab.org/research/test-to-witness/
and as reproduction package at Zenodo [59]. The reproduction package was eval-
uated by the artifact-evaluation committee and allows the reproduction of our
experiments and contains all reported data.

Funding Statement. This project was funded by the Deutsche Forschungsge-
meinschaft (DFG) — 378803395 (ConVeY) and 418257054 (Coop).

References

1. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3-23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

2. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326-335. IEEE (2004). https:
//doi.org/10.1109/ICSE.2004.1317455

3. Beyer, D., Lemberger, T.: Conditional testing: Off-the-shelf combination of test-case
generators. In: Proc. ATVA. pp. 189-208. LNCS 11781, Springer (2019). https:
//doi.org/10.1007/978-3-030-31784-3_11

4. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FUSEBMC:
An energy-efficient test generator for finding security vulnerabilities in C pro-
grams. In: Proc. TAP. pp. 85-105. Springer (2021). https://doi.org/10.1007/
978-3-030-79379-1_6

5. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Proc.
NDSS. The Internet Society (2008), https://www.ndss-symposium.org/ndss2008/
automated-whitebox-fuzz-testing/

6. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. In:
Proc. PLDI. pp. 213-223. ACM (2005). https://doi.org/10.1145/1065010.1065036

7. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net. In: Proc.
TAP. pp. 134-153. LNCS 4966, Springer (2008). https://doi.org/10.1007/
978-3-540-79124-9_10

8. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through selective
symbolic execution. In: Proc. NDSS. Internet Society (2016). https://doi.org/10.
14722/ndss.2016.23368

9. Chen, C., Kande, R., Nguyen, N., Andersen, F., Tyagi, A., Sadeghi, A., Rajendran,
J.: Hypfuzz: Formal-assisted processor fuzzing. In: USENIX Security. pp. 1361-1378.
USENIX Association (2023)

10. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82-90 (2013). https://doi.org/10.1145/2408776.2408795

11. Metta, R., Medicherla, R.K., Chakraborty, S.: BMC+Fuzz: Efficient and effective
test generation. In: Proc. DATE. pp. 1419-1424. IEEE (2022). https://doi.org/10.
23919/DATE54114.2022.9774672

12. Beyer, D., Lemberger, T.: Six years later: Testing vs. model checking. Int. J.
Softw. Tools Technol. Transf. 26(6), 633-646 (2024). https://doi.org/10.1007/
S10009-024-00769-8

13. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299-329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

https://www.sosy-lab.org/research/test-to-witness/
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/418257054
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.1007/S10009-024-00769-8
https://doi.org/10.1007/S10009-024-00769-8
https://doi.org/10.1007/S10009-024-00769-8
https://doi.org/10.1007/S10009-024-00769-8
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15

20

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

D. Beyer, T. Lemberger, and H. Wachowitz

Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar, S.,
Venkatesh, R.: VERIABS: Verification by abstraction and test generation. In: Proc.
ASE. pp. 1138-1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121
Collection of verification tasks. https://gitlab.com/sosy-1lab/benchmarking/
sv-benchmarks, accessed: 2025-10-17

Beyer, D., Strejéek, J.: Improvements in software verification and witness validation:
SV-COMP 2025. In: Proc. TACAS (3). pp. 151-186. LNCS 15698, Springer (2025).
https://doi.org/10.1007/978-3-031-90660-2_9

Beyer, D.: Advances in automatic software testing: Test-Comp 2025. In: Proc.
FASE. pp. 257-274. LNCS 15693, Springer (2025). https://doi.org/10.1007/
978-3-031-90900-9_13

Beyer, D.: Second competition on software testing: Test-Comp 2020. In: Proc.
FASE. pp. 505-519. LNCS 12076, Springer (2020). https://doi.org/10.1007/
978-3-030-45234-6_25

Beyer, D.: Status report on software testing: Test-Comp 2021. In: Proc.
FASE. pp. 341-357. LNCS 12649, Springer (2021). https://doi.org/10.1007/
978-3-030-71500-7_17

Beyer, D.: Advances in automatic software testing: Test-Comp 2022. In: Proc.
FASE. pp. 321-335. LNCS 13241, Springer (2022). https://doi.org/10.1007/
978-3-030-99429-7_18

Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp 2023. In:
Proc. FASE. pp. 309-323. LNCS 13991, Springer (2023). https://doi.org/10.1007/
978-3-031-30826-0_17

Google: american fuzzy lop. https://github.com/google/AFL, accessed: 2025-10-17
Bohme, M., Pham, V., Roychoudhury, A.: Coverage-based greybox fuzzing as
markov chain. In: Proc. SIGSAC. pp. 1032-1043. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2976749.2978428

Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99-114. LNCS 10629, Springer (2017). https://doi.org/10.1007/
978-3-319-70389-3_7

Yoo, S., Harman, M.: Regression testing minimization, selection, and prioritization:
A survey. STVR 22(2), 67-120 (2012). https://doi.org/10.1002/stvr.430
McMinn, P.: Search-based software test-data generation: A survey. STVR 14(2),
105-156 (2004). https://doi.org/10.1002/stvr.294

Li, J., Zhao, B., Zhang, C.: Fuzzing: A survey. Cybersecurity 1(1), 6 (June 2018).
https://doi.org/10.1186/542400-018-0002-y

Manés, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.:
The art, science, and engineering of fuzzing: A survey. IEEE Trans. Software Eng.
47(11), 2312-2331 (2021). https://doi.org/10.1109/TSE.2019. 2946563

Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic-execution techniques. ACM Comput. Surv. 51(3), 50:1-50:39 (2018). https:
//doi.org/10.1145/3182657

Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86(8),
1978-2001 (2013). https://doi.org/10.1016/j.jss.2013.02.061

D’Silva, V., Kroning, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. on CAD of Integrated Circuits and
Systems 27(7), 1165-1178 (2008). https://doi.org/10.1109/TCAD.2008.923410

https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1109/ASE.2019.00121
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/978-3-031-90900-9_13
https://doi.org/10.1007/978-3-031-90900-9_13
https://doi.org/10.1007/978-3-031-90900-9_13
https://doi.org/10.1007/978-3-031-90900-9_13
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://github.com/google/AFL
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1002/stvr.430
https://doi.org/10.1002/stvr.430
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410

Testing in Formal Verification via Witness Generation (Empirical Evaluation) 21

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009).https://doi.org/1®.1145/1592434.1592438

Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: Proc. FMICS. pp. 3-69. LNCS 12327, Springer (2020). https://doi.
org/10.1007/978-3-030-58298-2_1

Beyer, D., Podelski, A.: Software model checking: 20 years and beyond. In: Principles
of Systems Design. pp. 554-582. LNCS 13660, Springer (2022). https://doi.org/
10.1007/978-3-031-22337-2_27

Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook
of Model Checking, pp. 613-649. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_19

Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493-540. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8_16

Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: A survey. STVR
19(3), 215261 (2009). https://doi.org/10.1002/stvr.402

Kaleeswaran, A.P., Nordmann, A., Vogel, T., Grunske, L.: A systematic literature
review on counterexample explanation. Information and Software Technology 145,
106800 (2022). https://doi.org/10.1016/j.infsof . 2021.106800

Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Proc. CAV (2). pp. 502-509. LNCS 9780, Springer
(2016). https://doi.org/10.1007/978-3-319-41540-6_28

Novikov, E., Zakharov, 1.S.: Towards automated static verification of GNU C
programs. In: Proc. PSI. pp. 402-416. LNCS 10742, Springer (2017). https://doi.
org/10.1007/978-3-319-74313-4_30

Groce, A., Kroning, D., Lerda, F.: Understanding counterexamples with explain.
In: Proc. CAV’04. pp. 453-456. LNCS 3114, Springer (2004). https://doi.org/10.
1007/978-3-540-27813-9_35

Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Proc.
SPIN. pp. 121-135. LNCS 2648, Springer (2003). https://doi.org/10.1007/
3-540-44829-2_8

Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In: Proc.
FSE. pp. 73-82. ACM (2004). https://doi.org/10.1145/1029894.1029908
Castanio, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model checker execu-
tion reports. In: Proc. ASE. pp. 200-205. IEEE (2017). https://doi.org/10.1109/
ASE.2017.8115633

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721-733. ACM
(2015).https://doi.org/1®.1145/2786805.2786867

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326-337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

Ayaziova, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strej¢ek, J.: Software
verification witnesses 2.0. In: Proc. SPIN. pp. 184-203. LNCS 14624, Springer (2024).
https://doi.org/10.1007/978-3-031-66149-5_11

Beyer, D., Strejéek, J.: SV-Witnesses — Format 2.1. Zenodo (2025). https://doi.
org/10.5281/zenodo. 17277275

Beyer, D., Jakobs, M.C.: Cooperative verifier-based testing with COVERITEST. Int.
J. Softw. Tools Technol. Transfer 23(3), 313-333 (2021). https://doi.org/10.1007/
s10009-020-00587-8

https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1002/stvr.402
https://doi.org/10.1002/stvr.402
https://doi.org/10.1016/j.infsof.2021.106800
https://doi.org/10.1016/j.infsof.2021.106800
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1007/978-3-319-74313-4_30
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.5281/zenodo.17277275
https://doi.org/10.5281/zenodo.17277275
https://doi.org/10.5281/zenodo.17277275
https://doi.org/10.5281/zenodo.17277275
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8

22

51.

52.

53.

54.

55.

56.

57.

58.

59.

D. Beyer, T. Lemberger, and H. Wachowitz

Barth, M., Jakobs, M.C.: Test-case generation with automata-based software
model checking. In: Proc. SPIN. Springer (2024). https://doi.org/10.1007/
978-3-031-66149-5_14

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209-224.
USENIX Association (2008), available at https://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf

Lemberger, T.: Plain random test generation with PRTEST (competition contri-
bution). Int. J. Softw. Tools Technol. Transf. 23(6), 871-873 (December 2021).
https://doi.org/10.1007/s10009-020-00568-x

Beyer, D., Kanav, S.: COVERITEAM: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561-579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

Beyer, D., Strej¢ek, J.: SV-Benchmarks: Benchmark set for software verification
(SV-COMP 2025). Zenodo (2025). https://doi.org/10.5281/zenodo. 15012096
Beyer, D., Lowe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.
Int. J. Softw. Tools Technol. Transfer 21(1), 1-29 (2019). https://doi.org/10.1007/
s10009-017-0469-y

Beyer, D., Lemberger, T.: TESTCOV: Robust test-suite execution and coverage
measurement. In: Proc. ASE. pp. 1074-1077. IEEE (2019). https://doi.org/10.
1109/ASE.2019.00105

Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6),
80-83 (1945). https://doi.org/10.2307/3001968

Beyer, D., Lemberger, T., Wachowitz, H.: Artifact for the fase 26 paper: Testing
in formal verification via witness generation (empirical evaluation). Zenodo (2026).
https://doi.org/10.5281/zenodo. 18351121

Open Access. This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution, and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended use

is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-66149-5_14
https://doi.org/10.1007/978-3-031-66149-5_14
https://doi.org/10.1007/978-3-031-66149-5_14
https://doi.org/10.1007/978-3-031-66149-5_14
https://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.5281/zenodo.15012096
https://doi.org/10.5281/zenodo.15012096
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://doi.org/10.5281/zenodo.18351121
https://doi.org/10.5281/zenodo.18351121
http://creativecommons.org/licenses/by/4.0/

	Testing in Formal Verification via Witness Generation (Empirical Evaluation)

